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CrossMark
Abstract
We study the evolution of primordial magnetic fields in an expanding cosmic plasma. For this
purpose we present a comprehensive theoretical model to consider the evolution of MHD
turbulence that can be used over a wide range of physical conditions, including cosmological and
astrophysical applications. We model different types of decaying cosmic MHD turbulence in the
expanding Universe and characterize the large-scale magnetic fields in such a medium. Direct
numerical simulations of freely decaying MHD turbulence are performed for different
magnetogenesis scenarios: magnetic fields generated during cosmic inflation as well as
electroweak and QCD phase transitions in the early Universe. Magnetic fields and fluid motions
are strongly coupled due to the high Reynolds number in the early Universe. Hence, we abandon
the simple adiabatic dilution model to estimate magnetic field amplitudes in the expanding
Universe and include turbulent mixing effects on the large-scale magnetic field evolution.
Numerical simulations have been carried out for non-helical and helical magnetic field
configurations. The numerical results show the possibility of inverse transfer of energy in
magnetically dominated non-helical MHD turbulence. On the other hand, decay properties of
helical turbulence depend on whether the turbulent magnetic field is in a weakly or a fully helical
state. Our results show that primordial magnetic fields can be considered as a seed for the
observed large-scale magnetic fields in galaxies and clusters. Bounds on the magnetic field
strength are obtained and are consistent with the upper and lower limits set by observations of
extragalactic magnetic fields.

Keywords: cosmic magnetic fields, primordial magnetogenesis, turbulence
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1. Introduction

Understanding the origin and evolution of cosmic magnetism
is one of the challenging questions of modern astrophysics.
The major questions include theoretical as well as observa-
tional aspects of the problem: when and how was the cosmic
magnetic field generated? How did it evolve during the
expansion of the Universe? What are modern observational
constraints on the magnetic fields at large scales? Are
magnetic fields observed at galactic and extragalactic scales
of cosmological or astrophysical origin? The types of turbu-
lence considered here are characterized by a strong random
initial magnetic field. The interaction with the velocity field
leads to inverse spectral transfer towards large scales that is
unknown in non-magnetic turbulence'’.

The goal is to identify important properties of cosmic
magnetic turbulence in the expanding Universe. Properties of
decaying MHD turbulence in primordial plasma link mag-
netogenesis scenarios operating in the early Universe with the
constraints on the large-scale magnetic fields set by present
observations. Hence, studying the magnetic field evolution,
we can identify likely magnetogenesis scenarios responsible
for exciting seed fields in the early Universe and exclude
unlikely ones using constraints set by modern or future
observations.

The problem of cosmological magnetogenesis is guided
by recent observations of large-scale magnetic fields. Indeed,
galaxies are known to have magnetic fields that are partly
coherent on the scale of the Galaxy with field strengths
reaching 10~° Gauss (G) (see [1-6] and references therein).
These magnetic fields are the result of amplification of initial
weak seed fields of unknown nature. Moreover, it is now clear
that pG-strength magnetic fields were already present in
normal galaxies (like our Milky Way) when the Universe was
less than half of its present age [7-9]. This poses strong limits
on the seed magnetic field strength and its amplification
timescale.

From a theoretical point of view there are two scenarios
that can lead to the generation of magnetic fields at extra-
galactic scales [10]: a bottom-up (astrophysical) scenario,
where the seed field is typically very weak and the observed
large-scale magnetic field is transported from local sources
within galaxies to larger scales [11], and a top-down (cos-
mological) scenario where a significant seed field is generated
prior to Galaxy formation in the early Universe on scales that
are large at the present time [12]. The major theme of this
review is to discuss the evolution, structure, and effects of
cosmic magnetic fields with the goal to better understand its
origin and observational signatures.

