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Abstract

We develop a two-scale formalism to determine global magnetic helicity spectra in systems where the local
magnetic helicity has opposite signs on both sides of the equator, giving rise to cancellation with conventional
methods. We verify this approach using first a synthetic one-dimensional magnetic field and then two-dimensional
slices from a three-dimensional α effect-type dynamo-generated magnetic field, with forced turbulence of opposite
helicity above and below the midplane of the domain. We then apply this formalism to global solar synoptic vector
magnetograms. To improve the statistics, data from three consecutive Carrington rotations (2161–2163) are
combined into a single map. We find that the spectral magnetic helicity representative of the northern hemisphere is
negative at all wavenumbers and peaks at» -0.06 Mm 1 (scales around 100 Mm). There is no evidence of bihelical
magnetic fields that are found in three-dimensional turbulence simulations of helicity-driven α effect-type
dynamos.
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1. Introduction

Magnetic helicity is a conserved quantity not only in ideal
magnetohydrodynamics (MHD), but also in nonideal MHD in the
limit of large magnetic Reynolds numbers. It plays a crucial role
in the theory of astrophysical large-scale dynamos, given that in
many cosmic bodies, the magnetic Reynolds numbers are very
large indeed. Dynamo theory is relevant to explaining the global
cyclic magnetic field of the Sun (Kleeorin & Ruzmaikin 1982;
Gruzinov & Diamond 1996; Brandenburg 2001; Field &
Blackman 2002). Magnetic helicity is also a topological invariant
characterizing the linkage of magnetic field lines and thus its
complexity. Large values of magnetic helicity appear to be
connected with the launching of coronal mass ejections
(Low 1994; Nindos et al. 2003; Amari et al. 2014), which in
turn are relevant to understanding space weather. This led to the
quantitative evaluation of magnetic helicity in volumes above the
solar surface around active regions (ARs); see Pariat et al. (2015)
for recent work.

To make contact with possible mechanisms that generate
helical magnetic fields, it is necessary to decompose magnetic
helicity into contributions from different length scales. It has
been known for some time that the α effect produces a so-
called bihelical magnetic field, with opposite signs at small and
large wavenumbers (Seehafer 1996; Ji 1999; Blackman &
Brandenburg 2003). At each position, the net helicity integrated
over contributions from all scales is then actually zero. Thus, to
make meaningful quantitative statements, one needs to
compute magnetic helicity spectra; see Yousef and Branden-
burg (2003) for examples of such fields produced by the α
effect.

As a preliminary means of obtaining information about the
magnetic helicity of the large-scale field, one can use the
azimuthally averaged magnetic field to compute f fA B2 , where

fA is the mean toroidal vector potential and fB is the mean
toroidal magnetic field. By taking the sign of fB using Hale’s
polarity law and computing fA from the spherical harmonics

decomposition of the mean radial magnetic field, Brandenburg
et al. (2003) concluded that, in the northern hemisphere, f fA B
was negative (positive) before (after) solar maximum. A similar
dependence was also obtained by Zhang et al. (2010) by
measuring the current helicity. Using synoptic vector magneto-
grams, Pipin and Pevtsov (2014) computed fA and fB to obtain
the global magnetic helicity of the large-scale field of the Sun.
They found positive magnetic helicity in the north and negative
in the south, as expected from dynamo theory.
Magnetic helicity spectra are similar to magnetic energy

spectra, which have been computed for the Sun for some time
(Nakagawa & Priest 1973; Abramenko 2005; Stenflo 2012).
Magnetic helicity spectra can be computed analogously, but
this has only recently been attempted (Zhang et al. 2014, 2016).
Those spectra can be of different signs in different wavenumber
ranges and at different positions on the solar surface.
Particularly important for the solar dynamo is the possibility
of a systematic dependence on solar latitude. The question
therefore arises as to how to analyze and present such complex
dependencies on position and scale in an efficient way.
A simple approach would be to determine spectra in different

local patches, but this can only be meaningful if the patches are
not too large. This is indeed what has been done in the work of
Zhang et al. (2014, 2016), who used patches of 186 Mm 2( ) .
However, a more elaborate technique has been developed in
mean-field dynamo theory by Roberts and Soward (1975) to
separate large and small scales. This is generally referred to as
two-scale analysis. It involves a so-called double Fourier
transform, and allows one to compute quadratic small-scale
correlations such as the mean electromotive force at large
scales as a function of position based on Fourier transforms of
the constituent fields. This is particularly important if the large
length scales of interest are not just the full spatial extent
(corresponding to zero wavenumber), but a somewhat smaller
scale (finite wavenumber) on which physical properties of the
system vary slowly. This is relevant to the Sun, where one can
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expect statistically similar conditions at all longitudes, but only
within broad bands in latitude. Regarding the helicity of the
magnetic field, for example, one expects opposite signs in the
northern and southern hemispheres (e.g., Pevtsov et al. 2008,
2014), so one would obtain zero when averaging over north
and south.

