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ABSTRACT

Aims. We explore the effects of an outer stably stratified coronal envelope on rotating turbulent convection, differential rotation, and
large-scale dynamo action in spherical wedge models of the Sun.
Methods. We solve the compressible magnetohydrodynamic equations in a two-layer model with unstable stratification below the
surface, representing the convection zone, and a stably stratified coronal envelope above. The interface represents a free surface. We
compare our model to models that have no coronal envelope.
Results. The presence of a coronal envelope is found to modify the Reynolds stress and the Λ effect resulting in a weaker and non-
cylindrical differential rotation. This is related to the reduced latitudinal temperature variations that are caused by and dependent
on the angular velocity. Some simulations develop a near-surface shear layer that we can relate to a sign change in the meridional
Reynolds stress term in the thermal wind balance equation. Furthermore, the presence of a free surface changes the magnetic field
evolution since the toroidal field is concentrated closer to the surface. In all simulations, however, the migration direction of the mean
magnetic field can be explained by the Parker-Yoshimura rule, which is consistent with earlier findings.
Conclusions. A realistic treatment of the upper boundary in spherical dynamo simulations is crucial for the dynamics of the flow and
magnetic field evolution.
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1. Introduction

The Sun has an activity cycle of about 11 yr, with an underly-
ing magnetic field that oscillates with a period of around 22 yr.
A dynamo operating in the convection zone below the solar sur-
face is responsible for generating cyclic magnetic fields (see e.g.,
Brandenburg & Subramanian 2005; Charbonneau 2005, and ref-
erence therein). The occurrence of sunspots, which is the main
surface manifestation of the solar cycle, varies regularly over the
cycle. At the beginning of each cycle sunspots tend to appear at
mid-latitudes, while toward the end of each cycle they tend to ap-
pear at low latitudes. It is believed that these sunspots and their
occurrence are connected to an underlying toroidal magnetic
field, which is migrating equatorward during the cycle. Theo-
retical models of solar magnetic field evolution have been stud-
ied for several decades. Mean-field models, where turbulence
effects are parameterized through transport coefficients (see
e.g., Krause & Rädler 1980), have been successful in produc-
ing some observed magnetic field properties (e.g., Käpylä et al.
2006; Kitchatinov & Olemskoy 2012). Another class of dynamo
models relies on the Babcock-Leighton effect (Babcock 1961;
Leighton 1964) and flux transport by meridional circulation
(e.g., Choudhuri et al. 1995; Dikpati & Charbonneau 1999). The
low Reynolds numbers compared with the Sun limit the useful-

ness of global simulations of self-consistent convection, where
the equations of magnetohydrodynamics are solved directly.
However, the increasing computing power has led to the success-
ful reproduction of some observed features of the solar magnetic
field by such models.

For a long time global simulations were only able to gener-
ate either poleward migrating fields (Gilman 1983; Brun et al.
2004; Käpylä et al. 2010; Nelson et al. 2013) or oscillatory
ones with no clear migration pattern (Ghizaru et al. 2010;
Racine et al. 2011). For the first time, Schrinner et al. (2011) and
Käpylä et al. (2012) could produce clear equatorward migration
of the toroidal magnetic field. Stratification and rotation rate had
to be high enough for this to work (Käpylä et al. 2013). Recently,
several groups have been able to produce grand minima-type
events (Passos & Charbonneau 2014; Augustson et al. 2015;
Käpylä et al. 2016a). In Käpylä et al. (2016a), a secondary dy-
namo mode disturbed the surface field of the primary mode.
Warnecke et al. (2014) could explain the equatorward migra-
tion seen in simulations of Käpylä et al. (2012, 2013) and those
of Augustson et al. (2015) as a propagating αΩ dynamo wave
following the Parker-Yoshimura rule (Parker 1955; Yoshimura
1975). Here, α was estimated via the kinetic helicity and Ω
is the local solar rotation rate. An equatorward migrating dy-
namo wave is possible if α is positive (negative) in the northern
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(southern) hemisphere (Steenbeck et al. 1966) and the radial gra-
dient of Ω is negative. These interpretations have been confirmed
independently by Duarte et al. (2016) and by the computation
of turbulent transport coefficients obtained through the test-field
method Warnecke et al. (2016b).

Given that this simple relation can describe the behavior of
dynamos driven by self-consistent turbulent convection in sim-
ulations, the Parker-Yoshimura rule can also be a possibility to
explaining the equatorward migration of the magnetic field of
the Sun. Indeed, the differential rotation of the Sun (Schou et al.
1998) has a negative radial gradient in the near-surface shear
layer (Thompson et al. 1996; Barekat et al. 2014, 2016). This
makes it a possible location of the solar dynamo (Brandenburg
2005).

The generation of the solar differential rotation can well
be described by mean-field models, where the productive
parts of the off-diagonal Reynolds stress are parameterized by
the Λ effect (Rüdiger 1989) and the turbulent heat transport
in terms of anisotropic turbulent heat conductivity (see also
Brandenburg et al. 1992). These models can reproduce the sur-
face differential rotation, the spoke-like rotation profile and
the near-surface shear layer (e.g., Kitchatinov & Rüdiger 1995,
2005; Rüdiger et al. 2013). With global models of turbulent con-
vection, it is challenging to generate such rotation profiles (e.g.,
De Rosa et al. 2002; Brandenburg 2007). Miesch et al. (2006)
were able to produce a spoke-like rotation profile by impos-
ing a latitudinal entropy gradient at the bottom boundary, while
Brun et al. (2011) used a stably stratified layer below the convec-
tion zone. Guerrero et al. (2013) could produce a near-surface
shear layer at lower latitudes. Recently, Hotta et al. (2015) used
a reduced sound speed technique (Hotta et al. 2012) achieving
high stratification to produce a near-surface shear layer, the gen-
eration of which was suggested to be related with the meridional
Reynolds stress component Qrθ. However, they still had cylin-
drical rotation contours within the convection zone.

Warnecke et al. (2013a) applied a different approach and
used an outer coronal envelope above the dynamo domain
(Warnecke & Brandenburg 2010) to reproduce spoke-like differ-
ential rotation at low latitudes with a weak near-surface shear
layer. This two-layer approach has also been used to success-
fully simulate coronal ejections driven by dynamos arising from
forced turbulence (Warnecke et al. 2011, 2012a) as well as by
convective dynamos (Warnecke et al. 2012b). Furthermore, the
outcome of dynamo simulations suggests that the presence of a
coronal envelope supports the dynamo and leads to a higher field
strength (Warnecke & Brandenburg 2014).

To investigate and follow up on the findings of
Warnecke et al. (2013a), we perform a detailed study of
similar simulations with and without a coronal envelope to
investigate the effect of a coronal envelope as a free boundary
on a convectively driven dynamo. We vary the size of the
envelope, as well as the cooling profile, the magnetic boundary
condition, and the rotation rate. We analyze the effect on the
flows, differential rotation, and the magnetic field evolution.
Even though the solar corona most likely has limited influence
on the dynamics of subsurface flows and the evolution of the
magnetic fields in the Sun, these studies are important for inves-
tigating different influences and effects on convective dynamo
simulations. Every simulation, in which we better understand
the mechanism causing flow and magnetic field evolution, will
bring us a step closer toward understanding the dynamics of the
interior of the Sun and other stars.

2. Model and setup

Our setup is similar to the one-layer model of Käpylä et al.
(2012, 2013) and the two-layer model of Warnecke et al.
(2013a), both of which have recently also been used in
Warnecke et al. (2014). We use a wedge in spherical polar coor-
dinates (r, θ, φ), in which the layer below the surface (r0 ≤ r ≤ R)
represents the convection zone. Here, R is the solar radius and r0
corresponds to the bottom of the convection zone at r = 0.7 R.
The layer above the surface (R ≤ r ≤ RC) represents a sim-
plified coronal envelope, which extends to outer radius RC. The
domain spans 15◦ ≤ θ ≤ 165◦ in colatitude and 0◦ ≤ φ ≤ 90◦ in
longitude. We solve the equations of compressible magnetohy-
drodynamics,

∂A
∂t

= u × B − µ0ηJ, (1)

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt

= g − 2Ω0 × u +
1
ρ

(J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds
Dt

= −
1
ρ
∇ ·

(
Frad + FSGS

)
+ 2νS2 +

µ0η

ρ
J2 − Γcool, (4)

where the magnetic field is defined via the vector potential B =
∇× A, ensuring the solenoidality of B at all times, J = ∇×B/µ0
is the current density with µ0 being the vacuum permeability, η
is the magnetic diffusivity, ν is the kinematic viscosity, u is the
plasma velocity, ρ is the mass density, s is the specific entropy,
and D/Dt = ∂/∂t + u ·∇ is the Lagrangian derivative. The trace-
less rate-of-strain tensor is given by

Si j = 1
2 (ui; j + u j;i) − 1

3δi j∇ · u, (5)

where semicolons denote covariant differentiation; see
Mitra et al. (2009) for details. The gravitational accelera-
tion is given by

g = −GMr/r3, (6)

where G is Newton’s gravitational constant and M is the mass
of the Sun. In addition Ω0 = Ω0(cos θ,− sin θ, 0) is the rotation
vector, where Ω0 is the rotation rate of the comoving frame. Us-
ing the ideal gas law, the pressure is given by p = (γ − 1)ρe,
where γ = cP/cV = 5/3 is the ratio of specific heats at constant
pressure and constant volume, respectively, and e = cVT is the
internal energy density, which is related to the temperature T .
The two diffusive heat fluxes are defined as

Frad = −K∇T, FSGS = −χSGSρT∇s, (7)

where Frad is the radiative heat flux with the radiative heat
conductivity K and FSGS is the subgrid scale (SGS) heat flux
that carries the unresolved turbulent heat flux of convection
with the SGS heat diffusivity χSGS; see Käpylä et al. (2013) and
Warnecke et al. (2013a) for details. Finally, the function Γcool re-
laxes the temperature toward a predefined profile Tref(r)

Γcool = Γ0 f (r)
T − Tref(r)

Tref(r)
, (8)
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Table 1. Summary of runs.