We will briefly discuss cosmic magnetohydrodynamic
(MHD) turbulence in order to understand the magnetic field
evolution. MHD turbulence in the context of astrophysical
plasma processes has been studied for a long time. On the

10 The paper is based on the presentation by Tina Kahniashvili Cosmic
Magnetic Fields: Origin, Evolution, and Signatures at the Turbulent Mixing
and Beyond Workshop 2014 ’Mixing in Rapidly Changing Environments—
Probing Matter at the Extremes’.

other hand, the effects of MHD turbulence in cosmological
contexts has received attention only in recent years [13].
Simulations show that the kinetic energy of turbulent motions
in Galaxy clusters can be as large as 5-10% of the thermal
energy density [14]. This can influence the physics of clusters
[15], and at least should be modeled correctly when per-
forming large-scale simulations [16-21]. Turbulent motions
can also affect cosmological phase transitions; see [22-24]
and references therein). Turbulence can be generated by a
small initial cosmological magnetic fields. Understanding
mechanisms for exciting primordial turbulence is an impor-
tant goal. We argue that even if the total energy density
present in turbulence is small, its effects might be substantial
because of the strongly nonlinear nature of the relevant
physical processes.

Recent important observations [25, 26, 28-33] (also [34]
for recent study, and [35] for discussions on possible uncer-
tainties in the measurements of blazar spectra), suggest the
existence of magnetic fields in the Universe at scales large
enough to suggest a primordial origin [10]. This result is
robust to potential plasma instabilities of the two-stream
family [36-38]. Prior to these observations, there existed only
upper limits of the order of a few nG for the intergalactic
magnetic field. These were obtained through Faraday rotation
of the cosmic microwave background (CMB) polarization
plane [39-49] and Faraday rotation of polarized emission of
distant quasars [50-53]. Other tests to derive upper limits on
large-scale correlated magnetic fields are based on their effect
on the CMB (see [54] and references therein), [55-82], CMB
distortions [83-92], the broken isotropy limits, [93—-102], big
bang nucleosynthesis (BBN) data [103—105], or large scale
structure (LSS) formation [106—128]. The lower limit on the
intergalactic magnetic field in voids of order 107" G on
1 Mpc scales is a puzzle of modern astrophysics (see [129]),
and could very well be the result of the amplification of a
primordial cosmological field [31].

In what follows we review recent efforts which include
the pioneering studies of primordial magnetic field evolution
through cosmological phase transitions; see [130-140]. The
decay of cosmic magnetic field in the Universe has been
analyzed through numerical simulations of decaying MHD
turbulence. Major findings include (i) the possibility of the
inverse transfer of non-helical causally generated magnetic
fields [135]; (ii) fast growth of vorticity in the magnetized
Universe [132]; (iii) growth of helical structures at large
scales for partially helical magnetic fields generated at cos-
mological phase-transitions [133, 134, 136, 137], and more
interestingly the absence of the inverse cascade for inflation-
generated fully or partially helical magnetic fields [139, 140].

2. Modeling MHD turbulence in the universe

The origin of the cosmic magnetic field has been discussed
for decades, starting with Enrico Fermi’s paper of 1949 [141].
The approach presented below is novel in several ways. (i)
Primordial magnetic fields are generally analyzed in the
‘frozen-in’ approximation due to a high conductivity of
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cosmic plasma, when the magnetic field evolves only due to
the dilution of field lines as the Universe expands. In contrast,
we account for the actual coupling between the magnetic field
and the cosmic plasma, which leads to major differences with
the frozen-in approximation at some epochs. (ii) Much work
on MHD turbulence is focused on specific astrophysical
objects (such as galaxies, clusters, interstellar medium, or
stellar magnetosphere). Instead we have developed a com-
prehensive theoretical framework to consider the evolution of
MHD turbulence over a wide range of physical conditions,
beyond any specific application. (iii) Cosmic MHD turbu-
lence is usually studied within one of two limiting cases, the
viscous (optically thick) or free-streaming (optically thin)
regimes. These two regimes differ in the form of viscous or
drag forces. Realistic turbulent behavior is somewhere in
between these two limits, and the numerical simulations have
the capability to describe adequately a smooth transition
between these two regimes.