In this paper we begin by demonstrating the properties of the
double Fourier transform. We consider first simple one-
dimensional (1D) helical and bihelical magnetic fields in the
presence of an equator, where the helicity changes sign. Next,
we apply the two-scale analysis to a three-dimensional (3D)
turbulent dynamo with periodic boundary conditions and an
equator in the middle that cuts the domain into two halves, with
opposite helicity of the forcing function. Finally, we employ
full-disk vector magnetograms from the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO) to obtain all three magnetic field
components at the two-dimensional (2D) surface of the Sun,
to compute magnetic helicity spectra from a sequence of
synoptic maps.

2. Formalism

2.1. The Usual Magnetic Energy and Helicity Spectra

In a periodic Cartesian domain, the usual magnetic energy
spectrum is given by the integral over shells in wavenumber
space of the Fourier-transformed magnetic energy density,

*ò= W
W

-B k B kE k k d , 1D
M

1

2
1

D

( ) ˆ ( ) · ˆ ( ) ( )

where Wd is the surface differential in Fourier space in D
dimensions. In D=3 dimensions, the surface of a D-
dimensional unit sphere is pW = 43 . In D=2 dimensions,

pW = 22 is the circumference of a unit circle, while in D=1
dimensions,W = 21 corresponds to the two end points of a line.
Here and in the following discussion, we measure the magnetic
energy density in G2 rather than -J m 3, so the vacuum
permeability factor is dropped. Furthermore, = kk ∣ ∣ is the
radius of a sphere in Fourier space, and hats denote the Fourier
transform of the magnetic field, that is,

ò p= -B k B x e d x 2 . 2k xi D Dˆ ( ) ( ) ( ) ( )·

The magnetic helicity spectrum is defined analogously to
E kM ( ) as

* *ò= + W
W

-A B A BH k k d , 3D
M

1

2
1

D

( ) [ ˆ · ˆ ˆ · ˆ ] ( )

where A kˆ ( ) is the Fourier transform of the vector potential
A x( ), with  ´ =A B and = ´B k Aiˆ ˆ . These spectra are
normalized such that

ò = á ñ º
¥

BE k dk , 4V
0

M
1

2
2

M( ) ( )

ò = á ñ º
¥

A BH k dk , 5V
0

M M( ) · ( )

where angle brackets with subscript V denote volume averages.
Analogously, one can define the current helicity spectrum
H kC ( ) such that ò = á ñJ BH k dk VC ( ) · , where = ´J B is
proportional to the current density.

For the following, it is useful to remember that the magnetic
energy spectrum is the Fourier transform of the trace of the
two-point correlation tensor

ò= á + ñx X X xM B B d X, 6ij i j
D( ) ( ) ( ) ( )

where angle brackets denote ensemble averaging, which could
be approximated by averaging over time, and xMij ( ) is assumed
to be statistically independent of X , owing to the assumption of
homogeneity. Thus, following standard relationships (e.g.,
Matthaeus et al. 1982; Brandenburg et al. 2011), the energy
spectrum is then given by ò d= W-kE k M k d2 ij ij

D
M

1( ) ˆ ( ) ,

where ò p= -k xM M e d x 2k x
ij ij

i D Dˆ ( ) ( ) ( )· is the Fourier trans-
form of Mij. Likewise, the scaled magnetic helicity spectrum is
given by ò= W-kkH k ik M k di ijk jk

D
M

1( ) ˆ ˆ ( ) , where = kk ki i
ˆ ∣ ∣

is the unit vector of k. (The hat on k is not to be confused with
the hats on B or Mij, where they denote Fourier transforms over
k.) (Including here the factors 2 and k on the left sides of the
two equations has the advantage that E k2 M ( ) and kH kM ( ) thus
have the same prefactors.) Note that under isotropic conditions,

=k H k H k2
M C( ) ( ). Such spectra show the high-wavenumber

range better than just H kM ( ) or kH kM ( ), and are therefore also
considered in some of the following cases.
The magnetic helicity spectrum can be defined analogously

from a tensorial generalization of the magnetic two-point
correlation tensor. This will be done in the following section,
where we will also relax the assumption of homogeneity and
allow the spectra to be slowly varying functions of X .

2.2. Double Fourier Transform

To obtain magnetic energy and helicity spectra that vary
slowly in space, we consider the two-point correlation tensor at
position X (Roberts & Soward 1975),

= + -X x X x X xM B B, , 7ij i j
1

2

1

2( ) ( )( ) ( )

where x is the distance between two points around X . This
expression is similar to Equation (6), except that the
dependence on the slowly varying coordinate X has been
retained and the two points of the two-point correlation
function are now symmetric about X . In the following, we refer
to such an analysis involving dependencies on both x and X as
a two-scale approach. Sometimes we refer to this also as a
global approach, as opposed to the local approach involving
smaller patches within just one hemisphere, as done in Zhang
et al. (2014, 2016).
By performing a Fourier transformation over x, we obtain

