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ABSTRACT

Aims. This work presents an extensive study of the previously discovered formation of bipolar flux concentrations in a two-layer
model. We interpret the formation process in terms of negative effective magnetic pressure instability (NEMPI), which is a possible
mechanism to explain the origin of sunspots.
Methods. In our simulations, we use a Cartesian domain of isothermal stratified gas that is divided into two layers. In the lower
layer, turbulence is forced with transverse nonhelical random waves, whereas in the upper layer no flow is induced. A weak uniform
magnetic field is imposed in the entire domain at all times. In most cases, it is horizontal, but a vertical and an inclined field are also
considered. In this study we vary the stratification by changing the gravitational acceleration, magnetic Reynolds number, strength of
the imposed magnetic field, and size of the domain to investigate their influence on the formation process.
Results. Bipolar magnetic structure formation takes place over a large range of parameters. The magnetic structures become more
intense for higher stratification until the density contrast becomes around 100 across the turbulent layer. For the fluid Reynolds
numbers considered, magnetic flux concentrations are generated at magnetic Prandtl number between 0.1 and 1. The magnetic field
in bipolar regions increases with higher imposed field strength until the field becomes comparable to the equipartition field strength
of the turbulence. A larger horizontal extent enables the flux concentrations to become stronger and more coherent. The size of the
bipolar structures turns out to be independent of the domain size. A small imposed horizontal field component is necessary to generate
bipolar structures. In the case of bipolar region formation, we find an exponential growth of the large-scale magnetic field, which is
indicative of a hydromagnetic instability. Additionally, the flux concentrations are correlated with strong large-scale downward and
converging flows. These findings imply that NEMPI is responsible for magnetic flux concentrations.
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1. Introduction

One of the main manifestations of solar activity is the occurrence
of sunspots on the surface of the Sun, showing cyclic behavior
with a period of 11 years. Sunspots are concentrations of strong
magnetic field suppressing the convective heat transport from
the interior of the Sun to its surface. This causes sunspots to be
cooler and to appear darker on the solar disk. Sunspots were ob-
served and counted by Galileo Galilei more than 400 years ago,
and their magnetic origin was discovered by Hale (1908) over
100 years ago. However, the formation mechanism of sunspots
is still the subject of active discussions and investigations.

For a long time it was believed that the solar dynamo pro-
duces strong magnetic fields at the bottom of the convection
zone (Parker 1975; Spiegel & Weiss 1980; Galloway & Weiss
1981). At this location, called the tachocline (Spiegel & Zahn
1992), there is a strong shear layer (Schou et al. 1998) that might
be able to produce a strong toroidal magnetic field. This field
is believed to become unstable and rise upward in the form
of flux tubes, which reach the surface to form bipolar struc-
tures, including sunspot pairs (e.g., Caligari et al. 1995). How-
ever, this picture has been questioned. Global simulations of
self-consistent convectively driven dynamos are able to produce

strong magnetic fields without the presence of a tachocline (e.g.,
Racine et al. 2011; Käpylä et al. 2012b, 2016a; Augustson et al.
2015). These simulations are also able to reproduce the equa-
torward migration of the toroidal field as observed in the Sun.
The magnetic field is strongest in the middle of the convec-
tion zone and propagates from there both toward the surface
and the bottom of the convection zone (Käpylä et al. 2013). Fur-
thermore, Warnecke et al. (2014) found that the equatorward mi-
gration occurring in their global simulations of self-consistent
convectively driven dynamos can be explained entirely by the
Parker-Yoshimura rule (Parker 1955a; Yoshimura 1975) of a
propagating αΩ dynamo wave, where α is related to the ki-
netic helicity and Ω is the local rotation rate of the Sun. With
a positive α, the radial gradient of Ω has to be negative for equa-
torward migration to occur. The Parker-Yoshimura rule was also
recently verified for these simulations using αφφ determined with
the test-field method (Warnecke et al. 2016). In the Sun, dΩ/dr
is negative in the near-surface shear layer (Thompson et al.
1996; Barekat et al. 2014). This suggests that in the Sun the
toroidal field can also be generated in the upper layers of the
convection zone owing to the near-surface shear (Brandenburg
2005). Additionally, the magnetic field, if generated at the bot-
tom of the convection zone, might become unstable at field
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strengths of around 1 kG (Arlt et al. 2007a,b). This instability
would occur much before the magnetic field is amplified to
105 G, which is needed for a coherent flux tube to reach the
surface without strong distortion (Choudhuri & Gilman 1987;
D’Silva & Choudhuri 1993). The generation of strong coher-
ent magnetic flux tubes has not yet been seen in self-consistent
dynamo simulations (Guerrero & Käpylä 2011). What has been
seen, however, are flux tubes that appear in hydromagnetic tur-
bulence (Nordlund et al. 1992; Brandenburg et al. 1996), analo-
gously to vortex tubes in hydrodynamic turbulence (She et al.
1990). They appear as short strands when visualized through
field vectors at places where the field exceeds a certain threshold,
but can display a serpentine tube-like structure when visualized
as field lines regardless of the local field strength (Nelson et al.
2011; Fan & Fang 2014). Furthermore, the flux bundles found
in these two papers rise because of a combination of advec-
tion and magnetic buoyancy. Given their size and further expan-
sion when ascending to the surface, their role in sunspot forma-
tion remains inconclusive. An alternative to producing spots in a
global dynamo simulation of rapidly rotating stars was found by
Yadav et al. (2015). These authors were able to generate a single
polar spot without the help of rising tubes. However, the simu-
lations began with a large-scale dipolar field, which might have
contributed to the formation process.

Results from helioseismology concerning the importance of
the tachocline in the global dynamo do not support a deeply
rooted flux tube scenario in that the shear at the bottom of the
convection zone has not shown the periodic variations found in
the bulk of convection zone (Howe et al. 2000; Antia & Basu
2011), where the period is the same as that of the activity cycle of
the Sun (see, e.g., Howe 2009). One would expect that a strong
magnetic field generated in the tachocline would also backreact
on the differential rotation. Furthermore, no signs of rising flux
tubes have yet been found in helioseismology. Birch et al. (2010)
computed the expected signatures and observational limits of de-
tecting the retrograde motion from the rising flux tube model of
Fan (2008). Birch et al. (2013) were unable to detect any signa-
tures larger than 20 km s−1. However, they could exclude mod-
els of Cheung et al. (2010) and Rempel & Cheung (2014), but
other rising flux tube models might still be possible. From statis-
tical studies of emerging active regions, Kosovichev & Stenflo
(2008) and Stenflo & Kosovichev (2012) conclude that the tilt
angle of bipolar regions with respect to the east–west direction
(Joy’s law) evolves after the emergence occurs and is, therefore,
unlikely to be caused by the Coriolis force acting on a rising flux
tube.

If the toroidal magnetic field of the Sun is generated through-
out the convection zone, it is reasonable to assume that there
is a local mechanism that forms magnetic flux concentra-
tions, which then leads to sunspots seen at the solar surface.
Stein & Nordlund (2012) identify the convective downward
flows associated with the supergranulation as one such location
where magnetic flux can be concentrated self-consistently; this
causes the formation of bipolar magnetic structures of the size of
pores.

Another possible mechanism is the negative effective mag-
netic pressure instability (NEMPI). In this instability, the total
(hydrodynamic plus magnetic) turbulent pressure is reduced by
a large-scale magnetic field so that the effective large-scale mag-
netic pressure (the sum of turbulent and nonturbulent contribu-
tions) becomes negative. This causes the surrounding plasma to
flow into regions of low gas pressure, which leads to down-
flows and vertical fields that are concentrated further. This en-
hances the suppression of turbulent pressure, which results in

the excitation of a large-scale magnetohydrodynamic instabil-
ity (NEMPI) and the formation of large-scale magnetic flux
concentrations. The original idea goes back to early work by
Kleeorin et al. (1989, 1990), and has been established in the-
oretical (Kleeorin et al. 1993, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007) and numerical studies
(Brandenburg et al. 2010, 2011, 2012; Losada et al. 2012, 2013,
2014; Jabbari et al. 2013, 2014, 2015).