Run Resolution Ω̃ RC/R Pr PrSGS PrM Ta Ra ρ0/ρsurf ρ0/ρtop Co Re Pe
A1 180 × 256 × 128 5 1.0 73 2 1 1.25 × 108 4.0 × 107 31 31 8.1 35 69
A1c 128 × 256 × 128 5 1.01 78 2 1 1.25 × 108 3.9 × 107 51 80 9.4 30 60
A1c2 128 × 256 × 128 5 1.01 68 2 1 1.25 × 108 2.9 × 107 22 31 9.4 30 60
A1pc 180 × 256 × 128 5 1.0 73 2 1 1.25 × 108 4.0 × 107 35 35 8.3 34 68
A2 290 × 256 × 128 5 1.2 79 2 1 1.25 × 108 4.0 × 107 59 7970 10.4 27 54
A3 400 × 256 × 128 5 1.4 79 2 1 1.25 × 108 3.9 × 107 61 10510 10.1 27 53
A3t 400 × 256 × 128 5 1.4 67 2 1 1.25 × 108 3.0 × 107 23 5380 10.2 28 55
A4 520 × 256 × 128 5 1.6 79 2 1 1.25 × 108 3.9 × 107 59 12740 10.8 26 52
A5 600 × 512 × 256 5 1.4 35 0.5 0.5 5.00 × 108 1.8 × 107 22 4937 8.7 65 32
B1 180 × 256 × 128 3 1.0 73 2 1 0.45 × 108 4.0 × 107 36 36 4.3 39 79
B1c 128 × 256 × 128 3 1.01 78 2 1 0.45 × 108 3.9 × 107 52 83 5.6 33 67
B3 400 × 256 × 128 3 1.4 78 2 1 0.45 × 108 3.9 × 107 58 8803 5.5 31 61
B3t 400 × 256 × 128 3 1.4 79 2 1 0.45 × 108 3.0 × 107 24 5380 5.4 32 64

Notes. The second to ninth columns show quantities that are input parameters to the models, whereas the quantities in the last five columns are
results of the simulations computed from the saturated state. All quantities are volume averaged over the convection zone r ≤ R, unless explicitly
stated otherwise. Ω̃ = Ω0/Ω� is the normalized rotation rate and RC/R is the outer radius of the domain. Here, ρ0, ρsurf , and ρtop are the latitudinal
and azimuthally averaged density at the bottom (r = 0.7 R), the surface (r = R), and the top (r = RC) of the domain.

Fig. 1. Radial profiles of azimuthally and latitudinally averaged tem-
perature 〈T 〉θφ a) and density 〈ρ〉θφ b) normalized by their values at the
bottom of the domain, T0 or ρ0, respectively for Set A. The inlays show
the radial profiles near the surface.

where Γ0 is a cooling luminosity. f (r) is a profile function tend-
ing to unity in r > R and going smoothly to zero in r ≤ R,
see Warnecke et al. (2013a) for details. Figure 1 shows the cor-
responding temperature and density stratifications for the runs in
Set A, see Table 1.

We use isentropic, hydrostatic initial conditions, as in pre-
vious models (Käpylä et al. 2013; Warnecke et al. 2013a). This

initial setup is not in thermal equilibrium, but the flux at the
lower boundary exceeds the flux leaving at the outer boundary,
resulting the onset of convective instability. Furthermore, we ini-
tialize the magnetic field as a white noise seed field in the con-
vection zone. We apply periodic boundary conditions in the az-
imuthal (φ) direction. For the velocity field we apply stress-free
boundary conditions at the radial and latitudinal boundaries. The
magnetic field follows a perfect conductor condition at the lower
radial and at the latitudinal boundaries. We force the field to be
radial at the top boundary. Furthermore, the temperature gradi-
ent at the bottom boundary is fixed to have a constant heat flux
into the domain, and the latitudinal boundaries are impermeable
for heat fluxes. On the upper radial boundary we either apply a
black body condition,

σT 4 = −K
∂T
∂r
− χSGSρT

∂s
∂r
, (9)

or a constant temperature

T = Tref(r = RC). (10)

In the former case the heat is transported out of the domain via
an enhanced SGS flux; see Käpylä et al. (2013) and in the latter
case via a cooling flux; see Warnecke et al. (2013a).

We apply roughly 10–50 times larger values of viscosity and
magnetic diffusivity in the coronal envelope compared to the
convection zone to avoid high velocity amplitudes and strong
shear flows resulting in small-scale magnetic field enhance-
ments. For the transition region we use a hyperbolic tangent
function with a radial width of 0.01 R at r = 1.06 R, which is
the largest value feasible. In the case of Run A5, the viscosity in
the coronal envelope is just three times higher than in the convec-
tion zone, but we apply an additional shock viscosity and shock
diffusivity; see Haugen et al. (2004) and Gent et al. (2013) for
details regarding their implementation. The heat conductivity K
in the coronal envelope is chosen such that the heat diffusivity
χ = K/ρcP is constant.

We characterize the runs by the values of the input parame-
ters: Prandtl number Pr = ν/χm, sub-grid scale Prandtl number
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PrSGS = ν/χm
SGS, magnetic Prandtl number PrM = ν/η, Taylor

number Ta = (2Ω0(R − r0)2/ν)2, and Rayleigh number,

Ra=
GM(R − r0)4

ν χm
SGS R2

(
−

1
cP

ds
dr

)
r=0.85 R

, (11)

which is obtained from a hydrostatic one-dimensional model for
the same initial setup with χm = χ(r = 0.85 R) and χm

SGS =
χSGS(r = 0.85 R). Furthermore we define the fluid and magnetic
Reynolds numbers, Re = urms/νkf and ReM = urms/ηkf , respec-
tively, the Coriolis number Co = 2Ω0/urmskf and the Péclet num-
ber Pe = urms/χ

m
SGSkf , where kf = 2π/(R − r0) ≈ 21/R is used as

a reference wavenumber and where urms is the typical turbulent
velocity in the convection zone defined as

urms =

√
3/2〈u2

r + u2
θ〉θφr≤R, (12)

which corrects for the removal of the differential rotation-
dominated uφ. The slow mean meridional flows, however, are
not removed. Azimuthal averages combined with time averages
in the saturated stage are referred to as mean and indicated with
an overbar, e.g., B, while other averages are indicated as 〈.〉 with
the spatial directions as indices. The index 0 refers to the value
at the bottom of the domain, that is ρ0 and T0. We also use the
meridional distribution of turbulent velocities

u′rms(r, θ) = (u′ 2)1/2, (13)

where the fluctuating velocity is defined via u′ = u − u. Thus,
meridional mean flows are here removed. The mesh is equidis-
tant in all directions. The grid resolutions are given in Table 1.

We express our results in physical units following
Käpylä et al. (2013, 2014) and Warnecke et al. (2014) by choos-
ing a normalized rotation rate Ω̃ = Ω0/Ω�, where Ω� = 2.7 ×
10−6 s−1 is the solar rotation rate. The simulations were per-
formed with the Pencil Code1, which uses a high-order fi-
nite difference method for solving the compressible equations
of magnetohydrodynamics.

3. Results

In this work we compare and analyze 13 runs divided into two
sets based on the rotation rate. In Set A the normalized rotation
rate is Ω̃ = 5 whereas the runs in Set B have a rotation rate
of Ω̃ = 3. For both sets we investigate the effects of a cool-
ing layer and the blackbody boundary condition as well as the
size of the coronal envelope. A summary of the runs can be
found in Table 1 and the stratifications of temperature, density
and entropy of Runs A are shown in Figs. 1 and 2. Run A1 is
nearly the same as Run B4m of Käpylä et al. (2012), Run C1 of
Käpylä et al. (2013), Run I of Warnecke et al. (2014), and the run
of Warnecke et al. (2016b), where a blackbody boundary condi-
tion is used. However, we choose a slightly higher stratification
and a slightly lower value of PrSGS, namely 2 instead of 2.5;
therefore Run A1 is the same as Run D3 of Käpylä et al. (2016c).
In Runs A1c and A1c2, the blackbody boundary condition is re-
placed by a shallow (R ≤ r ≤ RC = 1.01 R) cooling layer, where
in the former case the temperature minimum is below the surface
(r = R) and in the latter above the surface. These two runs have
been recently used in Warnecke et al. (2014) as Runs III and IV,
respectively. The only difference between Runs A1pc and A1 is
the use of a perfect conductor condition instead of a radial field
condition for the magnetic field at the top boundary.

