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ABSTRACT

Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary
conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells.
Aims. We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos.
Methods. We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent
to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates.
Results. In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor
boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that
perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem
can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high
conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly
concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles
so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and
magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0.
When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule.
Conclusions. A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos
with equatorward migration and reproduces best the solutions in spherical wedges. For weak shear, oscillatory solutions are obtained
only for perfect conductor field conditions and negative shear. Oscillatory solutions become preferred at sufficiently strong shear.
Recent three-dimensional dynamo simulations producing solar-like magnetic activity are expected to lie in this range.
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1. Introduction

The Sun’s magnetic field is generally believed to be the re-
sult of a turbulent αΩ dynamo in which differential rotation
plays an important role. This is referred to as the Ω effect,
and it has long been identified as a robust mechanism for am-
plifying the azimuthal magnetic field of the Sun by winding
up the poloidal field (Babcock 1961; Ulrich & Boyden 2005;
Brown et al. 2010). The production of poloidal field, on the other
hand, is more complicated and harder to verify in computer sim-
ulations, but it is thought to be associated with helical motions
in the rotating, density stratified convection zone (Parker 1955;
Steenbeck et al. 1966). This process is commonly parametrised
by an α effect. Although there remain substantial uncertainties
regarding the α effect as an important ingredient at large mag-
netic Reynolds numbers (Cattaneo & Hughes 2006), simulations
of turbulence and rotating convection have subsequently con-
firmed that conventional estimates of α and turbulent diffusiv-
ity ηt are reasonably accurate up to moderate values of the mag-
netic Reynolds number (Sur et al. 2008; Käpylä et al. 2009).

Simulations also demonstrate the generation of differential
rotation from anisotropic rotating convection, which amounts to

a relative value of 20−30% in latitude (e.g. Miesch et al. 2000;
Käpylä et al. 2011). However, whether or not this is enough to
drive an αΩ dynamo as opposed to an α2 dynamo, in which the
Ω effect would be subdominant, can only be decided on the basis
of quantitative calculations. Furthermore, in reality, α and ηt are
tensors and additional mean-field effects such as turbulent pump-
ing andΩ× J effect are likely to contribute to dynamo solutions
in stars (e.g Rädler 1980; Warnecke et al. 2016).

In the absence of a conclusive answer, one tends to re-
sort to qualitative arguments. One is related to the clear east-
west orientation of bipolar regions in the Sun, which sug-
gests that the azimuthal field must be much stronger than the
poloidal field. Another argument is that αΩ dynamos are usu-
ally cyclic and can display equatorward migration of magnetic
field either through suitable radial differential rotation (Parker
1955; Steenbeck & Krause 1969a) or through sufficiently strong
meridional circulation in the presence of an α effect that oper-
ates only in the surface layers (Choudhuri et al. 1995). How-
ever, both arguments are problematic. Although it is probably
true that the azimuthal field is stronger than the poloidal, their
ratio may not be large enough to justify the dominance of
the Ω effect. Furthermore, α2 dynamos may well be oscillatory
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(e.g. Käpylä et al. 2013a; Masada & Sano 2014) and can display
equatorward migration under suitable conditions (Mitra et al.
2010). A completely different argument that motivates the study
of oscillatory α2 dynamos are recent simulations of convective
dynamos in spherical wedges and full shells that also show equa-
torward migration (Käpylä et al. 2012, 2013b; Warnecke et al.
2013; Augustson et al. 2015). It is now believed that the equa-
torward migration in the simulations is facilitated by a region
of negative shear and positive (negative) α effect in the north-
ern (southern) hemisphere – in accordance with the Parker-
Yoshimura rule (Warnecke et al. 2014). Recently an alternative
scenario was reported by Duarte et al. (2016), who found that the
sign of the α effect can be inverted in certain parameter ranges
allowing equatorward migration also with positive radial shear.
Although it is unclear to what extent those simulations represent
stellar magnetic fields, it might be helpful to understand first the
mechanism operating in those simulations before trying to un-
derstand real stars.

The idea of simulating solar or stellar magnetic fields
in spherical wedge-shaped geometries with perfectly conduct-
ing latitudinal boundaries goes back to an early paper by
Jennings et al. (1990). These authors found that such solutions
give a faithful representation of systems in full spherical shells.
However, they only considered αΩ dynamos. There are now con-
cerns that this conclusion might not carry over to α2 dynamos.
Indeed, while the explanation of equatorward migration through
α2 dynamo action might work in spherical wedge simulations,
there is the problem that such solutions have never been seen
in full-shell simulations that extend not just to high latitudes,
but go all the way to the poles. Indeed, α2 dynamos in full
spherical shells are known to be steady (Steenbeck & Krause
1969b). Exceptions are dynamos with an anisotropic α ten-
sor (Rüdiger et al. 2003) and the non-axisymmetric oscillatory
solutions found by Jiang & Wang (2006), but for an isotropic
α effect, oscillatory axisymmetric α2 dynamos seem to be an
artefact of having imposed a boundary condition at high lati-
tudes. One could choose another boundary condition; a normal-
field (pseudo-vacuum) boundary condition might be an obvious
choice, but from corresponding Cartesian simulations we know
that this would again lead to oscillatory solutions, but with pole-
ward migration (Brandenburg et al. 2009).