The first magnetic flux concentrations of superequipartition
strength produced by NEMPI were unipolar spots in the presence
of an imposed vertical field (Brandenburg et al. 2013, 2014).
Warnecke et al. (2013b) were for the first time able to produce
bipolar magnetic regions with NEMPI using a two-layer setup
with a weak imposed horizontal magnetic field. Turbulence is
driven by a forcing function within the lower layer, while in
the upper unforced layer, called the coronal envelope, all mo-
tions are a consequence of overshooting and magnetic field ten-
sion. This approach was developed by Warnecke & Brandenburg
(2010) and was used to produce dynamo-driven coronal ejec-
tions (Warnecke et al. 2011, 2012a,b). These studies suggest
that the dynamo operating in a two-layer model becomes
stronger and more easily excited than that in a one-layer model
(Warnecke & Brandenburg 2014). Furthermore, in global sim-
ulations of a convectively driven dynamo, the presence of a
coronal layer on top of the convection zone leads to spoke-
like differential rotation together with a near-surface shear layer
(Warnecke et al. 2013a, 2015), instead of otherwise mainly
cylindrical contours of angular velocity.

Mitra et al. (2014) use a different two-layer setup in which
turbulence is present in both layers, but in the lower layer it is
driven helically, leading to large-scale dynamo action, while in
the upper layer, it is driven nonhelically. This spatially separates
the dynamo from the formation of magnetic flux concentrations.
With this setup, they were able to produce intense bipolar struc-
tures. Recently, bipolar structures have also been studied in a
similar setup of spherical shells (Jabbari et al. 2015).

In the present work, we extend the studies of Warnecke et al.
(2013b) concerning the detailed dependence on density strat-
ification (Sect. 3.1), magnetic Reynolds number (Sect. 3.2),
imposed magnetic field strength (Sect. 3.3), size of the com-
putational domain (Sect. 3.4), and magnetic field inclination
(Sect. 3.5) to investigate and classify the formation mechanisms
of bipolar magnetic regions (Sect. 3.6).

2. Model
The model is essentially the same as that of Warnecke et al.
(2013b), but in this work we vary the stratification, the im-
posed magnetic field, and the magnetic Reynolds number. We
use a Cartesian domain (x, y, z), which has the size Lx × Ly × Lz,
where Lx = Ly = 2π and Lz = 3π, except for Runs S1
(where Lz = 2π) and S3 (where Lx = Ly = 4π). We solve
the magnetohydrodynamic equations in the presence of verti-
cal gravity g = (0, 0,−g). We apply the two-layer model of
Warnecke & Brandenburg (2010), which consists of a turbulent
lower layer (z ≤ 0) and a laminar upper layer (z ≥ 0), which is
referred to as coronal envelope. The extent of the turbulent layer
is −π ≤ z ≤ 0, except for Run S2, where it is −2π ≤ z ≤ 0. The
main difference between these two layers is the presence of the
forcing function f (x, y, z, t) in the lower layer, which is called
the turbulent layer. For a smooth transition between the two lay-
ers, we apply a modulation of the forcing function similar to
Warnecke & Brandenburg (2010),

θw(z) = 1
2

(
1 − erf

z
w

)
, (1)
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where w is the width of the transition, which is chosen to be 0.05
for all runs except Run THW, where w = 0.02. We solve the
compressible magnetohydrodynamic (MHD) equations

Du
Dt

= g + θw(z) f +
1
ρ

[
−c2

s∇ρ + J × B + ∇ · (2νρS)
]
, (2)

∂A
∂t

= u × B + η∇2 A, (3)

D ln ρ
Dt

= −∇ · u, (4)

where ρ is the density and cs is the sound speed, which is con-
stant in the entire domain. The convective derivative is D/Dt =
∂/∂t + u · ∇. The magnetic field is given by B = Bimp + ∇ × A,
where Bimp = (0, B0, 0) is a weak uniform field in the y direction
and B is divergence free by construction. For Run V, we choose
Bimp = (0, 0, B0) and for Run INC Bimp = (0, B0, B0)/

√
2. B0 is

kept constant during the simulation. Here, J = ∇ × B/µ0 is the
current density, µ0 is the vacuum permeability, ν is the kinematic
viscosity, η is the magnetic diffusivity,

Si j = 1
2 (ui, j + u j,i) − 1

3δi j∇ · u (5)

is the trace-free strain tensor, and commas denote partial spa-
tial differentiation. For an isothermal equation of state, the pres-
sure p is related to the density ρ via p = c2

sρ. The forcing
function f consists of random plane transverse white-in-time,
nonpolarized waves (see Haugen & Brandenburg 2004, for de-
tails). The wavenumbers lie in a band around an average forcing
number kf = 30 k1, where k1 = 2π/Lx (kf = 60 k1 for Run S3) is
the lowest wavenumber possible in the domain. The amplitude
of the forcing is the same in all runs and is chosen to yield a con-
stant urms ≈ 0.1cs in the bulk of the turbulent layer, where the
rms velocity is defined as

urms = 〈u2〉
1/2
xy;z≤0, (6)

and 〈.〉xy denotes a horizontal average and 〈.〉z≤ 0 denotes a verti-
cal average over the turbulent layer (z ≤ 0). We also use horizon-
tal averaging to describe the mean of a quantity, i.e., 〈F〉xy = F.
However, to describe the large-scale field, we use a horizontal
2D Fourier-filtered field with a cut-off wavenumber kc ≤ kf/6
and use the notation Ffil. The density scale height Hρ is chosen
such that k1Hρ = 1 (k1Hρ = 2 for Run S3).

For classification and analysis, we use nondimensional and
dimensional numbers characterizing the physical properties of
the MHD turbulence. We define the fluid and magnetic Reynolds
numbers of the system as Re ≡ urms/νkf and ReM ≡ urms/ηkf ,
respectively. Therefore, the magnetic Prandtl number is given
by PrM ≡ ReM/Re = ν/η. To characterize the local strength of
the magnetic field, we define an equipartition field strength as
Beq(z) = (µ0ρu2)1/2, which is a function of z, or at the surface
Beq0 = Beq(z = 0). Time is measured in turbulent-diffusive times,
τtd = H2

ρ/ηt0, where ηt0 = urms/3kf is the estimated turbulent
diffusivity. In the following we use units such that µ0 = 1.

We use horizontal periodic boundary conditions for all de-
pendent variables. The top and bottom boundaries are stress-free
and the magnetic field is vertical. The kinematic viscosity ν and
magnetic diffusion η are constant throughout the whole domain.
However, we employ higher values near the top boundary in high
stratification runs to stabilize the code, which becomes impor-
tant in regions of low density. Except for Runs S1 and S3, we
apply a resolution of 512 × 512 × 1024 grid points in x, y, and
z directions; see second column of Table 1. The difference from

Fig. 1. Vertical profiles of equipartition magnetic field strengths Beq for
Runs A3, A5, A7, THW, S1, and S2 as a function of height z/Hρ. Beq is
normalized by the imposed magnetic field B0. The vertical lines indicate
z = −π, 0, π.

the runs of Warnecke et al. (2013b) is that we double the resolu-
tion and arithmetic precision to increase numerical accuracy. The
simulations are performed with the Pencil Code1, which uses
sixth-order explicit finite differences in space and a third-order
accurate time stepping method.

3. Results

We comprehensively study the formation mechanism of the
bipolar regions found in Warnecke et al. (2013b) by changing
the density stratification, the magnetic Reynolds number, and the
imposed magnetic field. For each parameter we perform five to
eight runs in various sets: Set A for the density study, Set R for
the magnetic Reynolds number study, and Set B for the imposed
magnetic field study; see Table 1. Furthermore, we use three dif-
ferent additional domain sizes to investigate their influence on
the formation process; see Set S in Table 1 and two additional
runs with vertical (Run V) and 45 degrees inclined (Run INC)
imposed magnetic field.

The various stratifications and box sizes give rise to differ-
ent vertical profiles of equipartition field strength Beq, which are
plotted in Fig. 1. As a result of the transition from intense turbu-
lence to small velocities in the coronal envelope, Beq experiences
a steep decrease at the surface (z = 0).

We start by investigating the evolution of the magnetic field
at the surface. We therefore calculate the averaged magnetic en-
ergy density of the large-scale field 〈Bfil 2(z = 0)〉xy; see Fig. 2 for
all three components. Strong flux concentrations with high val-
ues for the large-scale magnetic field are obtained (see Table 1)
when the z components (black lines) are similar or larger than the
y component (red), as in Runs A5, A6, A7, R3, B2, and B5. Fur-
thermore, Fig. 2 shows a clear exponential growth of the large-
scale vertical magnetic field in those cases where bipolar regions
occur (compare with last column of Table 1). This confirms that
a hydromagnetic instability is responsible for the formation of
the bipolar regions found in these simulations. In the second to
last column of Table 1, t̃max = tmax/τtd is the time when Bfil max

z is
taken in terms of turbulent-diffusive time. In Set A, the formation
of bipolar regions is connected to a growth of magnetic energies
in all components, but the z component grows exponentially dur-
ing the first turbulent diffusion time for all runs, except Run A1.
Our estimated growth rate for Run A5 is 1.4/τtd, which is plotted
as a straight line in Fig. 2. This growth rate is well in agreement

1 http://github.com/pencil-code/
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Table 1. Summary of runs.