1 http://github.com/pencil-code/

Fig. 2. Radial profiles of azimuthally and latitudinally averaged turbu-
lent rms velocity u′rms a) and 〈s〉θφ b) in m/s or normalized by cP re-
spectively for Set A. Mean radial mass flux ρ ur/ρsurfurms c) through the
surface (r = R) for Set A. The horizontal line indicates the zero value
and the three vertical thin lines indicate the equator (θ = 90◦) and the
intersection with the inner tangent cylinder (θ − 90◦ ≈ ±45◦ latitude).

The other runs of Set A have a coronal envelope with differ-
ent outer radii RC. Runs A2, A3, and A4 have the same cooling
function as Run A1c, where the temperature reaches a minimum
below the surface. The temperature increases to a constant coro-
nal value, which is more than twice the value at the bottom of
the convection zone; see Fig. 1a. This results in a positive en-
tropy gradient above r = 0.97 R, where the convection ceases
and u′rms drops by a factor of two; see Figs. 2a, b. In Run A3t,
the same cooling function is applied as in Run A1c2, leading to
a temperature minimum above the surface at r ≈ 1.01 R. This
causes the entropy gradient to become positive at the surface
(r = R) and an increase of u′rms all the way to the surface; see
Figs. 2a, b. Already here, we can state that the use of cooling
profiles in Runs A1c and A3t reproduce most properties of the
density, temperature and entropy stratification as the blackbody
boundary conditions in Run A1. In Run A5, we lower PrSGS and
PrM to 0.5 and therefore increase the fluid Reynolds number. As
the heat flux at the boundary is the same as in the other runs, u′rms
increases only slightly, see Fig. 2a, leading to a reduced Coriolis
number; otherwise Run A5 is similar to Run A3t. However, the
use of a lower value of viscosity in combination with a shock vis-
cosity allows higher velocities in the coronal envelope as shown
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in Fig. 2a. The runs of Set B are essentially the same as the cor-
responding runs in Set A with a lower rotation rate. The radial
temperature, density, entropy and velocity profiles behave simi-
larly as in Set A and are therefore not shown here. In the follow-
ing we investigate the influence of the coronal layer on mass flux
and temperature distribution (Sect. 3.1) as well as on differential
rotation and meridional circulation (Sect. 3.2). Furthermore we
discuss Reynolds stresses and the Λ effect (Sect. 3.3) and their
contribution to the thermal wind balance (Sect. 3.4). Then we
investigate the influence of the magnetic top boundary on the
field structure near the surface (Sect. 3.5) and the magnetic field
evolution (Sect. 3.6).

3.1. Mass flux and temperature distribution at the boundary

We begin by inspecting the influence of the top boundary on the
mass flux and the temperature distribution; see Fig. 2c. Except
for Run A1, the mass flux at r = R is nonvanishing, showing
a strong latitudinal dependency. Near the equator it is positive
(outflow) and at latitudes around ±30◦ negative (inflow) sug-
gesting a circulation in the coronal envelope. At mid-latitudes
the mass flux becomes positive again, but is fluctuating around
zero toward higher latitudes. The flow structure is strongly influ-
enced by the rotation, as seen from the alignment with the inner
tangent cylinder; see Fig. 2c. Although the mass flux in the runs
with an extension above the surface has non-zero values, they
are small in comparison to ρurms at the surface. Furthermore,
there is no qualitative difference between runs with a cooling
layer RC = 1.01 R (Runs A1c and A1c2) and a coronal envelope
RC ≥ 1.2 R (Runs A2, A3, A3t, and A4). In fact, Run A1c2 has
the highest mass flux through the surface; see Fig. 2c. Further-
more, Run A5 is similar to the other runs showing more fluc-
tuations as a function of latitude but with a similar magnitude
of variations as in the other runs. This shows that the influence
of a coronal envelope via a radial mass flux is small and can be
neglected. Furthermore, we find no indication that the viscosity
profile has a major influence on the mass flux.

As a second step we investigate the latitudinal temperature
variation, ∆T = (T − 〈T 〉θ)/〈T 〉θ, at two radii; see Fig. 3. In
general the surface perturbations are strongest near the poles,
decrease toward a minimum at mid-latitudes, and increase again
below ±20◦ latitude. However, in the middle of the convection
zone the temperature minimum is at the equator. This is a clear
indication of a strong rotational influence on the temperature dis-
tribution. Run A1 shows the largest relative temperature pertur-
bations; over 0.3 near the poles and up to −0.1 at ±20◦ latitude.
Here, the radiative boundary condition lets the temperature at the
surface evolve more freely, which leads to this strong variation.

Runs A1c and A1c2 have a similar distribution, but with
around three times smaller values. There the cooling layers cool
the temperature to a certain latitudinally independent value with
a relaxation time equal to the turnover time. This leads to a re-
duction of the temperature perturbations near the surface. The
temperature difference ∆T is significantly reduced for all runs
with a coronal envelope. However, the temperature is still higher
near the poles and lower near the equator than the latitudinal av-
erage. In these runs the coronal envelope with its mass and heat
capacity serves as a buffer in smoothing the temperature at the
surface. The influence of the cooling layer and the coronal en-
velope seems to penetrate also deeper down and influences the
temperature variations in the middle of convection zone. The dif-
ference in the temperature profiles caused by the coronal enve-
lope can also influence differential rotation; see Sect. 3.2.

Fig. 3. Latitudinal dependence of ∆T = (T − 〈T 〉θ)/〈T 〉θ at radius r =
0.98 R a) and at radius r = 0.85 R b) for Set A. Linestyles as in Fig. 1.
The thin black lines indicate the zero value, the equator (θ = π/2) and
the location of the inner tangent cylinder.

In the higher Re and thus more turbulent Run A5, the temper-
ature variation is similar to that of the other runs with a coronal
envelope. The runs with slower rotation (Set B, not shown here)
show a similar behavior, but the latitudinal temperature pertur-
bations are weaker than in the more rapidly rotating runs, due to
the reduction of the rotational influence.

On the solar surface, systematic latitudinal temperature vari-
ations have not been observed. However, variations in the range
of a few kelvin, so less than 0.1% of the surface tempera-
ture, are below the measurable range. This value is exceeded in
all of our simulations. The temperature difference between the
poles and equator can influence the differential rotation in the
Sun (Rüdiger 1989) and in simulations (e.g., Miesch et al. 2006;
Warnecke et al. 2013a).

3.2. Differential rotation and meridional circulation

As shown in Warnecke et al. (2013a), simulations with a coronal
envelope are more capable of reproducing a spoke-like differen-
tial rotation profile than runs without a coronal envelope using
similar parameters (Käpylä et al. 2013). In this work, the param-
eters of the runs are nearly identical, so we can isolate the influ-
ence of the coronal envelope. In Fig. 4 we plot the angular veloc-
ity, Ω = Ω0 + uφ/r sin θ, in the meridional plane and in Fig. 5 as
a function of radius at two latitudes. In all of the runs the equator
rotates faster than the poles, similarly to the other simulations
with similar Coriolis numbers (Brown et al. 2010; Käpylä et al.
2013; Warnecke et al. 2013a; Augustson et al. 2015). Further-
more, all runs possess a local minimum in the angular velocity
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Fig. 4. Angular velocity Ω(r, θ)/Ω0 for Runs A1 and A3 (top row),
Runs A3t and A5 (middle row) and Runs B1 and B3t (bottom row).
Here, Ω = Ω0 + uφ/r sin θ is the local rotation rate. The dashed lines
indicate the surface (r = R).

Ω at mid-latitudes, which has been shown to facilitate equator-
ward migration (Warnecke et al. 2014; Käpylä et al. 2016c). In
runs without coronal envelopes the rotation profile has a simi-
lar structure; the contours of constant angular velocity show a
strong alignment with the rotation axis, following the Taylor-
Proudman theorem. Run A1 possesses the strongest differential
rotation. In particular at the equator the surface rotates faster
than in the other runs. Runs A1c and A1c2 show a similar radial
dependency, but differential rotation is weaker than in Run A1;
see Figs. 5a and b.

