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EFFECT OF PHASE ERRORS

By default, the Pencil Code uses sixth order ac-
curate finite difference representations for the first and
second derivatives. A low spatial order of the scheme
implies that at high wavenumbers the magnitude of the
numerical derivative is reduced, leading to lower advec-
tion speeds of the high wavenumber Fourier components.
This is generally referred to as phase error. Thus, for
an advected tophat function, the high wavenumber con-
stituents will lag behind, creating the well-known Gibbs
phenomenon which needs to be controlled by a certain
amount of viscosity. Higher order schemes require less
viscosity to control the Gibbs phenomenon [1]. On the
other hand, any turbulence simulation requires a suffi-
cient amount of viscosity to dissipate kinetic energy. It
is therefore thought that for a sixth orders scheme the
two limits on the viscosity are similar and that it is not
advantageous to use higher order representations of the
spatial derivatives.

To verify this in the present context, we have run a high
Reynolds number case both with sixth and tenth order
schemes. In the Pencil Code, the order of the scheme
can easily be changed by setting DERIV=deriv 10th. In
that case, first and second derivatives are represented as

dnfi/dxn =

N
∑

j=−N

(sgn j)nc
(n)
|j| fi+j/δxn, (1)

with coefficient c
(n)
j given in Table I for schemes of order

TABLE I: Coefficients c
(n)
j ≡ a

(n)
j /b(n)

N n b(n) a
(n)
0 a

(n)
1 a

(n)
2 a

(n)
3 a

(n)
4 a

(n)
5

10 1 2520 0 2100 −600 150 −25 2

8 1 840 0 672 −168 32 −3

6 1 60 0 45 −9 1

4 1 12 0 8 −1

2 1 2 0 1

10 2 25200 −73766 42000 −6000 1000 −125 8

8 2 5040 −14350 8064 −1008 128 −9

6 2 180 −490 270 −27 2

4 2 12 −30 16 −1

2 2 1 −2 1

FIG. 1: Magnetic (upper curves) and kinetic (lower curves)
energy spectra for at t = 110 for the sixth order (blue, dashed)
and tenth order (red, solid) finite difference schemes.

N . The result of the comparison is shown in Figure 1.
The differences between the two cases are negligible, ex-
cept that with the more accurate tenth order scheme the
inverse transfer of kinetic energy to larger scales is now
slightly stronger. This is consistent with our earlier find-
ings that the inverse transfer in nonhelical MHD becomes
more pronounced at larger resolution.

ISOTHERMAL VERSUS POLYTROPIC

EQUATION OF STATE

An isothermal equation of state is often used in sub-
sonic compressible turbulence to approximate the con-
ditions of nearly incompressible flows. Using instead a
polytropic equation of state means that in the momen-
tum equation the pressure gradient term for an isother-
mal gas is amended by a factor ∝ ργ−1, i.e.,

c2
s∇ ln ρ → c2

s0

(

ρ

ρ0

)γ−1

∇ ln ρ, (2)

where γ = 5/3 is the polytropic index for a monatomic
gas instead of γ → 1 for an isothermal gas. Using γ = 5/3
implies a slightly stiffer equation of state, so one has
to drive stronger to achieve the same compression; see
Sect. 9.3.6 of [2]. In the present context of subsonic de-
caying turbulence, this leads to slightly smaller vorticity
fluctuations, as is shown in Figure 2. It is seen that the
difference between γ = 5/3 and 1 is negligible for all
practical purposes.

TIME-DEPENDENT ν(t) AND η(t)

As pointed out by Olesen [4], the hydrodynamic and
MHD equations are invariant under rescaling x → x̃ℓ and
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FIG. 2: Difference in rms vorticity, ωrms, between the isother-
mal and polytropic solutions.

FIG. 3: pq diagrams for hydrodynamic turbulence with ν =
const (a) and time-dependent ν(t) ∝ tr (b) with r = −0.43
and α = 4. Panels (c) and (d) show the corresponding βq
diagrams. Open (closed) symbols corresponds to i = K (M)
and their sizes increase with time.

t → t̃ℓ1/q provided also ν and η are being dynamically
rescaled such that

ν(t) = ν0 max(t/t0, 1)r, η(t) = η0 max(t/t0, 1)r, (3)

TABLE II: Exponents r for different α.

α 0 1 2 3 4

r 0.33 0 −0.20 −0.33 −0.43

FIG. 4: Similar to Figure 3, but for nonhelical MHD tur-
bulence with ν = η = const (a) and time-dependent ν(t) =
η(t) ∝ tr (b) with r = −0.43 and α = 4.

FIG. 5: Similar to Figure 3, but for α = 2 (a) and α = 1 (b)
with ν = const.

with

r = 2q − 1 = (1 − α)/(3 + α); (4)

see Table II. The use of the max function in Equation (3)
limits the values of ν ≤ ν0 and η ≤ η0 for t ≤ t0 when r <
0. At large Reynolds numbers, the time-dependence is
not expected to be important. To verify this, we compare
in Figure 3 hydrodynamic runs with constant and time-
dependent ν using α = 4. Both cases are similar and
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the case with time-dependent ν still has β = 3 6= α.
Similar behavior is found in MHD; see Figure 4, where we
compare runs with constant and time-dependent ν and η
using again α = 4. In both cases, we find β = 2 6= α.

In agreement with earlier work we find that in hydro-
dynamic cases with α = 2 and α = 1, we have β = α [5].
This is demonstrated in Figure 5, where we show the pq
and βq diagrams for these two case.
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