Run Resolution Size gHρ/c2
s ρbot/ρsurf Re PrM Beq0/B0 Pmin

eff
Bmax

z /B0 Bfil max
z /B0 t̃max BR

A1 5122 × 1024 (2π)2 × 3π 0.1 1.4 38.0 0.5 40 –0.021 39 1.6 – NO
A2 5122 × 1024 (2π)2 × 3π 0.5 4.8 38.0 0.5 41 –0.023 52 3.8 2.1 WEAK
A3 5122 × 1024 (2π)2 × 3π 0.7 8.9 38.1 0.5 42 –0.026 56 5.4 1.9 YES
A4 5122 × 1024 (2π)2 × 3π 0.85 14 38.1 0.5 42 –0.020 56 5.5 1.6 YES
A5 5122 × 1024 (2π)2 × 3π 1.00 23 38.2 0.5 43 –0.022 67 9.2 1.1 YES
A6 5122 × 1024 (2π)2 × 3π 1.20 42 38.4 0.5 44 –0.023 74 8.1 1.2 YES
A7 5122 × 1024 (2π)2 × 3π 1.40 79 38.6 0.5 46 –0.017 72 8.8 1.1 YES
A8 5122 × 1024 (2π)2 × 3π 1.50 108 38.7 0.5 48 –0.017 58 6.6 0.7 YES

R1 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.0625 43 –0.018 8.7 2.9 – NO
R2 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.125 43 –0.015 19 4.4 1.8 WEAK
R3 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.25 43 –0.020 31 6.0 1.5 YES
R4 5122 × 1024 (2π)2 × 3π 1.00 23 38.2 0.5 43 –0.022 67 9.2 1.1 YES
R5 5122 × 1024 (2π)2 × 3π 1.00 23 35.7 1 40 –0.028 91 4.3 2.0 WEAK

B1 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.5 431 –0.019 202 13 2.6 WEAK
B2 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.5 173 –0.023 138 14 3.6 YES
B3 5122 × 1024 (2π)2 × 3π 1.00 23 38.3 0.5 86 –0.022 92 6.1 2.3 YES
B4 5122 × 1024 (2π)2 × 3π 1.00 23 38.2 0.5 43 –0.022 67 9.2 1.1 YES
B5 5122 × 1024 (2π)2 × 3π 1.00 23 38.1 0.5 17 –0.030 30 4.8 0.9 YES
B6 5122 × 1024 (2π)2 × 3π 1.00 23 37.7 0.5 8.5 –0.059 16 3.2 0.8 YES
B7 5122 × 1024 (2π)2 × 3π 1.00 23 36.1 0.5 1.6 –0.125 3.3 0.2 – NO

S1 5123 (2π)2 × 2π 1.00 23 38.2 0.5 42 –0.030 52 7.8 1.0 YES
S2 5122 × 1024 (2π)2 × 3π 1.00 512 38.9 0.5 49 –0.024 57 4.9 1.1 YES
S3 10243 (4π)2 × 3π 1.00 23 38.2 0.5 43 –0.013 80 17 1.8 YES

THW 5122 × 1024 (2π)2 × 3π 1.00 23 38.2 0.5 45 –0.022 56 5.3 0.6 YES
V 5122 × 1024 (2π)2 × 3π 1.00 23 38.1 0.5 43 –0.021 107 30 3.9 SP
INC 5122 × 1024 (2π)2 × 3π 1.00 23 38.2 0.5 43 –0.022 86 21 3.9 YES

F 5122 × 1024 (2π)2 × 3π 1.00 23 38.7 0.5 45 –0.049 50 10 1.7 YES

Notes. Here, gHρ/c2
s is the normalized gravitational acceleration and ρbot and ρsurf are the horizontally averaged densities at the bottom and surface

(z = 0) of the domain, respectively. Re is the fluid Reynolds number, PrM is the magnetic Prandtl number, B0 is the imposed field, Beq0 = Beq(z = 0)
is the equipartition value at the surface (z = 0), and Pmin

eff
is the minimum of the averaged effective magnetic pressure Peff defined by Eq. (9); see

also bottom row of Fig. 4. Bmax
z is the maximum value of vertical magnetic field, Bfil max

z is the maximum value of the Fourier-filtered vertical
magnetic field; both are taken at the surface (z = 0). t̃max is the time when Bfil max

z is taken in terms of turbulent-diffusive time. BR indicates whether
or not there are bipolar regions or a single spot (SP). The runs R4 and B4 are the same as A5.

of earlier studies with imposed vertical and horizontal magnetic
fields, i.e., those without a coronal envelope (Brandenburg et al.
2013; Kemel et al. 2012).

The x component of 〈Bfil 2(z = 0)〉xy also shows an exponen-
tial growth, but with a lower growth rate. In Set R, runs with both
a lower and a higher magnetic Prandtl number than Run R4 = A5
have a smaller growth rate, although Run R3 also shows bipolar
regions. In Runs B1 and B2, there are also exponential increases
of the energy of the vertical magnetic field, which are related to
the formation of bipolar magnetic regions. These increases tend
to occur later and have higher energies than Run A5. In Run B7,
the vertical magnetic field is too weak to produce a magnetic
flux concentration, as is also indicated by the lack of exponen-
tial growth. In the following, we study these behaviors in more
detail.

3.1. Dependence on stratification

In Runs A1–A8, we vary the density stratification in the turbulent
layer from ρbot/ρsurf = 1.5 to 108 by changing the normalized
gravity gHρ/c2

s , where ρbot and ρsurf are the horizontally averaged
densities at the bottom (z = −π) and at the surface (z = 0) of the
domain, respectively. This is related to an overall stratification
range from ρbot/ρtop = 2.6 (Run A1) to 1.2×106 (Run A8), where
ρtop is the horizontally averaged density at the top of the domain

(z = 2π). The formation of a bipolar region depends strongly on
the stratification. For a small density contrast, as in Run A1, the
amplification of vertical magnetic field is too weak to form mag-
netic structures, its maximum is below the equipartition value
at the surface; see Fig. 3. The vertical magnetic field in the flux
concentrations can reach superequipartition field strengths and
an amplification of over 50 of the imposed field strength already
for a density contrast of ρbot/ρsurf ≈ 5, as in Run A2. However,
the bipolar structures are still weak compared to those for higher
stratifications. The field amplification inside the flux concentra-
tions grows with increasing stratification. The maximal vertical
field strength reaches values of over 70B0, which is nearly twice
the equipartition field strength at the surface. The maximum field
strength peaks at ρbot/ρsurf = 42 and decreases for even higher
stratification (Run A8). This limits strong field concentrations
to a range between ρbot/ρsurf = 23 and 80. Field concentra-
tions are still possible for higher and lower stratifications, but
the strengths of the large-scale field inside the bipolar region are
smaller.

The density stratification also has an influence on the forma-
tion of the bipolar region. This is shown in the top row of Fig. 4,
where we plot the vertical magnetic field strength at the surface
at the time of strongest bipolar region formation. Run A3 with
moderate stratification shows a magnetic field concentration that
has multiple poles, and the structure of the bipole in Run A3 is
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Fig. 2. Temporal evolution of the horizontally averaged, magnetic energy density of the large-scale field at the surface (z = 0) 〈Bfil 2〉xy for Sets A
(first column), R (second column), and B (third column). The three components are shown in blue (x), red (y), and black (z). All values are
normalized by the imposed field strength B2

0. The straight green line in the panel for Run A5 shows the estimated growth rate of 1.4/τtd for vertical
large-scale magnetic field.

not as clear as in Runs A5 and A7. In Run A7, the bipolar region
is more coherent and magnetic spots are closer to each other
than in Run A5. Furthermore, the maximum of the large-scale
magnetic field Bfil max

z /B0, which is an indication of the strength
of bipolar regions, increases with higher stratification, as shown
by the blue line in Fig. 3. A maximum of the large-scale mag-
netic field above about 5 B0 seems to indicate bipolar flux con-
centrations. The inclination of the two polarities is most of the
time aligned with the imposed field direction. However, in some
cases, as in Run A5, an alignment with the surface diagonal is
also possible. Unfortunately, we cannot find any clear criteria
that determine the alignment.