ò p= -X k X xM M e d x, , 2 8k x
ij ij

i D Dˆ ( ) ( ) ( ) ( )·

for the spectral correlation tensor. The symmetric part of this
tensor contains information about the energy spectrum, and the
anti-symmetric components contain information about the
magnetic helicity spectrum. Under isotropic conditions,

X kM ,ij
ˆ ( ) can be represented as

d= - - W-M k k E ik kH k2 2 , 9ij ij i j k ijk
D

DM M
1ˆ [( ˆ ˆ ) ˆ ] ( )
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and the magnetic energy spectrum is given by

ò d= W
W

-X X kE k M k d2 , , , 10ij ij
D

M
1

D

( ) ˆ ( ) ( )

while the magnetic helicity spectrum (scaled with k) is given by
(Roberts & Soward 1975)

ò= W
W

-X X kkH k ik M k d, , . 11i ijk jk
D

M
1

D

( ) ˆ ˆ ( ) ( )

Except for the X dependence, this formula is equivalent to that
used to estimate magnetic helicity in the solar wind (Matthaeus
et al. 1982; Brandenburg et al. 2011) and at the solar surface
(Zhang et al. 2014, 2016); see also the end of Section 2.1.

In practice, we are interested in the case where the helicity
varies in latitude and changes sign at the equator. Before
discussing the magnetic field at the surface of the Sun, where
the field is given in spherical coordinates, we consider
examples in Cartesian coordinates. This is technically and
conceptionally easier. We consider a cubic domain of size L3,
which is homogeneous in the x and y directions, but
inhomogeneous in the z direction, such that   pz0
corresponds to the northern hemisphere and  p- z 0 to
the southern. We are interested in slow changes of the magnetic
energy and helicity spectra as a function of =X X Y Z, ,( ),
where we shall be specifically interested in the dependence on
Z, which corresponds to latitude or distance from the equator or
the midplane. This can easily be done by performing an
additional Fourier transform over X :

ò p= -K k X kM M e d X, , 2 . 12K X
ij ij

i D D˜ ( ) ˆ ( ) ( ) ( )·

It can then be shown that (Roberts & Soward 1975)

*= + -K k k K k KM B B, . 13ij i j
1

2

1

2( ) ( )˜ ( ) ˆ ˆ ( )

Thus slow variations of the spectrum correspond to a shift
between two points in wavenumber space. By integrating again
over “shells” in k space, we obtain K-dependent magnetic
energy and helicity spectra analogously to Equations (10) and
(11) as

ò d= W
W

-K K kE k M k d2 , , , 14ij ij
D

M
1

D

˜ ( ) ˜ ( ) ( )

ò= W
W

-K K kkH k ik M k d, , . 15i ijk jk
D

M
1

D

˜ ( ) ˆ ˜ ( ) ( )

Thus the spectrum of magnetic helicity with a slow variation in
the z direction is proportional to K Zsin Z and is given by

=K K0, 0, Z( ), where p=K L2Z and z=Z are used
interchangeably.

Unlike XH k,M ( ), which is real, KH k,M˜ ( ) is complex. The
quantity of interest depends on the spatial profile of the
background helicity. For the rest of this paper, we are
concerned with helicity profiles proportional K Zsin 0 with an
equator at Z=0. Its Fourier transform is d- -i K KZ

1

2 0( ). We

will therefore plot the negative imaginary part of KH k,M˜ ( ),
which reflects the sign of magnetic helicity in the northern
hemisphere.

3. Testing the Formalism

To verify that the two-scale formalism allows us to
disentangle the proper magnetic helicity from measurements

over the full domain, and thus both hemispheres, we apply it
first to data where we know the result: (i) a synthetically
constructed 1D helical Beltrami-like magnetic field and (ii) a
3D field from a turbulent dynamo with a hemispheric
modulation of the helicity of the forcing function.

3.1. A 1D Example

A simple static 1D helical magnetic field is a Beltrami field
of the form =B k z k zsin , cos , 01 1( ), but its magnetic helicity
density is uniform, because in this example, the vector potential
is parallel to B with =A B k1. Here k1 is the wavenumber of
the magnetic field, and the helicity is positive for >k 01 and is
associated with a p 2 phase shift where By precedes Bx as a
function of z by a phase shift of p 2.
To make the helicity density a slowly varying function of z,

the phase shift between Bx and By must also slowly change.
This is accomplished by having slightly different wavelengths
for Bx and By. Equation (13) suggests the following form

= - +B k z k zcos , cos , 0 , 161 1( ) ( )

where = k k K1 1
1

2 0 and K0 is the wavenumber of the
slowly varying magnetic helicity density; see Figure 1(a). The
corresponding vector potential is = + - +A k k zsin ,1

1
1(( )

- - - -k k zsin , 01
1

1( ) ), so the magnetic helicity density is then
obtained as

= - -A B k K z K k z k Ksin sin 2 . 171 0
1

2 0 1 1
2 1

4 0
2)(( )· ( )