In the runs with a coronal envelope the Taylor-Proudman bal-
ance is broken and the rotation profile has a more spoke-like
shape; see Fig. 4. The differential rotation and the local mini-
mum at mid-latitudes in these runs is much weaker. The min-
imum also occurs at a greater depth than in the runs without
a corona. The dependence on the size of the coronal extent on
differential rotation is weak – similarly to what is seen for the

Fig. 5. Differential rotation Ω(r, θ)/Ω0 as a function of radius for all
runs of Set A at θ = 75◦ (15◦ latitude) a), and at the equator θ = π/2
b), and Set B at mid-latitudes θ = 75◦ c), and at the equator θ = π/2 d).
The inlay in b) shows the angular velocity near the surface for Runs A2,
A3, A3t, A4, and A5.

latitudinal temperature distribution; see Fig. 3. The cooling pro-
file has a minor influence on the rotation profiles such that in
Run A3t the contours of constant rotation are slightly more ra-
dial than in Run A3 In Run A5, the differential rotation is even
weaker with more radial contours of rotation.

The overall rotation profiles of Set B are similar to those of
Set A and also show a local minimum of Ω at mid-latitudes al-
though it is weaker and at a greater depth; see Fig. 4. Also here,
the presence of a coronal envelope leads to more radial contours
of rotation. However, the amount of differential rotation is re-
duced only for Run B3t, but not for Run B3.

If we compare the differential rotation profiles with those of
Warnecke et al. (2013a), we see that the contours of constant ro-
tation are more cylindrical here. In particular, moderate rotation
runs had more spoke-like differential rotation than rapidly ro-
tating ones which is not seen in the present work. Therefore,
we relate the more spoke-like rotation profiles in Warnecke et al.
(2013a) to a lower density stratification as the other parameters
are similar.
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Fig. 6. Meridional circulation in terms of the mass flux ρum for Runs A1
and A3t. The dashed lines indicate the surface (r = R) and the red solid
line the inner tangent cylinder.

For most of the runs (A2, A3, A3t, A4, B1, B3, and B3t)
the maximum of rotation at the equator is actually below the
surface, indicating a near-surface shear layer with negative ra-
dial shear. The logarithmic gradient of rotation, d ln Ω/d ln r, is
around −0.2 near the surface for Run A4, and −0.15 for Runs A2,
A3, and A3t. This is much weaker than the value for the Sun,
which is d ln Ω/d ln r ≈ −1 for all latitudes (Barekat et al. 2014,
2016). In all runs of Set B, except for B1c, the near-surface shear
region is more extended than the ones in Set A, and the gradient
is stronger; d ln Ω/d ln r reaches values of −0.8 for Run B3 and
−0.5 for Run B3t. It is expected that for runs with lower rota-
tion rate, a near-surface shear layer is stronger due to the weaker
influence of the Coriolis force near the surface; see Sects. 3.3
and 3.4. In agreement with Λ effect theory (Rüdiger 1980,
1989), the double-logarithmic gradient should only be close to
−1 very near the surface where the local Coriolis number is small
(Kitchatinov & Rüdiger 2005; Kitchatinov 2013; Rüdiger et al.
2014; Kitchatinov 2016). While this is true for the Sun, it is not
the case in our simulations owing to limited stratification.

To investigate the influence of the cooling profile on the tem-
perature variation and differential rotation, we have performed
two additional runs, in which we either increased or decreased
the cooling luminosity compared to Run A1c2 (not shown). A
decrease of the cooling luminosity by a factor of two leads to
a shift of the temperature minimum at higher radii. The mean
temperature increases slightly, resulting in a higher density at the
surface and a decrease of the density stratification in the convec-
tion zone. An increase of the cooling luminosity has the opposite
effect, leading to a temperature minimum at a greater depth, and
a lower temperature and density in the convection zone. Weaker
cooling causes stronger differential rotation, especially at higher
latitudes, while stronger cooling does not show a significant ef-
fect. The gradient d ln Ω/d ln r at the equator becomes more neg-
ative with a weaker cooling.

Differential rotation is also generated in the coronal en-
velopes. Below r = 1.01 R, the differential rotation follows the
rotational behavior of the convection zone. Above r = 1.01 R
the plasma rotates nearly uniformly near the equator with a ro-
tational speed close the Ω0. The mid-latitudes rotate faster than
the equator and at high latitudes the coronal envelopes decrease
to slower rotation. All runs exhibit strong cylindrical and ra-
dial shear. This is consistent with Warnecke et al. (2013a), where
runs with lower stratification showed a similar behavior. The

change of behavior from below to above r = 1.01 R is caused by
the change in temperature and density stratifications and not by
the viscosity profiles. This can be seen by comparing Runs A3t
and A5, where the same temperature and density profiles are
used, but a much lower viscosity is applied in Run A5 than in
Run A3t.

In Fig. 6 we plot the meridional circulation in terms of the
mass flux ρum in the meridional plane, where um = (ur, uθ, 0)
is the meridional flow. The meridional circulation has a multi-
cellular structure in all runs. Near the equator at the surface the
flow is poleward, but it can become equatorward at high lati-
tudes; see Fig. 6. The strongest contribution to the mass flux
carried by the meridional circulation occurs within the bulk of
the convection zone. There the flow is aligned with the rotation
axis and streaming toward the equator along the inner tangent
cylinder and toward higher latitudes further away from the ro-
tation axis. These mass flows seem to stream toward the local
minima of Ω at mid-latitudes. From there, most of the runs de-
velop a flow toward the equator following the θ direction. The
stronger meridional flows in Run A1 are due to the higher den-
sity, see Fig. 1b, while the actual flow is quite similar in all runs
of Set A, see Fig. 8h. The runs of Set B generate stronger merid-
ional circulation, similarly to what was found in Warnecke et al.
(2013a). At these rotation rates, slower rotation leads to an in-
crease of meridional circulation as found in mean-field models
(Köhler 1970; Rüdiger 1989) and numerical simulations (e.g.,
Brown et al. 2008; Augustson et al. 2012). In general the merid-
ional flow pattern does not change due to the influence of the
coronal envelope.

3.3. Reynolds stresses and Λ effect

Differential rotation and meridional circulation in the Sun and
other stars is generated by the interaction of turbulent con-
vection and rotation (Rüdiger 1989). Reynolds stresses be-
come anisotropic due to an angle between the gravity and
the axis of rotation. The non-diffusive contribution of the
Reynolds stress tensor Qi j can be expressed via the Λ effect
which produces equatorial acceleration if the angular momen-
tum transport is directed equatorward (see e.g., Rüdiger 1989;
Kitchatinov & Rüdiger 1995, 2005). It has been recently shown
that there is strong evidence for the Λ effect operating in the Sun,
causing the observed rapidly rotating equator (Rüdiger et al.
2014) and the latitude-independent surface shear (Kitchatinov
2016).

We calculate the three off-diagonal components of the
Reynolds stress tensor Qrθ = u′ru

′
θ, Qrφ = u′ru

′
φ, and Qθφ = u′θu

′
φ.

Both Qrφ and Qθφ contribute to the angular momentum balance
and their non-diffusive parts are associated with the horizontal
and vertical Λ effects, respectively. Even though Qrθ does not
directly contribute to angular momentum transport, it has been
argued to be important in generating a near-surface shear layer in
global convection simulations (Hotta et al. 2015). The Reynolds
stresses can be written as (e.g., Rüdiger 1989; Rüdiger et al.
2013)

Qrφ = ΛV sin θΩ − νtr sin θ
∂Ω

∂r
, (14)

Qθφ = ΛH cos θΩ − νt sin θ
∂Ω

∂θ
, (15)

where ΛV and ΛH are the vertical and horizontal components of
the Λ effect and νt is the turbulent viscosity (assumed isotropic).
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Fig. 7. From left to right: off-diagonal components of the Reynolds stress Qrθ, Qrφ and Qθφ normalized by νtΩ0 (first three columns), the turbulent
viscosity in terms of molecular viscosity νt/ν (fourth column) and the three components of the Λ effect ΛM, ΛV, and ΛH (fifth to seventh column)
normalized by νt for Runs A1 (top row), A3t (middle) and A5 (bottom).

Following Käpylä et al. (2014) we approximate νt as

νt = 1
3 u′rmsαMLTHp, (16)

where αMLT = 5/3 has been assumed for the mixing length
parameter, and Hp = −[∂ ln p(r, θ)/∂r]−1 is the pressure scale
height.

A meridional Λ effect also exists (Pulkkinen et al. 1993;
Rieutord et al. 1994; Käpylä et al. 2004; Käpylä & Brandenburg
2008) which is related to Qrθ via

Qrθ = ΛM sin θ cos θΩ − νt

[
1
r
∂ur

∂θ
+ r

∂

∂r

(
uθ
r

)]
· (17)

In the earlier definitions, no Ω factor was included in the first
term because, on theoretical grounds, one expects the rotational
effects on the meridional part of the Reynolds stress Qrθ to be
proportional to sin θ cos θ (Rüdiger 1989; Rieutord et al. 1994).