In the second row of Fig. 4, we show how the magnetic field
continues above the surface. Here we plotted log10 B2/B2

eq0 at
a time when the bipolar regions are the clearest. The loop struc-
tures connecting the two polarities are more pronounced for high
stratification (Run A7) than for moderate stratification (Run A3).
Furthermore, in Runs A5 and A7, the magnetic energy in the tur-
bulent region is much more concentrated and structured than in
Run A3. These plots indicate that with higher stratification, it
is easier to form loop-like structures in the coronal envelope.
However, the inclination of the bipolar region as in Run A3

Fig. 3. Dependence of magnetic field amplification and effective
magnetic pressure on stratification. Maximum vertical magnetic field
Bmax

z /B0 (solid black) at the surface, maximum of the large-scale ver-
tical magnetic field 5Bfil max

z /B0 (blue) at the surface, minimum of the
effective magnetic pressure Peff (red), and equipartition field strength at
the surface Beq0/B0 (dashed black) as a function of gHρ/c2

s and density
contrast ρsurf/ρbot for Set A.
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Fig. 4. Formation of bipolar regions for three different stratifications (left column: A3, middle: A5, right: A7). Top row: normalized vertical
magnetic field Bz/Beq plotted at the xy surface (z = 0) at times when the bipolar regions are the clearest. Second row: normalized magnetic energy
density plotted in the yz plane as a vertical cut through the bipolar region at x = 0. We replicated the domain by 50% in the y direction (indicated
by the vertical dashed lines) to give a more complete impression about spot separation and arch length. The black-white dashed lines indicate the
replicated part and in the last three rows the surface (z = 0). Third row: vertical rms magnetic field Brms

z /Beq = 〈B2
z 〉

1/2
xy /Beq normalized by the local

equipartition value (see Fig. 1 for vertical profiles) as a function of t/τtd and z/Hρ. Bottom row: smoothed effective magnetic pressure Peff as a
function of t/τtd and z/Hρ. Blue shades correspond to negative and red to positive values.

seems to form more complex loops structures than what is shown
in Fig. 5 of Warnecke et al. (2013b).

In the third row of Fig. 4, we plot the horizontally aver-
aged rms value of the vertical magnetic field Brms

z = 〈B2
z 〉

1/2
xy ,

which is normalized by the local equipartition value, as a func-
tion of time and height. In the coronal envelope, where turbu-

lent forcing is absent, Beq is much lower than in the turbulent
layer; see Fig. 1 for the vertical profiles of Beq. This leads to
high values of Brms

z /Beq in the coronal envelope. We chose this
normalization using Beq instead of Beq0 because of the better vis-
ibility of the concentration of vertical flux. For all three cases,
which are shown in the third row of Fig. 4, the field emerges from
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the turbulent layer, forming a bipolar region and then generating
loop-like structures in the coronal envelope. After t/τtd ≈ 2, the
vertical field decays, and new strong flux concentrations are not
able to form. This is related to a persistent change of the average
stratification after the magnetic field is applied.

An indicator of structure formation through the negative ef-
fective magnetic pressure instability (NEMPI) is the effective
magnetic pressure Peff . For its derivation, we start with the
definition of the turbulent stress tensor Π, i.e.,

Π
(B)
i j ≡ ρu′iu

′
j + 1

2δi jµ
−1
0 b2 − µ−1

0 bib j, (7)

where the first term is the Reynolds stress tensor and the last two
terms are the turbulent magnetic pressure and turbulent Maxwell
stress tensors. The superscript (B) indicates the turbulent stress
tensor under the influence of the mean magnetic field; Π

(0)
i j is the

turbulent stress tensor without mean magnetic field, where both,
the turbulent Maxwell stress and the Reynolds stress are free
from the influence of the mean magnetic field. Here we define
mean and fluctuations through horizontal averages, B ≡ 〈B〉xy,
such that B = B+ b and u = U +u′. Using symmetry arguments,
we can express the difference in the turbulent stress tensor Π
for the magnetic and nonmagnetic case in terms of the mean
magnetic field (see, e.g., Brandenburg et al. 2012),

∆Πi j = Π
(B)
i j − Π

(0)
i j = −qpδi j

B
2

2
+ qsBiB j − qg

gig j

g2 B
2
, (8)

where qp, qs, and qg are parameters expressing the importance
of the mean-field magnetic pressure, mean-field magnetic stress,
and vertical anisotropy caused by gravity. They are to be deter-
mined in direct numerical simulations: gi are components of g,
which in our setup has only a component in the negative z di-
rection. The normalized effective magnetic pressure is then de-
fined as

Peff =
1
2

(1 − qp) β2, with β2 =
B

2

B2
eq
, (9)

where we can calculate from Eq. (8)

qp = −
1

B
2

∆Πxx + ∆Πyy −
(
∆Πxx − ∆Πyy

) B
2
x + B

2
y

B
2
x − B

2
y

 , (10)

qs =
∆Πxx − ∆Πyy

B
2
x − B

2
y

, (11)

qg =
1

B
2

−∆Πzz − qp
B

2

2
+ qsB

2
z

 . (12)

In the bottom row of Fig. 4, we show Peff for Runs A3, A5,
and A7, where Peff was evaluated in 50 × 20 bins in time and
height within the turbulent layer. From these maps, we deduct
the minimum values Pmin

eff
and list them in the ninth column of

Table 1; see also Figs. 3, 7, and 9.
We find that the area with negative effective magnetic pres-

sure Peff decreases for stronger stratifications (see the bottom
row of Fig. 4). For Run A3, the smoothed Peff is negative in ba-
sically all of the turbulent layer at all times, except for some short
time intervals. The values are often below −0.005, but occasion-
ally even below −0.01. For higher stratification, the intervals of
positive values of Peff become longer and negative values be-
come in general weaker. In Run A7, the smoothed Peff fluctuates
around zero with equal amounts of positive and negative values.

Fig. 5. Effective magnetic pressure Peff plotted over β2 = B2/B2
eq at

ten different times for Run A5. The inlay shows a zoom-in to the lower
values of β2, where we have averaged over 40 points to reduce the noise.
The shown values are limited to the turbulent layer (z ≤ 0).

As Peff is plotted in the same time interval as Brms
z (third row

of Fig. 4), it enables us to compare the time evolutions of struc-
ture formation and Peff . For Run A7, there seems to be a relation
between the two, i.e., structure formation occurs when Peff is
negative. When Brms

z has a strong peak at around t/τtd ≈ 1, Peff

has a minimum between t/τtd ≈ 0.5 and 1 close to the surface.
In Runs A3 and A5, Peff is also weak when Brms

z is strong, but
this does not only happen when Brms

z is strong. In general, the
minimum value of the smoothened Peff does not indicate the ex-
istence of NEMPI as a possible formation mechanism of flux
concentration in the context of dependency on density stratifica-
tion. There is a weak opposite trend: Peff becomes less negative
for large stratification, even though Bfil max

z increases for larger
stratification; see Fig. 3.

Indeed, the value of Peff itself is not the deci-
sive quantity, as the growth rate λ of NEMPI is given
by (Rogachevskii & Kleeorin 2007; Kemel et al. 2013;
Brandenburg et al. 2014)

λ =
vA

Hρ

(
−2

dPeff

dβ2

)1/2 kx

k
− ηt0 k2. (13)

See Appendix A of Kemel et al. (2013) for a detailed deriva-
tion with an imposed horizontal field, and Sect. 2.1 of
Brandenburg et al. (2014) with a vertical field. Here vA =
B0/
√
µ0ρ is the Alfvén speed. To get an idea about the form

of dPeff/dβ2, we plot in Fig. 5 Peff versus β2 = B2/B2
eq at dif-

ferent times for Run A5. In the beginning of the simulation, the
growth rate is positive for all values of β2 in the turbulent layer
because the derivative, dPeff/dβ2 is negative. As the simulation
progresses, the growth rate become weaker and mainly at larger
values of β2 it is positive. After the formation of the largest and
strongest concentrations at around t/τtd = t̃max = 1.0 (light blue),
the growth rate is positive only at low values of β2, as shown in
the inlay of Fig. 5. However, even when the growth rate is pos-
itive, the actual values of Peff are still positive. This behavior
of the growth rate fits well with the temporal evolution of the
large-scale magnetic field as shown in Fig. 2. There, 〈Bfil 2〉xy ex-
hibits an exponential growth until around t/τtd = 1.0, saturates
and then decays after t/τtd = 1.2. At low values of β2, Peff does
not show a strong indication of a negative slope; it seems nearly
constant and the growth rate is close to zero; see inlay of Fig. 5.