Figure 1. (a) Bx(z) and By(z) from Equation (16) with = -k K 101 0 , (b) A B·
and J B k1

2· , as well as (c) E k2 0,M˜ ( ) and kH K k,M 0˜ ( ).
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For k K1 0, we have » -A B k K zsin ;1
1

0· see also
Figure 1(b). As shown in detail in Appendix, the magnetic
energy spectrum at K=0 is

d d= ++ -E k2 0, 18k k k kM
1

2 1 1
˜ ( ) ( ) ( )

and the magnetic helicity spectrum at =K K0 is

d- =kH K k kIm , sgn 19k kM 0
1

2 1 1
˜ ( ) ( )

(see Figure 1(c)). Thus the presence of small-scale helicity with
a =K K0 modulation is perfectly captured by the two-scale
analysis. In particular, the sign of - kH K kIm ,M 0˜ ( ) is equal to
the sign of the magnetic helicity in the northern hemisphere,
and thus equal to the sign of k1.

Next we demonstrate in Figure 2 that even a bihelical
magnetic field consisting of a superposition of two helical
magnetic fields with different wavenumbers and opposite signs
can still easily be disentangled, even though the helicities of
both components are already modulated and change sign
proportional to K zsin 0 . In this case, the spatial profiles of
A B· and J B· are no longer related to each other in a simple
way and tend to have opposite signs (see Figure 2(b)).

3.2. 3D Turbulence

We now consider the results for helically forced 3D
hydromagnetic turbulence in triply periodic domains. The
forcing is applied at a length scale that is ten times smaller than
the computational domain, so that large-scale dynamo action

on the scale of the domain is possible. The helicity of the
forcing function is proportional to K zsin 0 , where p=K L20
is the smallest wavenumber in our domain of size L3. To
illustrate the appearance of such a field, we show in Figure 3
the component Bx on the periphery of the domain for a
simulation with 5763 meshpoints at a magnetic Reynolds
number, h= »R u k 100m rms f , where urms is the rms velocity
of the turbulence, η is the magnetic diffusivity, and kf is the
forcing wavenumber with »k K10f 0. The magnetic Prandtl
number is n h= =Pr 1M , where ν is the kinetic viscosity. The
setup of these simulations is similar to that of Mitra et al.
(2010), who found that such Cartesian dynamos with an
equator produce helical magnetic fields with equatorward
migration, if the magnetic boundaries in the z direction are
perfect conductors. In the present case, on the other hand, a
periodic boundary condition is used. The present simulation
has been performed with the Pencil Code.6

In Figure 4 we show xz slices and averages of both kinetic
and current helicities (i.e., w u· with w = ´ u being the
vorticity, and J B· , respectively). The averages are taken along
the direction normal to the plane. The four panels show that
both kinetic and current helicities are negative above the
midplane ( p< <z0 ) and positive below ( p- < <z 0).
However, the individual slices show considerable fluctuations
and violations of the hemispheric sign rule, even though this
simulation has maximally helical forcing at =K zsin 10 or −1.
The averages over the normal direction are much less noisy,
although fluctuations on the forcing scale can still be discerned.
In Figure 5 we show wá ñu zxy· ( ) and á ñJ B zxy· ( ) (i.e., where
we have also averaged over the x direction). We clearly see the
sinusoidal variation of the two mean helicity densities, just like
in panel (b) of Figures 1 and 2. The inset of Figure 5 shows that
á ñA B zxy· ( ), which is dominated by the large-scale field
(Brandenburg 2001), has (as expected) the opposite sign.
To verify that the bihelical signature of dynamo-generated

magnetic fields can clearly be extracted from single slices of
the entire volume from simulated magnetic field data, we plot
in Figure 6 magnetic energy and helicity spectra. In panel (a)
we plot the usual ( =K 0) magnetic energy spectrum,
E k2 0,M˜ ( ), which shows the energy injection scale at

=k K 100 , as well as magnetic energy on the scale of the

Figure 2. Similar to Figure 1, but for a bihelical field with =k K 21 0
and = -k K 102 0 .

Figure 3. Visualization of Bx on the periphery of the domain. The z direction
points upward, and the equatorial plane is in the middle of the domain. Note the
occurrence of a large-scale magnetic field patches together with a small-scale
field on the scale of the forcing.

6 https://github.com/pencil-code
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domain at =k K 10 and 2. The scaled magnetic helicity
spectrum - kH K kIm ,M˜ ( ) for =K K0 can be positive and
negative, so we plot kH K kIm ,M 0∣ ˜ ( )∣, but indicate the two signs
using different plot symbols.

At wavenumbers above the injection wavenumber, the
magnetic energy spectrum shows an approximate -k 5 3

subrange. Furthermore, kHIm M∣ ˜ ∣ shows a -k 8 3 subrange,
which corresponds to a -k 5 3 spectrum for the current helicity,
as has been found previously using the usual helicity spectra in
fully homogeneous turbulence (Brandenburg & Subramanian
2005; Brandenburg 2009). This variation should therefore be
well suited for analysis with the two-scale approach. Note also
that kHIm M∣ ˜ ∣ reaches peak values at around 0.003, which is
somewhat below the typical value of á ñA B z ;xy∣ · ( )∣ see the
inset of Figure 5.