As noted above, several astrophysical observations show
the presence of a large-scale correlated magnetic fields in the
Universe. The recent study by Dolag et al [31] concludes that
these magnetic fields are most likely seeded by a field of
primordial origin. In fact, many different mechanisms of
cosmological seed magnetic field generation have been pro-
posed. Some of these employ symmetry breaking during
phase transitions (e.g. electroweak or QCD) [142-162]. On
the other hand, if the magnetic field originated during a
cosmological phase transition, its configuration is strongly
limited by causality [163]: the correlation length of the
magnetic field cannot exceed the Hubble horizon at the
moment of field generation. The causality condition com-
bined with the divergence-free field condition implies a
magnetic energy spectrum at large scales Ey (k) o< k* [164]
(the so-called Batchelor spectrum [165]). Recent numerical
simulations [131-135] confirm that cosmological turbulence
produces a Batchelor spectrum completely independently of
initial conditions present in the cosmic plasma. Combining
this causal spectrum with the requirement that the total
energy density of the magnetic field be less than 10% of the
radiation energy density (to be consistent with standard BBN)
leads to a strong limit on the smoothed amplitude of the
magnetic field at large scales of the order of 1072° to 10~ "°
Gauss at 1Mpc [166], although the effective value of the
magnetic field derived through its total energy density is high
enough, of the order of 107° Gauss [130]. (Note that this
argument does not account for further evolution of the
magnetic field in MHD turbulence). Taking into account that
the magnetic field effects are mostly determined by effective
values (i.e. the total energy density), and noticing that the
extremely low limits at large scales of causal fields are con-
sequences of normalization (smoothing procedure), the upper
bounds have been re-determined in terms of the effective
strength of the magnetic field; see [44, 46, 122]. The BBN
limits have also been re-analyzed by accounting for the MHD
evolution of foy magnetic fields throughout expansion of the
Universe [134].

Our particular interest lies in helical magnetic fields that
can be generated in the early Universe; see [167-179] and

references therein. There are two main motivations for con-
sidering helical seed magnetic fields: (i) the presence of
helical magnetic fields in the early Universe can be related to
the lepto- and baryogenesis problems [180]; (ii) it sheds light
on the evolution of helical magnetic fields in stellar magne-
tospheres, AGNs, and voids [181, 182].

An exception to the Batchelor spectrum (spectral index
n=4) is the possibility of inflationary magnetogenesis, in
which the spectral index of the magnetic field could be less
than 41, and the simplest option is a scale-invariant spectrum
with n — —1 [183-207]. Inflation-generated magnetic field
scenarios should be considered with some caution due to the
possibility of significant backreaction [208-211], which is not
an issue for the phenomenological, effective classical model;
see [212] and references therein. The first simulations
describing the inflation-generated magnetic field coupled to
the primordial plasma suggested that the presence of an initial
magnetic field leads to large-scale turbulent motions in the
rest plasma [132]. Ongoing research consists in the study of
inflation-generated helical magnetic field (with a scale-
invariant k! spectrum) evolution during the expansion of the
Universe [138-140]. Simulations show that inflation-gener-
ated magnetic fields retain information about initial condi-
tions. In other words, they decay very slowly when compared
with phase transition-generated fields. Magnetic fields are
almost ‘frozen-in’ the primordial plasma at large scales,
where causality allows interaction only at scales smaller than
the Hubble horizon and they correspondingly retain their
initial spectral shape. On the other hand, within the causal
horizon, the magnetic seed field interacts with cosmic plasma
leading to the excitation of kinetic motions (turbulent velo-
cities); see below. We also discuss an alternative approach
where cosmic magnetic fields originate during the late stages
of the evolution of the Universe [106, 213]. In this case the
correlation length is strongly limited by the causality
requirement. Due to the sharp spectral shape at large scales,
the magnetic field amplitude might be low. The simplest
astrophysical magnetogenesis mechanism invokes the ejec-
tion of magnetic flux from compact systems such as AGNs or
supernovae [214, 215]. In this scenario the generation of a
strong magnetic field is ensured by its extremely fast gen-
eration due to rapid rotation of the object [11]. Other
mechanisms are based on the generation of a small seed by
plasma processes [129, 216, 217], which are then amplified
by MHD dynamo mechanisms [218, 219].

3. The model

As mentioned above, we focus on the magnetic field evol-
ution during the expansion of the Universe from the moment
of magnetic field generation until today. Over this lengthy
period, the magnetic field is affected by different physical
processes that result in amplification as well as damping: the
complexities of the problem are due to the strong coupling
between magnetic field and turbulent motions. First, to
account for the cosmological expansion we must reformulate
the MHD equations in terms of comoving quantities [220].
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Specific epochs most relevant to the final configuration of the
primordial magnetic field are related to cosmological phase
transitions, neutrino decoupling, nucleosynthesis, recombi-
nation, and reionization; see [10, 221] for reviews and
[110, 222-227].