We should note here that the mean field B is in the direction
of the imposed magnetic field, i.e., the y direction, while the field
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Fig. 6. Dependence of parameters qp (black), qs (red), and qg (blue)
on stratification for Set A. We normalize the parameters by multiplying
with β2 (dashed black). The legend of the x-axis is the same as in Fig. 3.
The parameters are computed as a temporal and spatial mean over the
turbulent layer. Error bars are estimated using the maximum difference
of the total mean with the means of each third of the time series.

in the spots points in the positive or negative z direction. There-
fore, besides the usual formation of concentrations with the same
polarity as the imposed field, we have here an additional mecha-
nism to turn the field from horizontal to vertical. One of these
mechanisms can be magnetic buoyancy (e.g., Parker 1955b),
which is actually visible in Fig. 5, where dPeff/dβ2 becomes pos-
itive. Even though it is not easy to determine the growth rate for
the simulations, we can get a rough idea by looking at t̃max for
increasing stratification. Interestingly, t̃max tends to decrease, im-
plying a stronger growth rate for larger stratification.

To understand the dependence on stratification, we analyze
the three parameters in the three terms of Eq. (8) defined in
Eqs. (10)–(12). They quantify the importance of the different
contributions to the turbulent stress tensor Π. In Fig. 6, we plot
the parameters qp, qs, and qg as functions of density stratifi-
cation. The errors are relatively large because the parameters
are strongly fluctuating in time and space. Nevertheless, there
are some systematic trends with increasing density stratifica-
tion. The parameter qpβ

2 is related to Peff and shows a strong
decrease from low to moderate stratifications (ρbot/ρsurf < 15),
and it is even larger than the decrease in β2 itself. This means,
the average Peff is only negative for ρbot/ρsurf smaller than ≈15.
For larger stratifications, Peff is on average positive. However,
this also means that, as shown in the last row of Fig. 4, Peff

can be negative at certain times and certain depths. The param-
eter qg, describing vertical anisotropy due to gravity, is neg-
ative for low and moderate stratifications and becomes posi-
tive for high stratification showing a steady increase. Therefore,
qgβ

2 > β2 can also decrease the turbulent pressure, which is
the trace of Π. This seems to be the case at least on average
for high stratifications (ρbot/ρsurf > 20). However, because of
the direction of the gravity, only Πzz is suppressed. This might
be related to the fact that we still find bipolar regions for high
stratification, but the field strength is weaker than for moder-
ate stratifications. This behavior might explain the “gravitational
quenching” found by Jabbari et al. (2014). The coefficient qs,
characterizing the importance of the off-diagonal components
of the turbulent stress tensor, does not seem to have a strong
influence on the result. Furthermore, the sign is positive for
low stratifications, close to zero for higher stratifications, and

Fig. 7. Dependence of magnetic field amplification and effective mag-
netic pressure on magnetic Prandtl number PrM and magnetic Reynolds
number ReM for Set R. The legend is otherwise the same as in Fig. 3.

therefore qsβ
2 < β2 for most of the runs. Thus, the qs terms

could only suppress the turbulent pressure if the components of
the magnetic stress tensor themselves were negative. The aver-
aged coefficients qp, qs, and qg indicate that the main mecha-
nism for flux concentration for low and moderate stratifications
(ρbot/ρsurf ≤ 15) is related to the negative effective magnetic
pressure Peff , whereas for high stratifications (ρbot/ρsurf ≥ 15),
the contribution of the vertical anisotropy due to gravity is more
important. However, as discussed before, the averaged quantities
are strongly affected by fluctuations. Comparing our values with
previous works (Brandenburg et al. 2012; Käpylä et al. 2012a),
we find broad agreement. In Brandenburg et al. (2012), qgβ

2 is
smaller and positive for similar stratification, while qsβ

2 is close
to zero. In the present work qp is negative instead of positive for
the same stratification. In Käpylä et al. (2012a), where turbulent
convection is considered instead of forced turbulence, qg turns
out to be positive and qs negative, which is similar to our sim-
ulations with similar stratification. A detailed comparison with
Warnecke et al. (2013b) reveals that the structure of the bipolar
region and its t̃max of case A is not exactly the same as in Run A5,
even though the only difference is the resolution and precision.
This suggests that in the simulations of Warnecke et al. (2013b)
the resolution was not sufficient to model this highly turbulent
medium.

In addition to the change in stratification, we also change
the forcing width from w = 0.05 to w = 0.02 in one case
(Run THW). The resulting change in the vertical profile of the
equipartition field strength is small, as shown in Fig. 1. The re-
sulting bipolar regions, however, are slightly weaker, Bmax

z /B0 =
56, and the large-scale field is significantly weaker than in
Run A5. This might also be related to the fact that the Beq0 is
slightly higher. Thus, in summary, the forcing width does not
have a strong influence on the occurrence of bipolar regions.

3.2. Dependence on magnetic Reynolds number

As a next step we investigate the dependency on magnetic
Reynolds number ReM. We keep Re fixed (around 40) and
change PrM by a factor of 16; see the seventh column in Table 1.
Run R1, has the lowest PrM and a magnetic Reynolds num-
ber of ReM = 2.4. This implies that microscopic diffusion is
of the same order as turbulent diffusion. The effect of negative
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Fig. 8. Temporal evolution of the horizontally averaged magnetic en-
ergy density at the surface (z = 0) for Runs A50 and R50, where B0 = 0.
The three components are shown in blue (x), red (y), and black (z),
where solid lines indicate the total magnetic energy and dashed lines
the large-scale magnetic energy. All values are normalized by their val-
ues at t/τtd = 0.

magnetic pressure is weak for such low magnetic Reynolds num-
bers. Indeed, the maximum amplification of the magnetic field
due to the flux concentration is around 5, which is nearly ten
times less than the equipartition value. Also the amplification of
the large-scale magnetic field is weak. Even though the mini-
mum value of Peff is similar to those of Set A, NEMPI cannot
be excited, presumably because the growth rate of NEMPI is
smaller than the damping rate caused by turbulent and micro-
scopic magnetic diffusion.

Increasing ReM and PrM leads to larger field amplifications
and stronger large-scale fields inside the flux concentrations; see
Figs. 2 and 7. However, the vertical field can only reach su-
perequipartition values when PrM is above 0.5. The dependence
on ReM can also be seen from the time t̃max (time instant when
Bfil max

z is reached). Increasing ReM leads to a shorter t̃max, but
in Run R5, the instability is weakened and causes t̃max to be
longer. This behavior can also be seen in the evolution of the
components of the magnetic energy; see Fig. 2. For PrM ≤ 1, the
growth becomes steeper with increasing PrM until the maximum
is reached for Run A5 = R4. For PrM = 0.5, i.e., for Run R5, the
growth rate is again smaller than for Run A5 = R4.

In Run R5, the magnetic Prandtl number is unity and a small-
scale dynamo is excited. This is illustrated in Fig. 8, where we
plot the x, y, and z components of the magnetic energy as a func-
tion of t/τtd for Runs A50 and R50. These two simulations are
identical to Runs A5 and R5, except that we set the imposed
field B0 to zero and use a weak, white-noise seed magnetic field
instead. For Run A50 all components of the magnetic field de-
cay as expected because NEMPI needs a small imposed mean
magnetic field to operate. In Run R50 a small-scale dynamo op-
erates and generates magnetic field in all components, but their
rms values stay constant after exponential amplification. Even
though the magnetic field amplification is maximal in Run R5,
small-scale dynamo action weakens the formation of large-scale
vertical magnetic structures. Earlier work (Brandenburg et al.
2012) demonstrated that the relevant mean-field parameter pro-
portional to the growth rate is reduced to 2/3 of it original value
when ReM > 60. Therefore, Bfil max

z is smaller than in Run R4 and

Fig. 9. Dependence of magnetic field amplification and effective mag-
netic pressure on the imposed magnetic field B0/Beq0 for Set B. The
magnetic field is normalized by the imposed magnetic field B0 a) or
by the equipartition field strength at the surface Beq0 b). Otherwise the
legend is the same as in Fig. 3.

the bipolar magnetic region is weaker. On the other hand, Peff is
actually more negative than in Run R4. The magnetic field pro-
duced by the small-scale dynamo reduces urms and, therefore, Re
and Beq0 also .