In Figure 6(b) we compare current helicity spectra for
=K K0 and K=0 (i.e., - k H K kIm ,2

M 0˜ ( ) and k H kRe 0,2
M˜ ( ),

respectively), computed for six uniformly separated horizontal
planes. Note that for the latter, the contributions from the
planes above and below z=0 tend to cancel and fluctuate
around zero. The k2 factor has been applied to show more
clearly the relative strengths of the two extrema.

4. Application to Solar Vector Magnetograms

We combine synoptic vector magnetogram from three
successive Carrington rotations (CRs). Synoptic vector mag-
netograms, based on full-disk vector magnetograms from the
synoptic vector magnetograms from the Synoptic Optical
Long-term Investigations of the Sun (SOLIS) vector
spectromagnetograph (VSM), were first presented by Gosain
et al. (2013). Here we consider similar but higher-resolution
(0°.1 at the equator) synoptic maps for CR2161–2163,
constructed using full-disk vector magnetograms obtained
from SDO/HMI. The data were processed by Yang Liu7

(Stanford). It is worth noting that similar data, accompanied by
uncertainty maps but processed at lower intermediate resolution
( 1 ), are also available (Hughes et al. 2016).
The magnetic field vector is expressed in spherical

coordinates, q fB B B, ,r( ), where q fr, ,( ) correspond to radius
r, colatitude θ, and longitude f. We map the field onto the
f m,( ) plane, where m q= cos increases from south to north.
This allows us to adopt a Cartesian analysis by substituting

f m  - f qy z B B B B B B, , , , , , , . 20r x y z( ) ( ) ( ) ( ) ( )

This mapping preserves the right-handedness of the coordinate
system. We regard this approach as a substitute to what should
ultimately be done in spherical harmonics, but that would be
technically rather different from the previous test cases and will
therefore be avoided here. Furthermore, the use of μ instead of
θ is not rigorously justified, but it seems useful because it does
de-emphasize in a natural way data from high latitudes that are
more uncertain.

Figure 4. Slices (upper row) and averages (lower row) of w u· (left) and J B·
(right). As in Figure 3, blue (yellow) denotes negative (positive) values.

Figure 5. Dependence of á ñJ B· and wá ñu· on z. The inset shows á ñA B· .

Figure 6. (a) Magnetic energy and helicity spectra from six 2D slices for 3D
turbulence. (b) Comparison between - k H K kIm ,2

M 0˜ ( ) (solid lines) and
k H kRe 0,2

M ( ) (dotted lines).

7 http://hmi.stanford.edu/hminuggets/?p=1689
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4.1. Local Analysis

Before applying the global two-scale analysis, we present in
Figure 7 the time evolution of M and M, defined after
Equation (5), by computing the usual magnetic helicity spectra
for a sequence of 60 overlapping patches with a width of 36 in
longitude along three strips between 5 and 35 north (N), 5
and 35 south (S), and an equatorial strip between 7 latitude.
Here  f 0 360 refers to CR2163,  f 360 720 to
CR2162, and  f 720 1080 to CR2161.

In Figure 7(c) we also plot the evolution of the so-called
integral scale of the turbulence,

ò ò=
¥

-
¥

ℓ k E k dk E k dk0, 0, , 21M
0

1
M

0
M˜ ( ) ˜ ( ) ( )

and compare with    ℓ2M M M∣ ∣ , which is known as the
realizability condition (Kahniashvili et al. 2013). The modulus
of the ratio  =r ℓ2M M M M can reach values of the order of
0.15–0.4 (see Figure 7(d)).

It turns out that in most of the patches, the mean magnetic
helicity is very small, and large values are confined to just a
few isolated patches with strong ARs, where the magnetic
helicity is large; see Figure 7(b). There are two strong ARs in

the northern hemisphere (AR 12321 and AR 12339) and one
strong one in the southern hemisphere during CR2161—
namely, AR12297. The magnetic helicity of all the other ARs
is fairly weak, although there are many occasions where there
are prominent ARs.

4.2. Global Analysis

Next, we consider magnetic helicity spectra obtained in the
two-scale approach. In the Cartesian approach described
previously, the calculation of KkH k,M ( ) is straightforward.
We consider KkH k,M ( ) versus k for a fixed vector

=K K0, 0( ), that is, we assume that there is no systematic
modulation in longitude and that p p= = K R R2 20 is the
projected range for  m-1 1, where R is the solar radius.
In the following, we therefore write for simplicity H K k,M ( ),
that is, with a scalar K. For the energy spectrum, we consider,
as before, no modulation and thus just E k2 0,( ) versus k. The
highest wavenumber corresponding to the resolution of 0°.1 (or
1.2 Mm) is = » -

k R1800 2.6 Mmmax
1.