In the following, we discuss numerical simulations per-
formed with the PENCIL CODE. This public MHD code
(https://github.com/pencil-code) (see also [228]) is particu-
larly well suited for simulating turbulence owing to its high
spatial (sixth order) and temporal (third order) accuracy, while
still taking advantage of the finite difference in terms of speed
and straightforward parallelization. Recent results from the
PENCIL CODE include MHD turbulence simulations at the
electroweak or QCD phase transitions [131-135].

3.1. Numerical technique

By default, the PENCIL CODE solves the MHD equations for
the logarithmic density In p, flow velocity v, and the magnetic
vector potential A as follows:

Rlnp:—V-v, (1)
Dn
D 2
—v=JXB—¢VInp+ f., @)
Dn
9 2
a—A:va+fM+/\VA. 3)
n

Here, 7 is the conformal time and D/Dn = 9/dn +v - V
is the advective time derivative, f, = I/(V2V —l—%VV-
v + G) is the compressible viscous force for constant v,
G; = 28;V;Inp, and S; = S (vj + v.)) — 36;Vii is the tra-
celess rate-of-strain tensor. The pressure is given by
p = pct, where ¢, = 1/+/3 is the speed of sound in the
case of an ultra-relativistic gas, and J = V x B/4r is the
current density.

In our simulations we use a vanishing magnetic forcing

term f,, = 0 everywhere, except for the purpose of produ-
cing initial conditions, as explained below.

3.2. Initial conditions

To produce initial conditions, we run the simulation for a
short time (At ~ 0.5)\;/¢,) with a random (in time) d-corre-
lated magnetic force f;, in equation (3). The forcing term is
composed of plane monochromatic waves pointing randomly
in all possible directions with an average wavenumber k, and
fractional helicity (f, - V x fy,)/(kof5) = 20/(1 + o?).
Here o is the parameter characterizing the initial forcing.
Initial conditions for the magnetic and velocity fields pro-
duced from such a procedure have the advantage of being
turbulent, still self-consistent solutions of the MHD
equations.

3.3. Effective magnetic field characteristics

A magnetic field generated during phase transitions through
any magnetogenesis scenario should satisfy the causality

condition [163, 164, 220]. The maximal correlation length
&nax Of a causally generated primordial magnetic field should
be shorter then the Hubble radius at the time of generation,
H_'. We define the parameter v = & max / H_' < 1, which can
describe the number of primordial magnetic field bubbles
inside the Hubble radius, and thus N o v—3. To account for
the Universe expansion we use comoving length, which is
measured today and corresponds to the Hubble radius at the
moment of magnetic field generation. Comoving length
should be inversely proportional to the phase transition
temperature (7,):

1/6
A= 5.8 x 10710 Mpc(w)(@] . )
g

*

For the QCD phase transition (g, = 15 and 7, = 0.15
GeV), the comoving length equals 0.5 pc, while for the
electroweak phase transition (g, = 100 and 7, = 100 GeV) it
should be equal to 6 x 10~ pc. In all cases, the correlation
length of the primordial magnetic field should not exceed the
comoving value of the Hubble radius: { ,, < Ay. Obviously,
the latter condition accounts only for the increase of the
correlation length due the expansion of the Universe, and
does not account for the effects of cosmic MHD turbulence
(free decay or an inverse cascade in the case if primordial
magnetic fields have nonzero helicity). Note, that the number
of bubbles inside the Hubble radius is around 6 (v ~ 0.15) for
the QCD phase transition and around 100 (y ~ 0.01) for the
electroweak phase transition. Thus, the maximal correlation
length for the QCD and electroweak phase transitions should
be 0.08 pc and 6 x 10~ pc, respectively. On the other hand,
the correlation length is unlimited in the case of inflation-
generated magnetic fields.

As mentioned above, the primordial magnetic field con-
tributes to the relativistic component and thus the total energy
density of the primordial magnetic field pgz(an), where ay is
the scale factor during nucleosynthesis, is limited by the BBN
bound: it cannot exceed 10% of the radiation energy density
Praq (an)- It is straightforward to see that the maximal value of
the effective magnetic field defined through the total magnetic
energy does not depends on the temperature at the moment of
generation (7,), and depends weakly on the relativistic
degrees of freedom () at the moment of the magnetic field
generation.