However, to obtain the same units for the coefficient ΛM as for
the other components of Λ, we include here an Ω factor. In Ap-
pendix A, we give a simplistic derivation for these coefficients,
which confirms that Qrθ is not only proportional to a higher
power of Ω than the other two components of Λ, but that it
also picks up a contribution proportional to uθ/r. However, under
nearly isotropic conditions, the contribution of ΛM should have
the same sign as uθ; see Appendix A. In our simulations this is
indeed the case; see Fig. 7.

We can now solve Eqs. (15)–(17) for ΛM, ΛV and ΛH

ΛM =
Qrθ

sin θ cos θΩ
+

νt

sin θ cos θΩ

[
1
r
∂ur

∂θ
+ r

∂

∂r

(
uθ
r

)]
(18)

ΛV =
Qrφ

sin θΩ
+ νtr

∂ ln Ω

∂r
, (19)

ΛH =
Qθφ

cos θΩ
+ νt tan θ

∂ ln Ω

∂θ
· (20)
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Fig. 8. Off-diagonal components of the Reynolds stress Qrθ a), Qrφ b) and Qθφ c) normalized by νtΩ0, the turbulent viscosity in terms of molecular
viscosity νt/ν d) and the three components of the Λ effect ΛM e), ΛV f) and ΛH g) normalized by νt as well as the meridional flow uθ/u′rms h) for
Set A in the northern hemisphere at 15◦ latitude. The thin black lines indicate the zero value and the surface (r = R).

We plot the Reynolds stresses (Qrθ, Qrφ, and Qθφ), the turbu-
lent viscosity νt, and the three components of the Λ effect (ΛM,
ΛV and ΛH) in the meridional plane for Runs A1, A3t, and
A5 in Fig. 7 and as a latitudinal cut (15◦ latitude) for all runs
of Set A in Fig. 8. For Run A1, the Reynolds stresses show
the usual behavior of rotating convection (Käpylä et al. 2011,
2016c). Qrθ and Qθφ are antisymmetric over the equator. In the
northern hemisphere, Qrθ is negative at the surface and posi-
tive deeper down, but only outside the inner tangent cylinder.
The latitudinal variation of Qrθ agrees with that found both by
Pulkkinen et al. (1993) and Rieutord et al. (1994). Qθφ is posi-
tive in the northern hemisphere near the surface and weakly neg-
ative deeper down at low latitudes. As expected, Qrφ is symmet-
ric over the equator (Rüdiger 1980). This stress component is
mostly positive (negative) at low (high) latitudes with a small
negative region at the equator. The meridional structure of all
Reynolds stress components agrees qualitatively with Run A6
of Käpylä et al. (2011) and Hotta et al. (2015) with significantly

lower and higher density stratifications, respectively. However,
the peak values are half of those in Run A6 of Käpylä et al.
(2011), which is likely due to the slower rotation in their study,
as the stresses are known to be quenched for faster rotation (e.g.,
Rüdiger 1989; Rüdiger et al. 2013).

The turbulent viscosity νt has a maximum at the equator and
towards the bottom of the convection zone. The value of νt/ν
is close to Reynolds number Re = 35. ΛM is non-zero only at
low latitudes, being positive near the surface in the topmost 5–
10 Mm, negative a bit deeper and mostly positive with a lower
amplitude even deeper down. ΛV shows strong alignment with
the rotation axis, being positive (negative) outside (inside) a
cylindrical radius of 0.85 R, with a negative region near the sur-
face at the equator. ΛH has a similar structure, but shows a con-
centration near the equator above 0.85 R, where ΛH is three times
stronger than ΛV. A similar structure, but with three times lower
values, has been found by Käpylä et al. (2014) and Karak et al.
(2015) using the same technique, but for runs that rotate slower.
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The presence of a coronal envelope significantly alters the
Reynolds stresses and therefore νt and the Λ effect; see Figs. 7
and 8. The Reynolds stresses lose their alignment with the ro-
tation axis. Qrθ changes sign and is positive (negative) at lower
latitudes in the northern (southern) hemisphere, which is similar
to Hotta et al. (2015). This behavior has been found for all runs
with an extended coronal envelope (A2, A3, A3t, A4, and A5),
whereas in Runs A1, A1c, and A1c2, Qrθ is negative close to the
surface in the northern hemisphere; see Fig. 8a. This seems to
confirm the presence of a correlation between a positive (neg-
ative) value of Qrθ in the northern (southern) hemisphere and
the generation of near-surface negative shear. The inclusion of a
coronal layer changes Qrφ such that the minimum at the equa-
tor disappears and the overall magnitude of the stress is reduced
by roughly a factor of two; see Fig. 7. At 15◦ latitude, all runs
show a similar behavior with the main variation being the loca-
tion of the maximum near the surface depending on the depth
of the cooling layer; see Fig. 8b. Qθφ changes similarly as Qrφ.
The maxima near the surface are again shifted deeper in the runs
with a deeper acting cooling layer; see Fig. 8c. The profiles of
Qrφ and Qθφ of Run A3t are similar to Hotta et al. (2015).

The turbulent viscosity νt varies less as a function latitude in
runs with a coronal envelope; see Fig. 7. Figure 8d shows that
νt is reduced at the bottom of the convection zone and near the
surface in the runs with a coronal envelope which is consistent
with the lower turbulent velocities in those cases; see Fig. 2a.
In Run A5, the profile is similar to the other runs with coronal
envelope, but νt/ν is higher due to a lower value of ν.

All of the Λ-coefficients are reduced in runs with a coronal
envelope; see Figs. 7 and 8e–g. This is consistent with a weaker
differential rotation in these runs; see Fig. 5. Similarly as Qrθ,
also ΛM changes sign in the equatorial regions in the runs with
a coronal envelope. This is consistent with the mean meridional
flows changing sign in these runs as can be seen in Fig. 8h. ΛV
does not change significantly apart from the reduced amplitude.
The vertical Λ effect is thought to be responsible for generating
radial shear. This is consistent with a stronger ΛV producing a
stronger radial differential rotation in Run A1 and with a cor-
respondingly weaker ΛV and weaker radial differential rotation
in Runs A2, A3, A3t, A4, and A5; see Fig. 5. The horizontal Λ
effect shows a more broad maximum as a function of latitude
in the near surface layers in Run A3t in comparison to Run A1,
whereas the amplitude is reduced by a factor of four. Figure 8 re-
veals that the values of ΛH near the surface are lower in the runs
with a coronal envelope or a cooling function penetrating the
surface, consistent with weaker latitudinal shear. The changes
due to the coronal envelope are even more pronounced in the
anisotropy parameters AM, AV, AH, which are related to the Λ
effect; see Appendix B and Fig. B.1. AM and AV change from
being mostly positive to mostly negative (also within the coronal
layer), whereas the changes in AH are not as strong. The results
for the more turbulent Run A5 are very similar with those of
Run A3t; see Fig. 7.

In Set B, where rotation is slower, the rotational influence on
convection is reduced by roughly a factor of two. However, the
only major difference to the runs in Set A occurs for Qrθ, where
the sign at low latitudes near the surface is positive already with-
out a coronal envelope, although the difference in the meridional
Λ effect is rather minor. The main effect of the coronal enve-
lope on the Reynolds stresses as well as the components of the
Λ effect is their reduced amplitude similarly as in Set A.

According to theory (e.g., Kitchatinov & Rüdiger 1995,
2005; Rüdiger et al. 2014; Kitchatinov 2016), the near-surface
shear layer in the Sun is caused by the vanishing horizontal Λ

effect and the sole contribution of a negative vertical Λ effect. In
our simulations, we do indeed find a weaker ΛH in some of the
runs, where d ln Ω/d ln r is negative, see Figs. 7 and 8g, but for
most of the runs the relation is inconclusive. In Sect. 3.4, we will
investigate this in more detail.

In this section we have not discussed the influence of the
magnetic field on differential rotation generators. This has been
discussed in detail in Karak et al. (2015) for similar simulations,
but without coronal envelope. They found that the large-scale
and turbulent Maxwell stresses are around two orders of mag-
nitude smaller than the Reynolds stresses and therefore do not
influence the angular momentum transport significantly. How-
ever, the recent study by Käpylä et al. (2016c) has revealed that
the turbulent Maxwell stresses in similar setups without coronal
envelopes are of the same order of magnitude as the Reynolds
stresses at high magnetic Reynolds numbers. The current runs
are in the intermediate range in ReM where the total stress is al-
ready affected but the qualitative character of the hydrodynamic
results remains unchanged.