As explained in Section 3.1, with the equator being at m = 0,
the relevant quantity in this case is- kH K kIm ,M 0˜ ( ). It turns out
that it is negative for almost all values of k (see Figure 8(a)).
This is surprising and quite different from the corresponding
result for a helically driven large-scale dynamo. Nevertheless,
there are considerable variations in the value of the spectrum if
one compares with data from only one of any of the three CRs.
Those results are also shown in Figure 8(b). The range of
variation can be regarded as an estimate of the error “bar” of
- kH K kIm ,M 0˜ ( ). However, even though this quantity can
change by a factor of 2, the sign still does not change.

Figure 7. (a) M, (b)M, (c) ℓM (solid lines) and  2M M∣ ∣ (dashed lines), and
(d) rM∣ ∣ in three strips between 5 and 35 northern latitude (N, red lines),
between 5 and 35 southern latitude (S, blue lines), and at the equator between
 7 latitude (E, black lines) for CR2161–2163 covering the period from 2015
February 28 (right) to 2015 May 20 (left).

Figure 8. (a) Magnetic energy and helicity spectra for the 2D solar surface for
the interval spanning CR2161–2163. (b) Current helicity spectrum,
- k H K kIm ,2

M 0˜ ( ), for the interval spanning CR2161–2163 (solid black)
together with the results for CR2161 (dotted red), 2162 (dashed–dotted blue),
and 2163 (dashed green).
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If =K 00 , we can apply the realizability condition,
kH k E k0, 2 0,M M∣ ˜ ( )∣ ˜ ( ). By contrast, for ¹K 00 , this no

longer holds, so the separation between the graphs of
kH K kIm ,M 0∣ ˜ ( )∣ and E k2 0,M˜ ( ) can no longer be used as a

quantitative measure of the fractional magnetic helicity and
how close it is to the maximum possible value.

4.3. Latitudinal Dependence

Finally, let us consider the latitudinal dependence,
=X Z0,( ), at the solar surface. To do this, we have to

transform back from K-space to Z-space and then plot the
spectra as a function of Z (or z, or even μ, which are all
equivalent). The result is shown in Figure 9, where we have
computed the return transformation as

ò=H Z k e H K k dK, , . 22iK Z
Z ZM MZ( ) ˜ ( ) ( )

We have computed the return transformation for E Z k,M ( )
analogously. Here the Fourier integral has been evaluated as a
Fast Fourier Transform with  - K K128 1270 , resulting
in 256 points in m- < <1 1. It turns out that both kH Z k,M ( )
and E Z k2 ,M ( ) are strongly concentrated along narrow
latitudinal strips at  15 latitude. Again, the spectra are
concentrated within the range  - -k0.01 Mm 0.1 Mm1 1.
As expected, the magnetic helicity is negative in the north,
which is consistent with the two-scale analysis, where a

negative value of H K kIm ,0˜ ( ) corresponds to negative magnetic
helicity in the north and positive in the south.
Let us emphasize at this point that by going into Fourier

space, we have automatically eliminated the gauge dependence
of magnetic helicity. This, in turn, is a consequence of the
implicit assumption that the input to the Fourier transform is
periodic. This assumption might reasonably well be justified if
the domain extends between both poles, where the field is weak
anyway, and in longitude, if sufficiently many synoptic maps
are “stitched” together. Ultimately, of course, the Fourier
formalism should be replaced by one involving spherical
harmonics, similar to what has been done previously for the
mean magnetic field (Brandenburg et al. 2003; Pipin &
Pevtsov 2014). However, this has not yet been developed in
the context of the two-scale formalism.

4.4. Comparison with the Azimuthally Averaged Mean Field

Let us now compare with the magnetic helicity density from the

azimuthally averaged mean magnetic field, ò f p=
p

B Bd 2
0

2
,

for which the gauge-invariant relative magnetic helicity is given
by ò f fA B d x2 D (Brandenburg et al. 2002), where fA and fB are
the toroidal components of A and = ´B A , respectively,
and = =f fA B 0 on the axis. We now compute the magnetic
helicity density, f fA B2 , where fA is related to =Br

q m-¶ ¶fAsin( ) . Analogously, in our Cartesian mapping, we
have = -¶ ¶B A zx y .
To compute Ay, it is convenient to employ spectral space

(i.e., = -A B iky x z
ˆ ˆ in our mapping). Alternatively, in

spherical coordinates, owing to axisymmetry, we have
(Brandenburg et al. 2003; Pipin & Pevtsov 2014)

åm m= -
+
+

f
=

A R
ℓ

ℓ ℓ
B P

1 2

1
, 23

ℓ

N

ℓ ℓ
1

1
ℓ

( )
( )

ˆ ( ) ( )

where mPℓ
1( ) are the associated Legendre polynomials of degree

ℓ and order one, ò m m m=
-

B B P dℓ r ℓ1

1ˆ ( ) ( ) are the coefficients in

a series in terms of the Legendre polynomials mPℓ ( ), and Nℓ is
the truncation (see Rädler (1973) or Krause & Rädler (1980)
for details). Using =N 500ℓ , the result for f fA B2 is given in
Figure 10, where we show its latitudinal dependence either for
the combined data set of CR2161–2163 or for each of the three

Figure 9. Magnetic energy and helicity spectra for 2D solar surface data for
CR2161–2163 as a function of k and latitude, Zarcsin .