The dominant contribution to the magnetic field energy
density comes from the given length-scale, the so-called int-
egral scale, where the magnetic field strength reaches its
maximum. Thus, when dealing with phase transition-gener-
ated magnetic fields, we adopt the following idealizing
approximation: we generate initial conditions for freely
decaying turbulence simulations by running a numerical
simulation of forced MHD equations for a short time interval.
The external electromagnetic force, intended to generate a
turbulent state, is introduced in the form of ¢ functions that
peak at a characteristic wavenumber, ko = 27 / fal. This
yields random magnetic fields with correlation length &,.
Thus, the magnetic field strength at the characteristic length
scale is B = 87 p,. The characteristic length scale of the
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Figure 1. Spectral transfer function T, (a) as a function of k and summed over all p and ¢, (b) as a function of p and g for k/k; = 4, and (c)
as a function of k and ¢ for p/k; = 4. The dashed line in (a) and the insets in (b) and (c) show the corresponding case for a direct numerical

simulations with helicity; both for Prnyy = 1. See figure 3 of [135].

initial turbulent state ¢, is set by the size of the largest
magnetic eddies, because the primordial magnetic field
evolves with the primordial MHD turbulence. In this
approach, the characteristic length scale of the magnetic field
is set by the bubble size of the phase transition when mag-
netogenesis occurs.

3.4. Magnetic field spectrum

The interaction between magnetic field and plasma gives rise
to kinetic motions, and the turbulent backreaction results in
spreading of the spectral energy density of magnetic field over
a range of wavenumbers. At scales longer then the integral
scale of the turbulence (small wavenumbers), the spectral
energy density develops into the form of a power law
Ey, = Ak™, where A is a normalization constant, and » is the
spectral index. The spectrum of the turbulent magnetic field
can be determined by the spectral expansion of the two-point
correlation function of the magnetic field (B;(x)B;(x + 1)),
whose Fourier transform with respect to r gives the spectral
function

EM(k)

Fj'k) = Py (k) ———- + icyiki

HY(k)
47k? .

8mk?2 ®)

Here, Bj(k) = 6; — kik;/k?, €; is the antisymmetric tensor,
and HM(k) is the magnetic helicity spectrum. In this case, a
white noise spectrum corresponds to the spectral index n = 2
[163], while the Batchelor spectrum corresponds to the
spectral index n = 4 [164]. The power law of large-scale
MHD turbulence spectrum extends down to the integral scale
&,y which is itself a time-dependent quantity throughout the
turbulence decay process. At scales shorter than the integral
scale the spectral energy density of the magnetic field
decreases rapidly due to the combined action of turbulent
decay and viscous damping.

3.5. Decay laws

The correlation length of the turbulent magnetic field evolves
in time during the free decay of turbulence. We may describe

the decay laws of the magnetic correlation length £, () and
the spectral energy density &y(n) using two power law
indices n¢ and ng:

n\*

§M(77) = §M(770)[—) s 6)
Mo

En(n) = &An@(i) . )
Mo

The spectral energy density of the primordial MHD turbu-
lence spectrum can be split into its large-scale and short-scale
components, above and below the time dependent integral
scale:

k* when k < k; (1)

_ , (8)
k=33 when k > kr(n)

Ey (k, n) = Ey (n){
where k = k/k; and k; () = 27/, (1)). Hence, equations (6)
and (7) can be used to describe the time evolution of spectral
amplitude of magnetic field Ey(n) for a given turbulent
spectrum:

5 n ne+ng
Eo(n) = —¢&y (no)é’M(no)[—] . )
177 Mo

4. Results

4.1. The inverse transfer for non-helical fields

The inverse cascade is by now a well-known effect in helical
magnetic turbulence [229]. One of the remarkable results is
the presence of non-helical inverse transfer for magnetically
dominated (causally generated) MHD turbulence; see
figure 1, where we show spectral energy transfer rates, which
demonstrate that the inverse transfer is about half as strong as
with helicity. However, in both cases the magnetic gain at
large scales results from velocity at similar scales interacting
with smaller-scale magnetic fields [135]. This result has not
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Ey(k,t) and Ey(k,t)

k/kq

Figure 2. Magnetic (solid lines) and kinetic (dashed lines) energy
spectra in regular time intervals. Re = 170. The magnetic and
kinetic spectra at the last time are additionally marked in red and
blue, respectively.

been emphasized in previous studies, see [230, 231] and
references therein, and has now been confirmed by indepen-
dent research groups [232-234].