3.4. Thermal wind balance

The Taylor-Proudman balance can be broken by a non-zero
baroclinic term in the mean azimuthal vorticity ωφ equa-
tion, also know as the thermal wind balance or meridional
circulation evolution equation (e.g., Brandenburg et al. 1992;
Kitchatinov & Rüdiger 1995; Warnecke et al. 2013a),

∂ωφ

∂t
= r sin θ

∂Ω2

∂z
+

[
∇T × ∇s

]
φ
−

[
∇ ×

(
1
ρ
∇ · ρu′u′

)]
φ

, (21)

where ∂/∂z = cos θ ∂/∂r − r−1sin θ ∂/∂θ is the derivative along
the rotation axis and ω = ∇ × u is the mean vorticity. We ne-
glect here the contribution of the Maxwell stress arising from the
correlations of the fluctuating magnetic field and those from the
mean magnetic field. The contributions of meridional flows turn
out to be small and can be neglected. Warnecke et al. (2013a)
could show that the baroclinic term, that is the second term in
Eq. (21), is responsible for spoke-like differential rotation pro-
file. Following the study of Warnecke et al. (2013a), we plot the
two dominant terms on the right hand side of Eq. (21) together
with the residual ∆L = r sin θ∂Ω2/∂z +

[
∇T × ∇s

]
φ

in Fig. 9 for
Runs A1, A3t, A5, B1, and B3t. The meridional distributions of[
∇T × ∇s

]
φ

and r sin θ∂Ω2/∂z of Runs A1 and Runs A3t are very
similar to Figs. 5 and 9 of Warnecke et al. (2013a), respectively.
For most of the convection zone the two terms match well and
∆L is close to zero. In the upper 0.1 R, ∆L is non-zero. In the
case of Run A1, ∆L is positive in the region above r = 0.94 R.
However, right at the surface, it is negative, probably because of
boundary effects. By contrast, Run B1 develops regions, where
∆L is positive (0.90 R ≤ r ≤ 0.94 R) and where ∆L is even more
strongly negative (0.95 R ≤ r ≤ 0.99 R). In Runs A3t, A5, and
B3t, the overall magnitude of terms in the thermal wind balance
is lower, resulting in a significantly smaller residual ∆L. How-
ever, ∆L seems to be close to zero in all three runs and becomes
non-zero only near the surface; see Fig. 9. Thus, there is no clear
change in behavior depending on rotational influence or Prandtl
numbers in the coronal runs. As the meridional circulation is sta-
tionary, apart from cycle dependent variations, the left-hand side
of Eq. (21) is on average zero. Therefore, in the region close to
the surface the contribution of the Reynolds stress, that is the
third term on the rhs of Eq. (21), plays a more important role
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Fig. 9. The two dominant terms of Eq. (21) and their difference ∆L =

r sin θ∂Ω2/∂z +
(
∇T × ∇s

)
φ

for Runs A1, A3t, A5, B1, and B3t in the
northern hemisphere at 15◦ latitude. The thin black lines indicate the
zero value and the surface (r = R).

and will be related to the residual ∆L. We can rewrite this term

∆L ≈
[
∇ ×

(
1
ρ
∇ · ρu′u′

)]
φ

= −
1

ρ2

[
∇ρ × ∇ · ρu′u′

]
φ

= −
1

ρ2

(
∂rρ

[
∇ · ρu′u′

]
θ
−

1
r
∂θρ

[
∇ · ρu′u′

]
r

)
. (22)

The latitudinal component of the divergence of ρu′u′ is given by

[
∇ · ρu′u′

]
θ

=
1
r2 ∂r

(
r2ρ u′ru

′
θ

)
+
ρ u′ru

′
θ

r

+
1

r sin θ
∂θ

(
r sin θ ρ u′θu

′
θ

)
−

cot θ ρ u′φu′φ
r

(23)

and the radial component of the divergence is given by[
∇ · ρu′u′

]
r

=
1
r2 ∂r

(
r2ρ u′ru′r

)
+

1
r sin θ

∂θ
(
r sin θ ρ u′θu

′
θ

)
−
ρ u′θu

′
θ + ρ u′φu′φ

r
, (24)

where u′iu
′
j = u′ju

′
i and ∂/∂φ = 0 because of the azimuthal mean.

This means that the contributions related to u′ru
′
φ, and u′θu

′
φ are

zero. Furthermore, we find that terms related to u′φu′φ are too
small to have a strong effect. In Eq. (23) the first three terms
and in Eq. (24) only the first term have a strong contribution to

Fig. 10. The three dominant contributions of the Reynolds stress
Qrθ (25), Qθθ (26) and Qrr (27) as well as their sum for Runs A1, A3t,
A5, B1, and B3t in the northern hemisphere at 15◦ latitude. The thin
black lines indicate the zero value and the surface (r = R).

the thermal wind balance. We summarize them in the following
three expressions:

−
1

ρ2 ∂rρ

 1
r2 ∂r

(
r2ρu′ru

′
θ

)
+
ρ u′ru

′
θ

r

 ≡ Qrθ, (25)

where the first term on the lhs is the dominant one,

−
1

ρ2 ∂rρ

(
1

r sin θ
∂θ

(
r sin θ ρ u′θu

′
θ

))
≡ Qθθ, (26)

and

+
1

ρ2

1
r
∂θρ

(
1
r2 ∂r

(
r2ρu′ru′r

))
≡ Qrr. (27)

In Fig. 10, we plot all three terms and their sum for the same
runs as in Fig. 9. In Run A1, their sum is positive, resulting in
a negative contribution of the Reynolds stresses to the thermal
wind balance; see Eq. (21). In Run B1, these terms are positive
around r = 0.94 R and negative closer to the surface. Qrr is in all
runs negative giving a positive contribution to the thermal wind
balance. The runs with a coronal envelope seem to have a weaker
and negative contribution from the Reynolds stresses. This is
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Fig. 11. Inclination of the magnetic field near the surface plotted as a 2D
histogram over radius r/R for Runs A1, A1c2, A3, and A3t. 0◦ means
fully radial and 90◦ fully horizontal. The red line indicates the average
for each radii.

probably related to the low density stratification near the surface.
If we compare the plots of Fig. 10 with Fig. 9, there seems to be
some agreement of the residual ∆L with the contributions of the
Reynolds stresses Qrθ, Qθθ, and Qrr. However, there seems to be
a shift in radius, which might be related to still missing contri-
butions, which we could not identify in the present work. This
might be related to the fact that in our simulations, in particular
near the surface, ∇ ·u is not zero as assumed in many mean-field
models (e.g., Kitchatinov & Rüdiger 1995, 2005). Furthermore,
we have here neglected the contribution of the Maxwell stresses,
which might also explain this inconsistency. However, we can
confirm the result from Hotta et al. (2015) that Qrθ is important
near the surface and gives an important contribution to the ther-
mal wind balance near the top boundary. However, this contribu-
tion is not directly related to the stress Qrθ itself but to its radial
gradient. Furthermore, also Qθθ and Qrr have a large contribution
to the thermal wind balance in terms of Qθθ and Qrr. Similar to
Qrθ in Fig. 8, Qrθ changes sign in the runs where we have identi-
fied a near-surface shear layer; see Sect. 3.2. This effect is even
stronger near the equator, where it could play a role in generating
the near-surface shear layer.

3.5. Radial field boundary condition

In the case of Runs A1 and B1, we employ a radial field con-
dition at the surface, r = R, whereas in the other cases the ra-
dial condition is enforced either at r = 1.01 R (Runs A1c, A1c2
and B1) or high above the convection zone (Runs A2, A3, A3t,
A4, A5, B3, B3t). This affects the magnetic field distribution
and therefore the dynamo in the convection zone. In the major-
ity of the upper convection zone of Run A1, the angle between
the field and the radial direction is distributed nearly uniformly,
as indicated by a mean of the absolute angle being close to 60◦.
The field is fully radial just in the two uppermost grid points; see

Fig. 11. In Runs A1c and A1c2 the field distribution is the same,
except that the magnetic boundary condition is placed higher.
For the runs with coronal envelope, the field is less radial at the
surface than in Run A1. Furthermore, the field is more horizontal
in the coronal envelope than in the convection zone. The compar-
ison of Runs A3 and A3t suggests that the cooling layer, which
reaches deeper in Run A3, allows the field to become less radial
at and above the surface. This leads us to conclude that the radial
boundary condition does not significantly affect the structure and
inclination below r = 0.98 R.

Warnecke et al. (2016b) find turbulent radial downward
pumping from a similar run, which can cause radial alignment
of the magnetic field, but only close to the surface (r > 0.98 R)
and at low latitudes, which is consistent with our findings. In
local convection simulations, it has been found that turbulent
pumping is a major effect causing horizontal magnetic field to
move downward (e.g., Nordlund et al. 1992; Tobias et al. 1998;
Ossendrijver et al. 2002). It is also believed that this effect can
cause the field near the surface to become dominantly radial
(Cameron et al. 2012) and is therefore the main reason for the
success of surface flux transport models (see Mackay & Yeates
2012, for a review).

3.6. Cyclic dynamo solutions with dynamo wave propagation

In all runs of both sets, convective motions, overall rotation, and
their interaction contribute to generating a large-scale magnetic
field. Most of the runs produce cyclic magnetic fields in the
saturated phase. In Fig. 12, we plot the time evolution of the
mean toroidal magnetic field Bφ for a selection of runs. To in-
vestigate the cause of the propagation direction of the magnetic
field, we apply the same technique as in Warnecke et al. (2014)
and Käpylä et al. (2016a) and we calculate the propagation di-
rection using the so-called Parker-Yoshimura rule (Parker 1955;
Yoshimura 1975).