Figure 10. Latitudinal dependence of f fA B2 for CR2161–2163 (black),
together with the results for the three CRs separately. The inset shows the full
range from pole to pole (black) and a comparison with the result from the
Cartesian analysis (orange dashed).
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CRs separately. Here, fB̂ has been truncated to the same level
using an equation analogous to Equation (10), but with
expansion coefficients computed with mPℓ

1( ) instead of mPℓ ( ).
It turns out that at- 15 latitude the magnetic helicity density

is mostly negative, but at + 15 latitude it is more noisy and
with positive values only for CR2163 and mostly negative
values for CR2162. The inset shows the full latitudinal extent
and a comparison with the corresponding Cartesian result. Here
we have applied a low-pass filter with  -k 0.1 Mmz

1∣ ∣ ,
corresponding to =N 70ℓ . The Cartesian result agrees with
the spherical harmonics reconstruction. Both show large
positive contributions throughout the southern hemisphere.
Those are caused by the systematic presence of radial fields
( » -B 5 Gr ) at 50 – 80 southern latitudes.

The values of f fA B2∣ ∣ are of the order of 1000 G Mm2 ,
which is comparable to the values of kH kM∣ ( )∣ near the
maximum at = -k 0.1 Mm ;1 see Figure 8. This suggests that
the contributions from the azimuthally averaged mean field are
captured correctly by our two-scale analysis. On the other hand,
there is an obvious difference between these two approaches, in
that in our two-scale approach the gauge analogous to

m =  =fA 1 0( ) is not adopted, but instead the integral over
mfA ( ) is implicitly assumed to vanish. This can cause a

difference in the k 0 limit.

5. Comparison with Earlier Work

Although the use of a two-scale analysis is completely new
in solar physics, some meaningful comparison with earlier
work can be made. First, the fact that the magnetic helicity is
negative in the north and positive in the south has been known
for some time (Seehafer 1990; Pevtsov et al. 1995; Bao
et al. 1999), but the global analysis is now able to show that,
averaged over one or several CRs, there are hardly any sign
changes in one hemisphere (i.e., the hemispheric sign rule of
magnetic helicity is well obeyed). The average spectral current
helicity at = -k 0.1 Mm 1 (a scale of approximately 60 Mm) is
about -100 G2 in the northern hemisphere (see Figure 8(b)).
Such a statement has not been possible with conventional
methods, which were restricted to just the area of one AR. For
example, the approach of Zhang et al. (2016) yielded values of
about 10 G3 2 for AR11158 and 10 G4 2 for AR11515, both in
the southern hemisphere and at = -k 0.1 Mm 1. These values
are between 10 times (for AR 11158) and 100 times (for
AR 11515, which had exceptionally large helicity) larger than
the averaged spectral current helicity found here for the
entire Sun.

Most of the earlier work on magnetic helicity measurements
was restricted to the total magnetic helicity over all
wavenumbers and for a finite volume around a given AR.
Such an approach involves either time integration of photo-
spheric magnetic helicity injection or force-free field extra-
polation, both of which are time consuming; see Valori et al.
(2016) for a review. Nevertheless, as already demonstrated by
Zhang et al. (2014), such values of total magnetic helicity are
similar to the magnetic helicity density around a given patch,
for example, if one assumes a volume of ´3 10 Mm6 3 given
by the area of the patch of 186 Mm 2( ) and a height of 100 Mm.
For the spectrum of AR11158, the spectral current helicity
density of 10 G3 2 corresponds to a mean magnetic helicity of
about ´3 10 G Mm;4 2 see also Figure 3 of Zhang et al.
(2016). Thus the total magnetic helicity is 10 G Mm11 2 4. Since

=1 G Mm 10 Mx2 4 32 2, it corresponds to 10 Mx ;43 2 this agrees

with earlier estimates of the gauge-invariant magnetic helicity
for this AR, using time integration of photospheric magnetic
helicity injection (Liu & Schuck 2012; Vemareddy et al. 2012)
and nonlinear force-free coronal field extrapolation (Jing
et al. 2012; Tziotziou et al. 2013).
The main advantage of our approach is that it can readily be

applied to global measurements covering all longitudes and
latitudes over both hemispheres at the same time. In that way,
one can efficiently average over fluctuations, especially in cases
when there is significant cancellation. An example of this type
is AR11515, which was an extremely complex AR with a
significant amount of magnetic helicity cancellation (Wang
et al. 2014; Lim et al. 2016). Moreover, even though it occurred
in the southern hemisphere, the net magnetic helicity was
negative (Lim et al. 2016), which was explained by a
significant amount of oppositely signed magnetic helicity at
large length scales (Zhang et al. 2016). Curiously, however, the
presence of an oppositely signed magnetic helicity at large
length scales in AR11515 of 2012 July 6 is not borne out by
the present work. This highlights the importance of applying
our new approach to longer time series covering also a range of
different phases of the solar cycle.