Recent high resolution simulations with different magn-
etic Prandtl numbers Pry; = v/ [135] have shown a clear
k=2 spectrum in the inertial range. This is the first example of
fully isotropic magnetically dominated MHD turbulence
(governed by the phase transition-generated magnetic fields)
exhibiting what we argue to be weak turbulence scaling [235].
On the other hand, the Kolmogorov scaling k—>/3 has been
recovered for the case of the inflation-generated helical
magnetic fields [139].

4.2. Inflation generated magnetic fields

Magnetic fields generated during the inflation should be
affected by cosmological phase transitions occurring at later
times during the expansion of the Universe. In this case, a
separate study of the imprint of phase transitions on cosmic
magnetic fields is needed. For this purpose we adopt a general
approach that can be applied to both, QCD and electroweak
phase transitions. In each case, turbulence forcing is deter-
mined by the phase transition bubble size. Rapid phase
transitions generate turbulence, which then decays slowly at
large scales. In contrast to previous studies, the inflation-
generated magnetic field is not frozen into the cosmic plasma.
Turbulence is generated during a short forcing period, which
then is followed by slow decay (see [131, 132] for details).
Recent simulations showed an increasing characteristic length
scale of the velocity field and the establishment of a k* (white
noise) spectrum at large scales. This increase of vorticity
perturbations occurs until it reaches equipartition with the
magnetic field [134]. Figure 2 shows the evolution of kinetic
and magnetic field spectra from those simulations. Numerical
results show that inflation-generated magnetic fields are not
significantly modified at large scales by their coupling to the
plasma during a cosmological phase transition. The coupling

of cosmic magnetic field with the phase transition-generated
fluid turbulence leads to deviations of the magnetic field
spectrum from the initial scale-invariant shape only at inter-
mediate scales. Figure 3 shows different snapshots of the
decaying helical MHD turbulence. Figure 4 shows magnetic
field and density fields developed using different values of
initial forcing.

Ongoing research consists in pursuing high resolution
numerical simulations of helical inflation-generated magnetic
field evolution. Such a field, being subject to inflationary
expansion, is characterized by a scale-invariant spectrum
n — —1, and its correlation length can be as large as Hubble
horizon today or even larger (i.e., even when the total energy
density &y is finite, the correlation length £, f dkEy (k)/k
divergences for k — 0). In contrast to well known helical
magnetic field decay laws [13, 165, 226, 236-238, 240-244],
an absence of the inverse cascade has been found for infla-
tion-generated magnetic fields. Furthermore, an unusually
slow growth of the correlation length and conservation of
helicity has been recovered even for the case of partially
helical magnetic fields. These unexpected and unknown fea-
tures of magnetic helicity are the result of a substantial tur-
bulent power at large scales and the impossibility of the
redistribution of helical fields at small wavenumbers (only the
forward cascade is possible). A more thorough investigation
of this phenomenon will be performed through varying initial
conditions and basic parameters of primordial plasma.

4.3. Growth of helical structures

It is long known that the magnetic helicity plays a crucial role
in determining the evolution pattern of MHD turbulence.
Distinct evolution characteristics are known for helical and
non-helical fields. In recent simulations, a partially helical
initial magnetic field was used [133], assuming a tiny initial
magnetic helicity during the QCD phase transition. It was
shown that at late times the resulting field attains the maxi-
mally allowed magnetic helicity. This result is important since
helicity crucially affects the MHD dynamics, and has very
interesting consequences in astrophysical objects (e.g. galac-
tic magnetic fields [245-247], for example). The resulting
magnetic field has an amplitude of around 0.04 nG and a
correlation length of order 20 kpc, which (assuming realistic
scenarios of amplification [31]) serves as a seed for galactic
magnetic fields. At this point the electroweak phase trans-
ition-generated magnetic fields are less promising due to a
smaller initial correlation length, but are not completely
excluded [248], in particular for fully helical magnetic
fields [134].

Magnetic helicity is a crucial factor that affects the
evolution of primordial magnetic fields. The evolution of the
primordial magnetic field that has been produced with weak
initial magnetic helicity that undergoes two consecutive
stages. During the first stage, the evolution of a partially
helical magnetic field spectrum is very similar to that of non-
helical magnetic fields, and is sometimes described as a direct
cascade. At this stage the spectral energy density cascades
from large to small scales, where it undergoes de-correlation
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Figure 3. Visualizations of B, (upper row) and v, (lower row) at three times during the magnetic decay of a weakly helical field with o = 0.03
generated during QCD phase transitions. See figure 2 of [133].