In the Sun, the fluid and magnetic Reynolds numbers are ex-
pected to be very large, allowing therefore a small-scale dynamo
to operate even though the magnetic Prandtl number might be
small (see, e.g., Brandenburg 2011, Rempel 2014). This might
weaken the formation of bipolar regions due to NEMPI in the
Sun, but large Re and ReM could also enhance the NEMPI
growth rate due to lower diffusion. However, a reliable extrap-
olation of the interaction of NEMPI and the small-scale dynamo
is not possible at the moment, as the simulations of both NEMPI
and small-scale dynamo are still operating in a regime that is too
diffusive compared with the Sun.

3.3. Dependence on imposed magnetic field strength

In the runs of Warnecke et al. (2013b) and in all runs of Sets A,
R, and S, we impose a weak horizontal magnetic field. The
strength of this field is less than 1/40 of the equipartition field
strength at the surface, i.e., the ratio between it and the equipar-
tition field strength is more than 1/200 at the bottom of the
domain in the case of Run A5. To investigate the dependence
on the imposed magnetic field strength, we vary the imposed
field in the runs of Set B from B0/Beq0 = 1/430 to 2/3; see
the eighth column in Table 1. In Fig. 9, we show the depen-
dence of the magnetic field and Peff on B0/Beq0. In Run B1,
where B0 is weak, the field strength is high enough to serve
as an initial magnetic field for NEMPI to work, but only weak
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flux concentrations are formed. Therefore the field amplifica-
tion is around two times smaller than the equipartition field
strengths. The large-scale field is even more than 30 times lower
than the equipartition field, therefore, preventing the formation
of high flux concentrations. However, here the large-scale mag-
netic energy also shows an exponential growth; see Fig. 2. In
Run B2, the imposed field strength is sufficient to form bipo-
lar magnetic regions, even though the maximum vertical field
strength is just below the equipartition field strength. An in-
crease of the imposed field leads to a stronger magnetic field
inside the flux concentration compared with Beq0, see Fig. 9b,
but weaker fields compared to the imposed magnetic field; see
Fig. 9a. This is plausible: if a weak field is imposed, just a small
fraction of the turbulent energy is used to concentrate and am-
plify the field to higher field strength. This leads to a high ratio
of Bmax

z /B0, but to a low ratio of Bmax
z /Beq0. In Run B6, where

the imposed field is strong, a small concentration and amplifica-
tion of Bmax

z /B0 = 16 can lead to strong superequipartition field
strengths of Bmax

z /Beq0 = 1.9. For a strong imposed magnetic
field, when the derivative dPeff/dβ2 becomes positive, NEMPI
cannot be excited and magnetic spots are not expected to form
(Kemel et al. 2013). In particular, in Run B7 the magnetic field
becomes too strong, so no bipolar magnetic region can be built
up. This leads us to conclude that there is an optimal imposed
field strength, which is between B0/Beq0 = 0.012 and 0.12,
when superequipartition magnetic flux concentrations and bipo-
lar magnetic structures can be formed.

As expected, the effective magnetic pressure Peff decreases
as we increase the magnetic field, except in Run B1, where it is
slightly smaller than in Run B2, see Fig. 9a. Furthermore, t̃max
shows a dependence on the imposed field. For stronger imposed
fields, t̃max becomes shorter, indicating a higher growth rate of
the instability as seen in the steeper growth in Fig. 2. How-
ever, this seems to be only true for strong concentrations; the
weak concentrations in Run B1 have a smaller t̃max than those in
Run B2. This is probably related to the two distinct growth rates
seen in the magnetic energy of Fig. 2. Furthermore, a stronger
magnetic field suppresses turbulent motions, as seen from the
decrease of Re (sixth column of Table 1) and therefore it de-
creases the turbulent magnetic diffusivity. This influences the
values of τtd and, therefore, t̃max, but also allows for a higher
growth rate.

3.4. Dependence on box size

To investigate how the formation of bipolar regions of
Warnecke et al. (2013b) and in the present work depends on the
chosen box size, we change the vertical size as well as the hor-
izontal size; see Set S in Table 1. In Fig. 10, we plot, for all
cases of Set S, the magnetic energy of all three components in
the large-scale field (top row), the vertical magnetic field at the
time of clearest formation of bipolar structures (middle row), and
the evolution of the vertical rms magnetic fields as functions of
time and height (bottom row). In Run S1, we reduce the vertical
size of the coronal envelope from 2π to π keeping the other sizes
the same; see Fig. 1 for the vertical profile of Beq. This change
has only a small effect on the formation of bipolar regions. Com-
paring Run S1 with Run A5, Bmax

z /B0 is reduced from 67 to 52
in Run A5 and the large-scale field Bfil max

z /B0 from 9.2 to 7.8,
whereas the value of t̃max stays nearly the same. The structure of
the bipolar regions is similar, but these regions seem to be more
concentrated in Run A5.

As a second case (Run S2), we use the setup of Run S1 and
extend the height of the turbulent layer from π to 2π. The value
of the density at the surface stays the same, so the stratification
extends to higher values of density in the lower layers. Also, the
density contrast changes accordingly from 23 in the turbulent
layer with a vertical extension of π to 512 with a vertical exten-
sion of 2π. This leads to a small increase of urms and, therefore,
to a corresponding slight increase of Beq0; see Fig. 1. The maxi-
mal field amplification of Bmax

z /B0 inside the flux concentration
is higher than in Run S1, but still lower than in Run A5. The
maximum of the large-scale magnetic field Bfil max

z /B0 is half as
low as in Runs S1 and A5. The bipolar regions are weaker and
are more diffused. As can be seen in the bottom row of Fig. 10,
only a weak concentration of vertical magnetic field is observed.

As a third case (Run S3), we extend the horizontal size of
the box from 2π × 2π to 4π × 4π; otherwise the setup of the run
is the same as Run A5. In the top row of Fig. 10, we already
see a strong excess of vertical magnetic energy in the large-scale
field compared to the horizontal components with a maximum
around t/τtd = 2. Indeed, this behavior can also be found by
looking at the maximum of the vertical magnetic field and the
large-scale vertical magnetic field at the surface; see Table 1.
Bmax

z /B0 is much higher than in Run A5, and Bfil max
z /B0 reaches

higher values than in all other runs. The vertical magnetic field at
the surface shows a clear bipolar region with well-concentrated
poles. The size of the bipolar region is comparable with the size
in the other runs and, therefore, it is independent of the hori-
zontal size of the domain. The strong concentration of vertical
magnetic field causes a strong response in the coronal envelope.
In a box with twice the horizontal extent, the magnetic energy is
four times larger than that of the imposed magnetic field. The
more magnetic energy becomes available, the more magnetic
flux can be concentrated. This also means, that the instability op-
erating in these simulations is more efficient to concentrate flux
in the horizontal direction than in the vertical direction, as seen
in Run S2. In all three cases, the formation of bipolar regions can
be associated with an exponential growth of the large-scale ver-
tical magnetic energy, as seen from the top row of Fig. 10. Their
growth rates are similar, but the resulting formation is different.
Run S3 exhibits the strongest large-scale magnetic field of all
simulations with a horizontal imposed field, but the growth rate
is smaller than in Run A5. However, the duration of exponential
growth in Run S1 is twice that of Run A5, allowing the field to
grow to much higher values than in Run A5.

3.5. Dependence on field inclination

In all of the runs mentioned above, we imposed a horizontal
magnetic field. This leads to the formation of bipolar regions.
In this subsection, we also study the cases of an imposed ver-
tical and inclined field. For the vertical field (Run V), we set
Bimp = (0, 0, B0) with the same field strengths and the same hy-
drodynamic quantities as in Run A5. As a result, the instabil-
ity produces a single magnetic spot instead of a bipolar region.
Because the magnetic energy is now concentrated in one single
spot, the maximum magnetic field reaches nearly two times the
values of Run A5 and more than two times the equipartition field
strength. The field strength in the large-scale field is even three
times stronger than in Run A5; see Table 1. In the bottom row
of Fig. 11, we plot the vertical magnetic field at the surface at
the time of the clearest appearance. The single spot has a larger
spatial extension and is more concentrated as in Run A5. Also

A125, page 10 of 15



J. Warnecke et al.: Bipolar regions in a two-layer model

Fig. 10. Formation of bipolar regions for three different sizes (left column: S1, middle: S2, right: S3). Top row: the same as in Fig. 2, but for Set S.
Middle row: normalized vertical magnetic field Bz/Beq plotted at the xy surface (z = 0) at times, when the bipolar regions are the clearest. Bottom
row: vertical rms magnetic field Brms

z /Beq = 〈B2
z 〉

1/2
xy /Beq normalized by the local equipartition value as a function of time t/τtd and height z. The

black-white dashed line in the bottom row marks the surface (z = 0).

here, we can find an exponential growth of the magnetic energy
in the vertical field, as shown in top row of Fig. 11. We estimate
the growth rate to be around 0.7/τtd, which is two times lower
than for Run A5. Even though the growth rate is smaller than
in Run A5, the duration is longer than in Run A5, leading to a
stronger magnetic field. Also, the vertical field has already in-
creased from a strength of B0 in Run V, whereas in Run A5 there
is no vertical magnetic field in the beginning of the simulation.
An additional difference from Run A5 is that the spot does not
decay after some time. Instead it stays roughly the same after
t/τtd = 2.