As discussed in Warnecke et al. (2014) in detail, Runs A1
and A1c2 show a solar-like equatorward migration of the mean
field. This is probably caused by an equatorward propagating dy-
namo wave generated by the region of negative shear in the mid-
dle of convection zone; see Fig. 4 and bottom row of Fig. 12. We
have confirmed this interpretation using all turbulent transport
coefficients obtained with the test-field method (Warnecke et al.
2016b). To reiterate, Runs A1 and A1c2 have two dominant dy-
namo modes; equatorward and poleward migrating branches at
mid-latitudes and high latitudes, respectively; see top row of
Fig. 12. The dynamo wave seems to be formed in the middle
of the convection zone and propagates toward the bottom and
top of the convection zone; see bottom row of Fig. 12. The cycle
period is around five years (Warnecke et al. 2014). Near the sur-
face there is a weaker mode, which has a cycle period of 1.5 yr
that propagates poleward at mid-latitudes and vanishes at higher
latitudes. At the bottom of the convection zone exists another
dynamo mode, see Fig. 12, which might cause a long-term vari-
ability. Such competing dynamo modes have been analyzed in
detail in Käpylä et al. (2016a). Furthermore, the magnetic field
in Run A1c shows no equatorward migration. As described by
Warnecke et al. (2014), this is most likely caused by the much
weaker negative radial gradient of Ω in the middle of convec-
tion zone, also visible in Fig. 5a and the suppression of turbulent
convective motion near the surface, as discussed in Sect. 3.1. In
this paper, we focus on the differences between the runs with and
without a coronal envelope.
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Fig. 12. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted at a radius r = 0.98 R (top row) and time-radius
diagram plotted at a 25◦ latitude (middle row) in kG during a 20 yr interval in the saturated stage for Runs A1, A1pc, A3, A3t, and B1. For Run B1,
we plot the butterfly diagram at radius r = 0.84 R and its time interval is 40 yr. The dashed horizontal lines mark the equator (θ = π/2) and the
radii r = R, r = 0.98 R and r = 0.85 R, respectively. Propagation of the mean magnetic field for the same runs (bottom row). Color coded Brms

φ is
plotted during the saturated stage together with white arrows showing the direction of migration ξmig(r, θ) = −αêφ × ∇Ω of an αΩ dynamo wave
(Parker 1955; Yoshimura 1975); see Warnecke et al. (2014). We suppress the arrows above r = 1.05. The black solid lines indicate isocontours of
Bφ at 2.0 kG. The dashed white lines indicate the surface (r = R).

Before we discuss the runs with a coronal envelope, we in-
vestigate how the magnetic evolution changes, if we change the
radial field condition to a perfect conductor condition at sur-
face (Run A1pc). This is sufficient to cause the dynamo modes
to change. Close to the surface the toroidal magnetic field be-
comes the strongest, reaching values of more than 10 kG which
are more than two times higher than the maximum values in
Runs A1 and A1c2; see top and middle row of Fig. 12. There the
predicted migration direction is poleward, which agrees with the
actual migration near the surface; see bottom row of Fig. 12. Fur-
thermore, we find indication of a poleward migrating subdomi-
nant dynamo mode similar as in Runs A1, A1c, and A1c2. How-
ever, we find an equatorward propagating mode in the middle of
the convection zone, which is most likely related to the smaller
and weaker concentration of Brms

φ found in the middle of the
convection zone which is predicted to propagate equatorward.
It seems that the hydro-thermal setup tends to produce strong
toroidal magnetic fields near the surface, but the radial field con-
dition at the top boundary of Run A1, A1c, and A1c2 prevents
this. The toroidal magnetic field is concentrated at mid-latitudes
and produces nearly no field above 35◦ latitude. This is very sur-
prising, given that the other runs without a coronal envelope pro-
duce strong magnetic fields at high latitudes. This absence of po-
lar field in Run A1pc suggests a relation between the polar field
and the radial field at the surface. The relation might be interest-
ing in view of the Babcock-Leighton dynamo framework (e.g.,
Babcock 1961; Leighton 1964; Dikpati & Charbonneau 1999).

Adding a coronal envelope on top of the convection zone
changes the magnetic field evolution significantly; see Fig. 12.
For the runs of Set A, the mean toroidal magnetic field migrates
mostly poleward in a region between the equator and ±40◦ lat-
itude. At high latitudes the magnetic field is weaker, but shows
a tendency of equatorward migration, in particular in Run A3t
this equatorward propagation is clearly visible. In the middle of
convection zone, the equatorward propagation also dominates at
lower latitudes. As a main difference compared to Run A1, the
mean toroidal field occurs close to the surface instead of in bulk
of the convection zone. At this location, the radial shear is posi-
tive causing a dynamo wave to propagate poleward, see bottom
row of Fig. 12. This agrees with the magnetic field propagation.
Furthermore, we find some indication of predicted equatorward
migration in the middle of the convection zone, however this is
not as clear as in Run A1. We do not find any clear difference
between Runs A2, A3, and A4 (only Run A3 is shown). This im-
plies that the size of the coronal envelope is not important for the
magnetic field evolution. However, in Run A3t with a modified
cooling profile the field is weaker in the band near the equator
and more concentrated at or even above the surface in compari-
son with the other runs with coronal envelopes. Furthermore, the
equatorward migration near the poles is more pronounced.

Also the migration periods of the large-scale fields change
due to the coronal envelope. The cycle period of the poleward
migrating field in Runs A2, A3, and A4 are around two years,
which is shorter than in Runs A1 and A1c2, where it is around
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five years (Warnecke et al. 2014). However, the equatorward
branch near the poles seems to appear only every second pole-
ward cycle in Runs A2, A3, and A4, which give a similar period
as in Runs A1 and A1c2. In Run A3t, the magnetic field near the
equator does not show a regular behavior with a clear cycle. The
equatorward branch near the poles has a period of around two
years, The magnetic field evolution of Run A5 shows the same
features as A3t: poleward migration or quasi-stationary behavior
at low latitudes and equatorward migration at high latitudes.

In Set B with slower rotation, the magnetic field evolution
shows a similar dependence on the cooling profile and the coro-
nal envelope as in Set A. In Run B1 the magnetic field shows
equatorward migration, in particular in the middle of the con-
vection zone, as shown in Fig. 12. The radius-time diagram is
similar to that of Run A1, but due to the slower rotation, the cy-
cle period is extended to around ten years. This is consistent with
the predicted dynamo wave scenario; see bottom row of Fig. 12.
Analogously to Run A1c, the cooling layer in Run B1c causes
the magnetic field to lose its equatorward migration mode. The
other runs have mostly a stationary mode compared to their
rapidly rotating counterparts, in particular at low latitudes. As
in Set A, all migration directions of the magnetic field in runs of
Set B agree with the predicted propagation.

In general it seems as if the toroidal magnetic field tends to
be strong near the surface in the runs with an extended coronal
envelope (Runs A1pc, A2, A3, A3t, A4, B3, and B3t), but in
the runs with the vertical field boundary condition (Runs A1,
A1c, A1c2, B1, and B1c) the boundary condition does not allow
this. Overall, there is good agreement between the predicted and
actual direction of migration of the mean toroidal field.

The magnetic field evolution is similar to that found in
Warnecke et al. (2013a) whose runs have more than two times
higher SGS Prandtl numbers and lower stratification (ρ/ρsurf =
14), but the other parameters (Re, PrM, Co) are comparable with
the runs of this work. In contrast to this work in the rapid ro-
tating runs of Warnecke et al. (2013a) the field near the equator
seems to continue to propagate equatorward. In their slower ro-
tating case the field becomes quasi-stationary in the saturated
stage also at high latitudes. At this point it is not clear if these
differences are related to the larger SGS Prandtl numbers or to
the weaker stratification.

4. Conclusion

In this work we have studied the influence of the upper boundary
on convectively driven dynamos in spherical wedges. For this
purpose we have added a convectively stable coronal envelope
of different sizes on top of the convectively unstable dynamo
region. This coronal envelope effectively corresponds to having
a free boundary as opposed to a stress-free radial field boundary
condition used in many earlier one-layer dynamo simulations.
We confirm the result of Warnecke et al. (2013a) that the coronal
envelope has an influence on the dynamo region leading to a
change in differential rotation and magnetic field evolution. If the
radius RC of the coronal envelope is just 1% of the solar radius R,
its influence is small and can entirely be related to small changes
in the radial density and temperature profiles. If the size of the
corona is larger (RC ≥ 1.2 R), the influence is stronger. However,
runs with coronal sizes extending higher than RC = 1.2 R are
nearly identical.