Figure 4. Comparison of B, (upper row) and In p (lower row) for an inflation-generated magnetic field with o = 1 (left) and o = 0.03 (right).
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Figure 5. Evolution of turbulent correlation length &, (1) (solid) and
minimal correlation length f',ai“ (n) (dashed) of a helical state for
o = 1 (black), 0.1 (blue) and 0.03 (red). (Figure 3 of [133]).

and viscous damping. Magnetic helicity is conserved and
hence its fractional value increases during the turbulent decay
process. The second stage in the primordial magnetic field
evolution sets in when the turbulent state with maximal
helicity is reached. The maximal value of the magnetic heli-
city that can be reached is limited by the realizability condi-
tion. Indeed, the conservation of magnetic helicity leads to a
decay of the magnetic energy density inversely proportional
to the correlation length of the turbulence:

En () = €57 () = [Hu ()] /2E (),
where 0" (1)) is the minimal correlation length of the tur-
bulent state. Hence, an inverse cascade develops during the
second stage of the primordial magnetic field evolution. In
[133], we have studied the ,(n) and fﬁi“ (n) foro =1, 0.1,
and 0.03 in the case of the QCD phase transition. It seems

that, especially at lower o, the increase of &, is slow (~n'/2)
while &, () > 53“ (n). However, since magnetic helicity
conservation implies that &, decreases as 1!, the minimal
correlation length 5%“ (1) soon reaches &,,(n); see figure 5.
When the correlation length of the turbulent magnetic field
reaches a minimal correlation length, the turbulence reaches
its fully helical state. Then the turbulence decays according to
the helical turbulent decay laws: &,, ~ 7%/3 and & ~ 72/,
Hence, we identify two distinct phases in the MHD turbu-
lence evolution: the phase of weakly helical turbulence decay
with ng = 1/2 and ng = —1, and the phase of fully helical
turbulent decay with n; = 2/3 and ny = —2/3. The fully
helical case is characterized by an inverse cascade where
Eo(m) o &,;(n)Eu(n) = const (see equation (9). These
results are in full agreement with earlier works [13, 165, 236—
238, 240, 242]. The effective coupling of the primordial
magnetic fields and cosmic plasma ends at the time of
recombination. At later stages, primordial magnetic fields
exhibit much slower developments [220].
Knowing the initial values of the turbulent magnetic
correlation length £, (7,), the minimal correlation length
min (1) set by the realizability condition, we can calculate

M
the time interval 7, needed for the turbulence to reach its

(10)

B EWPT QCDPT |
-7 A /75’/1'0 B
o) \ &
gl 7 3 _
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Figure 6. Evolution of the effective magnetic field B® and
correlation length ¢, in the case of magnetogenesis at electroweak
phase transition (green) and QCD phase transition (orange). Arrows
indicate the evolutionary path of the strength and integral scale of
helical and non-helical turbulent magnetic fields during the
radiation-dominated era up to their final values. Thick solid line(s)
show possible present day field strengths and integral scales of the
magnetic field generated during phase transitions (see figure 7

of [134]).

fully helical state during the decay process. Since these two
scales approach each other as 7'/2, the result is
Neatty = "o [Ear (M) / Sﬁ“ (my)]> . Hence, the time interval nee-
ded for the development of a fully helical state can be cal-
culated using the initial values of turbulent energy and

helicity:

My = 410€4 €/ M- (1)
Note that this time increases inversely proportional to the
square of the initial helicity of the turbulent state Hy,.
Assuming that the initial magnetic helicity is §,,/\y, times
lower then the maximal helicity in the case of strong CP
violation during phase transition, we can calculate the time
needed for the cosmic turbulence to reach its maximally
helical state: gy, = 7o/7-

5. Discussion

Let us now discuss our results in the broader context of the
workshop ‘Mixing in Rapidly Changing Environments—
Probing Matter at the Extremes’. Our work has demonstrated
a rather generic trend of decaying MHD turbulence to display
an increase of energy at large length scales. This process is
well-known in helical MHD turbulence [229], but to a lesser
extent it also occurs in non-helical MHD turbulence [135].
Moreover, if there is small fractional helicity initially, this
fraction will increase with time proportional to the square root
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of time. At a certain time, the fractional helicity will be 100%,
after which the decay of energy slows down and the increase
of the correlation length speeds up.