Similar singular spots were already found by
Brandenburg et al. (2013). There, the authors use a similar
model with imposed vertical magnetic field, except their
turbulent layer has a vertical extension of 2π instead of π and
no coronal envelope. In the runs of Brandenburg et al. (2013),
where they use the same imposed field strengths, the maximum
of the field strength is also more than double, and Bfil max

z is
close to the equipartition field strength at the surface. However,
looking at their Fig. 2, the large-scale magnetic field grows
exponentially up to t/τtd = 1.5 when the saturation set slowly
in, whereas in our Run V the saturation sets in a bit later in

time, t/τtd = 2. Nevertheless, our estimated growth rate of about
0.7/τtd is half the value found in Brandenburg et al. (2013).

As a second case (Run INC), we impose an yz inclined mag-
netic field with the strength of B0 (Bimp = (0, B0, B0)/

√
2). As

expected, we find the generation of a weak negative and a strong
positive polarity in the bipolar region, as shown in the lower row
of Fig. 11. However, this is only the case in the first half of the
simulation. Then the weak negative polarity reconnects with the
stronger positive polarity to form a single spot that does not dif-
fuse away, which is similar to Run V. Because of the field re-
connection, the resulting single spot is weaker than in Run V;
see bottom row of Fig. 11. This behavior can be also seen in the
evolution of the three components of the large-scale magnetic
energy; see top row of Fig. 11. Until t/τtd = 0.8, the y and z
components grow exponentially with a similar growth rate, but
then the z energy component increases the growth rate that is
properly related to the emergence of horizontal flux to form ver-
tical flux. At t/τtd = 1.8, nearly at the end of the exponential
growth stage, a weak negative and a strong positive pole form. At
the t/τtd = 3.5−3.8, after a decrease of all components, only the
vertical field recovers. This coincides with the diffusion of the
weak negative spot. The behavior of an inclined field is exactly
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Fig. 11. Formation of bipolar regions for two different field inclinations, left-hand side with purely vertical field (Run V) and right-hand side with
y-z inclination (Run INC). Top row: the same as in Fig. 2, but for Runs V and INC. The straight green line for Run V illustrates the exponential
growth of the energy in the vertical large-scale magnetic field. Bottom row: normalized vertical magnetic field Bz/Beq plotted at the xy surface
(z = 0) at times when the bipolar regions are the clearest. Run INC is shown for an early time (t/τtd = 1.8) and a later time (t/τtd = 4.0) to illustrate
the change from a bipolar to monopolar structure.

that can be expected from the two cases with imposed horizon-
tal and vertical fields. For the horizontal field, a bipolar region is
formed, which decays after several turbulent-diffusive times. For
the vertical field, a single spot is formed, which does not diffuse.

3.6. Formation mechanism

We also investigate in this context the formation mechanism
leading to bipolar regions in the two-layer setup of stratified
turbulence. As discussed in Warnecke et al. (2013b), the coro-
nal envelope plays an important role in the formation process.
However, the magnetic field, which gets concentrated, comes
from the turbulent layer. This is shown with the two runs in
Warnecke et al. (2013b), where one is the same setup as Run A5
of this work and one does not have any imposed field in the coro-
nal envelope. Both show flux concentrations of similar strength.
We also compare Runs A5 and S1, where the only difference lies
in the size of the coronal envelope. Both show similar field con-
centrations, where Bfil max

z /B0 has nearly the same value. There-
fore, the size of the coronal envelope does not seem to have a
strong influence on large-scale magnetic field and the formation
of bipolar regions.

In the beginning of the simulation, the magnetic field is uni-
formly oriented in the y direction because of the imposed field.
The tangling of the magnetic field by turbulence also leads to
field components in the other directions in the turbulent layer.
This can been seen in Fig. 2 for most of the runs. Furthermore,
we can use the plots of Brms

z /B0 in Figs. 4 and 10 to analyze the
height distribution of the vertical magnetic field in the formation
process. The vertical field is built up in nearly the entire turbulent
layer, which is in particular visible for Runs A3 and A5 as blue
shades at early times. Then this vertical field gets concentrated

and transported toward the surface, as shown by the increase of
dark purple shades in the turbulent layer from the bottom to-
ward the surface. This field evolves rapidly and leads to a flux
concentration at the surface, which is visible as red shades. This
vertical magnetic field then rises through the coronal layer until
it decays and falls back toward the turbulent layer. Also, in the
turbulent layer the field is first concentrated toward the surface,
reaching the strongest peak of magnetic field and then the field
diffuses back into the turbulent layer. These plots show clearly
that the magnetic field originates from the turbulent layer toward
the surface and does not come from the coronal envelope. A little
later, after the peak of vertical flux has dissolved, the magnetic
field from the coronal envelope falls toward the turbulent layer.
The coronal envelope is important, but mostly as a free boundary
condition for the magnetic field and the flow.

To illustrate how the magnetic and kinetic energies evolve
at different scales, we plot in Fig. 12 the spectrum of the en-
ergy in the vertical magnetic field as well as the kinetic energy
for Run A5 for nine different times. In both spectra, the normal-
ized forcing wavenumber kf Hρ is seen as a local maximum. In
the magnetic spectrum, the forcing scale has the highest peak in
the beginning of the simulation. Later, more and more energy
is transported to larger scales (k⊥Hρ < 10) until the energy for
k⊥Hρ < 5 becomes dominant. This happens when t ≈ τtd, which
is not surprisingly at the same time, when the bipolar region is
the strongest (t/τ = t̃max). Afterward, the magnetic energy de-
cays first at larger scales and then at all scales. This can also
be seen in the inlay, where we plot the energy of the vertical
magnetic field at k⊥Hρ = 4 (blue) and k⊥Hρ ≤ 4 (red). There
is a strong growth up to t/τtd = 1 and a decay to slower val-
ues after that. This means that the instability occurring in these
simulations transports vertical magnetic energy to large scales in
the growing phase. This has also been seen in previous studies

A125, page 12 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525880&pdf_id=11


J. Warnecke et al.: Bipolar regions in a two-layer model

1 10 100
k⟂Hρ

10-4

10-3

10-2

E
z M
(k
)k

f
/
B

2 eq
0

A5 t/τtd
0.25

0.57

0.76

0.96

1.02

1.08

1.27

1.47

1.78

0 1 2 3 4 5
t/τtd

10-4

10-3

10-2

10-1
k⟂Hρ

4
≤4

1 10 100
k⟂Hρ

10-1

100

E
K
(k
)k

f
/u

2 rm
s

A5 t/τtd
0.25

0.57

0.76

0.96

1.02

1.08

1.27

1.47

1.78

0 1 2 3 4 5
t/τtd

100

k⟂Hρ

4
≤4

Fig. 12. Magnetic and kinetic power spectrum for Run A5. Top panel:
spectrum of vertical magnetic energy Ez

M at nine different times around
t̃max at the surface (z = 0) as a function of horizontal wavenumber k⊥.
The inlay shows the vertical energy at k⊥Hρ = 4 (blue line) and k⊥Hρ ≤

4 (red) as a function of time t/τtd. Bottom panel: spectrum of the kinetic
energy EK plotted the same as the top panel. The vertical dashed lines
indicate k⊥Hρ = 4 and k⊥Hρ = kf Hρ = 30.

with imposed vertical magnetic field (Brandenburg et al. 2014)
and seems to be analogous to the inverse magnetic helicity cas-
cade (Pouquet et al. 1976; Brandenburg 2001). It suggests the
use of a cutoff wavenumber of kc ≤ kf/6 to represent the large
scales of the magnetic field in our previous analysis; see also
Brandenburg et al. (2014) for a similar discussion. In the kinetic
spectrum, the forcing scale is the highest peak for all times.
There the energy of large scales are significant lower than those
of the forcing scale. The kinetic energies on the larger scale show
no strong time evolution, we only notice a small increase in time
at k⊥Hρ ≤ 2.