Regarding the hydrothermal properties, the influence of the
corona can be summarized as follows: (i) the radial mass flux
across the free surface does not show any major difference be-
tween runs with a small and an extended coronal envelope. The

radial mass flux in our simulations is too small to have an influ-
ence on the flow properties inside the convection zone; (ii) the
latitudinal temperature variations due to rotation are significantly
weakened due to the presence of the coronal envelope; (iii) this
seems to cause the differential rotation profile to become more
spoke-like and weaker in runs with a coronal envelope; (iv) this
effect can also be seen in the change of the off-diagonal Reynolds
stress components due to the coronal envelope which can be ex-
plained by a change in the Λ effect and the anisotropy.

Furthermore, in the cases with Ω̃ = 5 and a coronal envelope,
as well as in all runs with Ω̃ = 3, we find the generation of a
weak near-surface shear layer at low latitudes. We have related
this generation to a change of sign in the meridional Reynolds
stress tensor component Qrθ near the surface in these runs. This
component contributes to the meridional Λ effect and turns out
to be non-zero in all simulations. Additionally, we have shown
that the radial gradients of Qrθ and Qrr as well as the latitudinal
gradient of Qθθ are important near the surface to balance against
differential rotation and the baroclinic term. A change of sign
in these terms can be associated with the generation of a near-
surface shear layer.

The coronal envelope serves as a free top boundary for the
magnetic field. We find that the dynamo properties are gener-
ally strongly influenced by the choice of boundary conditions.
This can be particularly important when the magnetic field is
strong near the boundary, as was seen recently in connection
with the latitudinal boundary condition for simple α2 mean-field
dynamos (Cole et al. 2016) in the wedge geometry that we con-
sider here too. In all of our simulations a toroidal field tends to
form preferentially near the surface of the convection zone but it
is pushed down by a radial field boundary condition. However,
with the radial field boundary condition, the field is only radial
over a few grid points below the boundary; otherwise it is dis-
tributed for all simulations isotropically within the convection
zone. As in Warnecke et al. (2014), we compare the migration
of the mean toroidal magnetic field with the predicted propa-
gation direction of the αΩ dynamo wave following the Parker-
Yoshimura rule. It turns out that this rule can explain all the dif-
ferent migration directions found in our simulations. This is a
remarkable result given the variety of the simulations.

We must emphasize that the combination of a dynamo re-
gion with a coronal envelope is still far from realistic. This is
mostly because of the rather low density contrast and the strong
viscous coupling between the two layers. We must therefore be
aware of the possibility of artifacts, for example the occurrence
of a differentially rotating coronal envelope at higher latitudes
may be an example. This is not normally expected to be the case
in the Sun (Timothy et al. 1975), although the observations have
only been limited to regions where one sees a rigidly rotating
coronal magnetic field. Indeed, recent work on coronal holes
by Lionello et al. (2005) claims that the rigid rotation is only
apparent.

Our work may have an impact on our understanding of the
properties of the convection zone and the solar dynamo, be-
cause changing the properties of the boundary and studying its
influence teaches us about the physical properties and dynami-
cal effects within the solar convection zone. However, we also
have to keep in mind that our model, similarly to other mod-
els of spherical convection for the Sun (e.g., Brun et al. 2004;
Hotta et al. 2015), uses an SGS model for the unresolved con-
vective heat flux. In addition, these models represent the strong
radiative cooling at the surface just by a relaxation term, which
ignores the effects of strong driving of convection by what is
known as entropy rain (Spruit 1997; Brandenburg 2016). This
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can have dramatic effects on the typical length scales of stellar
convection (Cossette & Rast 2016), which in turn would affect
the differential rotation and dynamo properties.

In our simulations, we have confirmed the influence of the
latitudinal temperature distribution on the differential rotation as
described by mean-field models (e.g., Rüdiger 1989) and backed
up by simulations (e.g., Miesch et al. 2006; Warnecke et al.
2013a). Only a small temperature difference between pole and
equator is needed to cause the differential rotation to become
more spoke-like. However, if the rotation causes too large lati-
tudinal temperature variations, the differential rotation becomes
dominated by the Taylor-Proudman theorem and has cylindrical
contours. On the other hand, the strength of the differential ro-
tation benefits from large latitudinal temperature variations. Fur-
thermore, our work confirms the results of Hotta et al. (2015)
in that Qrθ may be important for the generation of the near-
surface shear layer. However, we went a step further and identi-
fied the terms in the thermal wind balance which are important
near the surface. These results appear to be in conflict with those
of Kitchatinov & Rüdiger (1995, 2005), which explain the near-
surface shear layer solely by the vanishing horizontal Λ effect
near the surface. We confirm in some simulations that ΛH goes to
zero near the surface, but there we find no clear relation between
ΛH and a negative radial gradient of rotation near the surface.
The associated Reynolds stress component also does not play a
role in the thermal wind balance. Future helioseismic measure-
ments may yield information about the presence and distribution
of Qrθ in the Sun.

The fact that the Parker-Yoshimura rule can explain the mi-
gration direction of mean toroidal magnetic field found in our
simulations has an impact on the interpretation of equatorward
migration of the magnetic field in the Sun. Applying this rule
to the Sun will lead to the generation of toroidal field in the
near-surface shear layer, where negative shear can cause equator-
ward migration. This would also imply that sunspots are formed
near the surface by a local flux concentration mechanism as pro-
posed by Brandenburg et al. (2011), Stein & Nordlund (2012),
Warnecke et al. (2013b, 2016a), and Käpylä et al. (2016b). Fur-
thermore, we find that in our simulations turbulent pumping is
not strong enough to cause a preferred radial orientation of mag-
netic field near the surface as in the Sun. This is possibly due to
insufficient stratification in our simulations. However, a detailed
analysis of the effect of turbulent pumping crucially depends on
the test-field method (e.g., Schrinner et al. 2007; Warnecke et al.
2016b).
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Appendix A: Meridional Λ effect

To obtain an expression for the Λ effect, we use the minimal
tau approximation (Blackman & Field 2002, 2003); see also the
derivation in Käpylä & Brandenburg (2008). We denote partial
time derivatives by a dot and compute

Q̇i j = u̇′iu
′
j + u′i u̇

′
j (A.1)

in a non-rotating frame of reference (U = u + êφΩ0r sin θ), using

u̇′r = 2(u′θUθ + u′φUφ)/r + ..., (A.2)

u̇′θ = −(u′rUθ + Uru′θ)/r + 2u′φUφ cot θ/r + ..., (A.3)

u̇′φ = −2(u′rUφ + Uru′φ)/r − 2(u′θUφ + Uθu′φ) cot θ/r + ..., (A.4)

where the three dots denote nonlinear and gradient terms of ur,
uθ, and uφ/r sin θ that will be neglected. Below we also con-
sider the case where gradient terms of uθ will be included. In
other words, the base state corresponds to rigid rotation with a
meridional flow uθ ∝ r sin θ, and gradients around this state are
neglected.

Inserting Eqs. (A.2)–(A.4) into Eq. (A.1), we obtain an ex-
pression of the form

Q̇i j = Li jkUk + Ri j, (A.5)

where Li jk is a rank 3 tensor (related to the coefficients of the
Λ effect) and Ri j stands for all remaining terms, in particular
those that stem from the triple correlations. In the minimal tau
approximation we replace those by a relaxation term with the
turbulent correlation time τ, that is Ri j = −Qi j/τ. Inserting this
into Eq. (A.5) and assuming a steady state, that is Q̇i j = 0, using
that the background velocity correlation is of the form u′iu

′
j =

diag(u′r2, u′θ
2, u′φ

2), we have

Qrθ = 2τ(u′θ
2 − u′r2) Uθ/r + ..., (A.6)

Qrφ = 2τ(u′φ
2 − u′r2) Ω sin θ + ..., (A.7)

Qθφ = 2τ(u′φ
2 − u′θ

2) Ω cos θ + ..., (A.8)

where Uφ has been replaced by Ωr sin θ and gradient terms
of uθ/r are assumed to vanish, so that Eq. (A.3) yields
u̇′θ = −2(u′rUθ + Uru′θ)/r + ... . We note that, while Qrφ and
Qθφ are proportional to Ω, the meridional component Qrθ is
proportional to Uθ (≡uθ). If we were to allow uθ/r to have non-
vanishing gradients, we would have Qrθ = τ(2u′θ

2−u′r2) Uθ/r+... .

Fig. B.1. Anisotropy parameters AM, AV, AH for Runs A1 (top row) and
A3t (bottom).

In that case, under isotropic conditions (u′r2 = u′θ
2 = u′φ

2),
ΛV = ΛH = 0, but ΛM is non-vanishing and would be posi-
tive. Therefore, the non-diffusive contribution to Qrθ would be
negative for a poleward flow. This is in agreement with the pro-
files of ΛM and Qrθ in the surface regions of our simulations; see
Fig. 7.

Appendix B: The anisotropy parameter

The Λ effect is related to anisotropy parameters (Rüdiger 1980),
defined as

AM =
u′θ

2 − u′r2

u′θ
2 + u′r2

, (B.1)

AV =
u′φ

2 − u′r2

u′φ
2 + u′r2

, (B.2)

AH =
u′φ

2 − u′θ
2

u′φ
2 + u′θ

2
· (B.3)
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