An increase of energy at large length scales is not a
common phenomenon in hydrodynamic turbulence and has
never been found for passive scalars. This special behavior in
MHD is likely to lead to unconventional mixing properties,
although this has not yet been well quantified for decaying
MHD turbulence. However, for statistically stationary turbu-
lence, an increase of energy at small wavenumbers is usually
described as non-diffusive turbulent transport, which is par-
ticularly well known in mean-field dynamo theory [250]. In a
sense, this is more reminiscent of what might look like ‘anti-
mixing’. This is to some extent due to the fact that vector
fields behave differently from scalar fields. This can in part be
due to the presence of additional conservation laws. In part-
icular, magnetic helicity provides an extremely powerful
constraint.

The significance of studying decaying MHD turbulence
is manifold. On the one hand, our results will help to better
understand the nature of cosmic magnetism and will gain
insight into the decay laws of cosmic MHD turbulence. On
the other hand, our analysis can be applied not only to cos-
mological scales, but to molecular clouds or even proto-
planetary disks where decaying magnetic turbulence can
crucially affect the global state or the formation of local
structures. The results of our research therefore have impor-
tant implications in many areas, including fluid dynamics,
early Universe physics, high energy astrophysics, MHD
modeling, and large-scale structure formation in the Universe.

6. Conclusions

We have discussed the evolution of primordial magnetic
fields during the expansion of the Universe and have
addressed some of the observational signatures. The coupling
between the magnetic fields and cosmic turbulence leads to
novel results as compared to previously adopted frozen-in
approximations when magnetic field evolution was con-
sidered solely due to the field line dilution in the expanding
Universe. For this purpose, we have developed a compre-
hensive theoretical model to consider the evolution of MHD
turbulence over a wide range of physical conditions, beyond
any specific astrophysical application.

Numerical simulations have shown novel effects in the
evolution of magnetic fields in cosmic turbulence. It seems
that inverse transfer that normally occurs in helical MHD
turbulence, can also take place for non-helical magnetic fields
if the MHD turbulence is magnetically dominated. In this
case, large-scale velocity perturbations power up the magnetic
field, leading to substantial increase of magnetic power
spectra at large scales and corresponding inverse transfer.

An analysis of the inflation-generated magnetic field is
carried out to find out how they are affected by the cosmic
phase transitions (QCD and electroweak phase transition).
Numerical results show that large-scale magnetic fields sur-
vive phase transitions, and thus, phase transitions cannot rule

out inflationary magnetogenesis as the source of seed magn-
etic field in the Universe.

On the other hand, magnetic fields generated during
phase transitions can have tiny helicity. We have shown that
during the evolution in MHD turbulence magnetic field
helicity grows until it reaches maximal helical state. It seems
that helicity growth rate is fast enough to reach maximal
helicity well before the epoch of recombination, when the
primordial magnetic field decouples from cosmic turbulence.

We have used results of high resolution simulations to set
limits on the large-scale magnetic field generated during early
stages of the evolution of the Universe (inflation or cosmo-
logical phase transitions). Indeed, it seems that magnetic
fields produced during this epochs and subsequently modified
by cosmic MHD turbulence can reach amplitudes similar to
the lower bounds of the observational magnetic fields even
accounting for the effects of large-scale turbulent decay as
well as additional Alfvén wave damping. The extremely low
values derived for smoothed magnetic field [166] do not
imply that the effective magnetic field is also small in the 1
pc—1 kpc range and cannot lead to the observational sig-
natures in blazar emission spectra. Using the effective
magnetic field approach we obtain results that do not depend
on the specific spectral shape of the magnetized turbulence.
Observational signatures of the magnetogenesis during elec-
troweak phase transition can come from future observations,
if weak magnetic fields with 10~'*~10""> G amplitude and
few pc correlation length are detected. While a somewhat
stronger magnetic field with a correlation length of the order
of kpc might indicate the presence of QCD phase transition
magnetogenesis. In turn, magnetic fields with extremely large
correlation lengths (1Mpc or higher) will indicate inflationary
magnetogenesis.
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