To study the influence of the forcing scale, we perform one
additional run (Run F), where we decrease kf from 30 k1 to 15 k1.
As shown in the last row of Table 1, the maximum vertical mag-
netic field strength is lower and the maximum of the large-scale
vertical field is slightly larger than in Run A4. However, reducing
the forcing wavenumber by half has almost no effect on the struc-
ture formation of bipolar regions via NEMPI. This confirms the
results of previous studies of Brandenburg et al. (2014), where
no strong dependence was found either. Even for significantly
smaller forcing scales, flux concentrations were obtained when
increasing the imposed field strength. From the theoretical side,
the forcing scale should have an influence on the growth rate as
well as on the turbulent magnetic diffusivity. A detailed study of

the dependence of bipolar regions formation on the forcing scale
is currently beyond the scope of this paper.

As found by Brandenburg et al. (2014), flux concentrations
due to NEMPI show clear signatures of downflow patterns
along the vertical magnetic field. Before and during the con-
centration of vertical flux, there exist strong converging down-
flows. Testing whether the bipolar magnetic region found in
both Warnecke et al. (2013b) and in the present work also co-
incides with such a flow pattern; we show in Fig. 13 the large-
scale velocity at the surface for the time before (t/τtd = 0.5), at
(t/τtd = 1.0), and after (t/τtd = 4.0) the time of the strongest
flux concentration for Run A5. For this we calculate the large-
scale velocity with 2D horizontal Fourier filtering ufil to exclude
the velocities due to forcing. We use the technique described
in Sect. 2 with a cutoff wavenumber of kc ≤ kf/6. The flows
are shown together with the large-scale magnetic energy and the
horizontal divergence of the large-scale flow (∂xux

fil +∂yuyfil). At
t/τtd = 0.5, before the bipolar region has appeared, and we find
strong downflows (red) and horizontal converging flows in the
vicinity where the bipolar region later forms (yellow contours).
In the proximity of the downflows, there are also regions of neg-
ative horizontal divergence (green contours). At the time of the
clearest appearance of the bipolar region (t/τtd = 1.0), the large-
scale downflows are exactly at the location of strong magnetic
energy, indicating a tight connection between the downflows and
the formation of bipolar regions. Furthermore, we find a strong
horizontal flow streaming into the region of large magnetic en-
ergy together with negative values of horizontal divergence. Af-
ter the decay of the bipolar region (t/τtd = 4.3), the downflows
are much weaker and upflows seem to dominate the large-scale
vertical velocities. In the region where the magnetic field was
previously strong, we do not observe strong concentrations of
converging flows.

It is important to note here that all flow structures shown in
Fig. 13 are at scales larger than the forcing scale and would not
form owing to forced stratified turbulence alone. In the simula-
tions without an imposed magnetic field, these flow patterns do
not appear. For this reason, we argue that the large-scale flow
patterns are due to NEMPI. Although there is no perfect one-
to-one correlation between downflows and magnetic flux con-
centration, it fits well with previous studies of magnetic flux
concentration. This setup without a coronal envelope has been
used in previous studies to show that all necessary conditions
are given to form magnetic flux concentrations due to NEMPI
(Brandenburg et al. 2013). Furthermore, in the analysis above
we find a clear indications of an instability that is responsible for
found flux concentrations. This leads us to conclude that struc-
ture formations in the form of bipolar regions in the work by
Warnecke et al. (2013b) and in this study are also due to NEMPI.

4. Conclusions

In the present study of the formation of bipolar magnetic re-
gions, we confirm the results of Warnecke et al. (2013b) and ex-
tend these results to a larger parameter range. We find that the
concentration of magnetic flux strongly depends on the strati-
fication. A minimum density contrast of around 5 is necessary
to form magnetic flux concentrations. At a density contrast of
around 80 (see Run A7), the bipolar regions have the strongest
magnetic field. However, for a maximum density contrast of 110
(Run A8), the magnetic field in the bipolar region is significantly
lower (see Bfil max

z in Table 1). This seems to be caused by a de-
crease of qp for very high stratifications. This decrease might
explain the “gravitational quenching” of magnetic structures, as
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Fig. 13. All three large-scale velocity components ufil
x , ufil

y , and ufil
z before (t/τtd = 0.5), at (t/τtd = 1.0), and after (t/τtd = 4.3) the occurrence of the

bipolar regions (compare with Fig. 4) in the xy plane for Run A5. The vertical velocity is plotted as red (downflows) and blue (upflows) and are
normalized by the urms in the bulk of the turbulent layer (z ≤ 0). The horizontal components of the velocity field are shown as arrows, where the
lengths corresponds to the strength of the flow. Additionally, the contours of negative horizontal divergence is plotted in green for all three times.
The yellow contours in all plots show the magnetic field at the time (t/τtd = 1.0) to guide the eye to the location of the bipolar region formation.

was found by Jabbari et al. (2014). The results therefore suggest
the possibility of bipolar region formation over a large range of
density stratifications due to NEMPI. However, the decrease of
field strength inside bipolar regions for high stratification might
limit the applicability to the Sun.

We vary the magnetic Prandtl number (and thereby the mag-
netic Reynolds number), keeping the Reynolds number constant
(around 40). We find a range between PrM ≈ 0.1 and 1, where
the instability becomes stronger with larger PrM. However, for
PrM around unity and larger, a small-scale dynamo is excited
and weakens the growth rate of the instability. In simulations,
the narrow range in PrM might pose a limitation of NEMPI to
operate in a more realistic environment. In the Sun, however,
PrM is much smaller, but ReM is also much larger, which would
be in favor of NEMPI.

In the case of varying the imposed magnetic field, we find a
regime between B0/Beq0 = 1/200 and 1/8. There, an increase
of imposed magnetic field causes an increase of the field in
the flux concentrations and decreases the growth time t̃max. Im-
posed fields that are close to the equipartition field strength sup-
press the formation of flux concentrations. Furthermore, for all
runs with bipolar regions, we find an exponential growth of the
vertical large-scale magnetic field indicating an instability. The
growth rate of a typical run (Run A5) is found to be similar to
that obtained in earlier studies without a coronal envelope (e.g.,
Brandenburg et al. 2013). These dependencies on parameters, as
well as the exponential growth of the vertical field, can be ex-
plained and understood in terms of NEMPI and fit well into pre-
vious theoretical and numerical studies of this phenomenon.

A larger horizontal extent enables the instability to concen-
trate magnetic flux more, leading to more coherent and stronger
bipolar regions than with a smaller horizontal extend. However,
the typical size of these regions and the separation of their mag-
netic poles does not depend on the domain size.

A vertical imposed magnetic field results in a strong sin-
gle polarity spot, which does not decay. The shape of the spot
is found to be the same as in the related one-layer model of
Brandenburg et al. (2013), even though the growth rate is only
half compared to the latter case. For an inclined magnetic field,
the bipolar region has a weak negative and a strong positive pole,
where only the positive one does not decay. These results con-
firm that a horizontal field component is necessary to generate
bipolar regions.

The flux concentrations in this study are also correlated with
strong large-scale converging downflows. As recently confirmed

by Brandenburg et al. (2013, 2014), flux concentrations caused
by NEMPI are associated with converging downflows. Together
with the different dependencies and behavior found in this work
in a wide parameter range, the correlation with downflows are
in good agreement with fact that the mechanism responsible for
flux concentration in these simulations is indeed NEMPI.

Further steps toward a more realistic setup include replacing
forced turbulence by self-consistently driven convective motions
that are influenced by the radiative cooling at the surface together
with partial ionization, similar to the work of Stein & Nordlund
(2012) or Käpylä et al. (2016b). Including more realistic phys-
ical processes at the solar surface might also help to reproduce
the surrounding spot structures, for example, penumbra and the
moat flow. However, this might not be possible in the near fu-
ture. Another important parameter to study is the influence of
rotation (Losada et al. 2013). This could excite a large-scale dy-
namo interacting with NEMPI (Jabbari et al. 2014). This might
be related to the result obtained by Yadav et al. (2015). There,
the self-consistent flux concentration of a global dynamo simu-
lation also shows an indication of downflows, as we found in this
work.
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