6. Conclusions

The present work has shown that it is possible to generalize
the notion of a helicity spectrum to the case where the helicity
is locally modulated in a large-scale fashion, which may even
include a sign change. This approach is particularly useful for
characterizing the spectrum of solar magnetic helicity, with the
aim of being able to find out whether there is evidence for a
bihelical spectrum. Bihelical spectra have been seen in
turbulent dynamo simulations where turbulence is driven by
a helical forcing function. Surprisingly, our present results
suggest that, for the Sun, the helicity spectrum is not bihelical
—at least not at the surface. The reason for this is not
understood at present. As we have shown in Figure 10, the
contribution from the azimuthally averaged mean field is of
comparable magnitude to that from our two-scale analysis, but
it is very noisy and has only in the southern hemisphere at
- 15 significant negative contributions, which would be in
agreement with Pipin and Pevtsov (2014) and perhaps
suggestive of a bihelical field. However, this contribution is
overwhelmed by much stronger contributions of the opposite
sign at latitudes south of - 40 . It might well be that our time
frame was unfortunate and that the net magnetic helicity of the
large-scale field was close to zero. Another possibility is that
the weak contribution of large-scale fields with opposite sign is
just a surface effect. Observations of the magnetic field in the
solar wind have indicated the presence of a bihelical spectrum
(Brandenburg et al. 2011) and that the signs of the two
contributions at large and small scales are the other way around
than what is expected inside the Sun. One is therefore led to
consider the possibility of the spectrum having changed along
the way since it left the Sun, which is indeed what turbulence
simulations (Warnecke et al. 2011) and mean-field models
(Bonanno 2016). The role of the surface has yet to be studied in
that respect, but there is clearly now a need to consider
theoretical models of global convection-driven dynamos and to
apply the two-scale approach to different layers: the surface,
the interior of the convection zone, and an outer coronal layer.
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Appendix
Derivation of Equations (17) and (18)

The purpose of this appendix is to present the derivation of
Equations (18) and (19). The Fourier transform of B yields

d d d d= + +- -- - + +B k , , 0 . 24k k k k k k k k
1

2 1 1 1 1
ˆ ( ) ( ) ( )

We recall that in 1D, the integrals in Equations (14) and (15)
still extend over positive and negative values of k. Thus the
surface integral reduces to a sum of two contributions, one with
positive k and one with negative k. For K=0, Equation (14)
yields

d d

d d

d d

= +

+ +

= +

¢ - ¢
¢=-

¢ - ¢
¢=

+ +

- -

+ -

E k2 0,

, 25

k k k k
k k

k k k k
k k

k k k k

M
1

4

1

4

1

2

1 1

1 1

1 1

˜ ( ) ( )

( )

( ) ( )

which is in agreement with Equation (18) and Figure 1. Here,
the 1/4 factor is the energy of each Fourier peak, but there are
two of them at =  -k k1 and at =  +k k1 , which explains the
1/2 amplitudes of each of the peaks in energy.

Next, we calculate kH K k,M 0˜ ( ). Since k̂ has only a z
component, Equation (15) yields

= ¢ ¢ - ¢

+ ¢ ¢ - ¢

¢=-

¢=

kH K k ik M K k M K k

ik M K k M K k

, , ,

, , . 26

xy yx k k

xy yx k k

M 0 0 0

0 0

˜ ( ) ˆ [ ˜ ( ) ˜ ( )]∣
ˆ [ ˜ ( ) ˜ ( )]∣ ( )

To compute M K k,xy 0˜ ( ) and M K k,yx 0˜ ( ), we need the Fourier
transforms shifted by K 20 . Those are given by

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d d
d d+ =

+
+
- -

- +B k K

0

, 27
k k K k k

k k k k K
1

2 0
1

2

1 0 1

1 1 0( )ˆ ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d d
d d- =

+
+
- -

+ -B k K

0

. 28
k k k k K

k k K k k
1

2 0
1

2

1 1 0

1 0 1( )ˆ ( )

Thus d= -M K k,xy k k0
1

4 1
˜ ( ) and d=M K k,yx k k0

1

4 1
˜ ( ) . Therefore,

Equation (26) yields

d d

d

= ¢ - ¢

=-

- ¢ ¢=- ¢ ¢=kH K k ik ik

i k

,

sgn . 29

k k k k k k k k

k k

M 0
1

4

1

4
1

2 1

1 1

1

˜ ( ) ˆ ∣ ˆ ∣

( ) ( )

This is in agreement with Equation (19).
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