Although the mean-field description of oscillatory α2 dy-
namos seems to face an internal inconsistency regarding the limit
to full spherical shells, there remains the question whether cer-
tain plausible changes in the setup of the full spherical shell
model could lead to oscillatory solutions that are internally
consistent and otherwise similar to the solutions in spherical
wedges. There is a priori no physical motivation for this, but
from a mathematical point of view, this is a natural choice when
trying to reproduce the conditions encountered previously with a
perfect conductor boundary condition. One possibility is a suit-
able latitudinal ηt profile with a larger conductivity (weaker mag-
netic diffusion) at high latitudes to simulate the behaviour of per-
fect conductor boundary conditions used in spherical wedges.

In each of those cases, it is important to assess how much
shear would be needed to change the dynamo mode into an
αΩ type mode. To keep things simple, we employ a one-
dimensional model with only latitudinal extent. However, in
its standard formulation, with radial derivatives simply being
dropped, the first excited mode of such an αΩ dynamo is non-
oscillatory (Jennings et al. 1990). This is an artefact that is
easily removed by substituting radial derivatives with a damp-
ing term (Kuzanyan & Sokoloff 1995; Moss et al. 2004), instead
of setting them to zero.

We begin by describing our model in detail, next, we fo-
cus on the analysis of spherical wedges of different extent and
turn then to full spherical shells with variable latitudinal ηt pro-
files. In view of the aforementioned complications regarding the
possibility of oscillatory behaviour in the corresponding αΩ dy-
namos, we also discuss the sensitivity of our solutions with re-
spect to an additional damping term that mimics the otherwise
neglected radial derivative terms.

2. Model

We consider the mean-field dynamo equation for the mean mag-
netic field B with a given mean electromotive force E in the form

∂B
∂t

= ∇ ×
(
U × B + E − ηµ0 J

)
, (1)

where U = φ̂$Ω is the mean flow from angular velocity with
$ = r sin θ being the distance from the axis, Ω(r, θ) is the inter-
nal angular velocity, φ̂ is the unit vector in the azimuthal direc-
tion, J = ∇ × B/µ0 is the mean current density, µ0 is the vac-
uum permeability, and η is the non-turbulent magnetic diffusion
coefficient. In the absence of a memory effect, and under the as-
sumption of isotropic α effect and turbulent magnetic diffusivity
ηt, the mean electromotive force is given by

E = αB − ηtµ0 J. (2)

We solve Eqs. (1) and (2) numerically using sixth-order finite
differences in space and a third-order accurate time-stepping
scheme. We employ the Pencil Code1, which solves the gov-
erning equations in terms of the mean magnetic vector poten-
tial A, such that B = ∇ × A. It is convenient to use the advec-
tive gauge (Brandenburg et al. 1995; Candelaresi et al. 2011), in
which the electrostatic potential has a contribution UφAφ, so
that

∂A
∂t

= −$Aφ∇Ω + E − ηµ0 J. (3)

To allow for the use of a one-dimensional model with B =
B(θ, t), we restrict ourselves to an angular velocity profile that
varies linearly in r, specifically, Ω(r, θ) = rS (θ), so the angular
velocity gradient becomes ∇Ω = (S , ∂θS , 0). The mean current
density is then

J = µ−1
0 R−2

(
DθAθ − Dθ∂θAr, ∂θAr, −∂θDθAφ

)
, (4)

where Dθ = cot θ + ∂θ is a modified θ derivative. To account for
the neglect of r derivatives, we add in Eq. (3) a damping term of
the form −µ2 A, that is, we have

∂A
∂t

= −$Aφ∇Ω + E − ηµ0 J − µ2 A (with ∂r = 0); (5)

see Moss et al. (2004) for a survey of solutions for different val-
ues of µ. For α and ηt we use latitudinal profile functions of the
form

α = α0 cos θ
(
a0 + a2 sin2θ + . . . + an sinnθ

)
, (6)

ηt = ηt0

(
e0 + e2 sin2θ + . . . + en sinnθ

)
, (7)

1 http://pencil-code.github.com/
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where ai and ei are coefficients denoted by the vectors a =
(a0, a2, a4, . . . , an) and e = (e0, e2, e4, . . . , en), respectively. How-
ever, we often refer to only the three first components as a =
(a0, a2, a4) and e = (e0, e2, e4). These expansions can also be ex-
pressed in terms of Legendre polynomials, which are orthonor-
mal functions that obey regularity at the poles. The occurrence
of higher order terms in α has been associated with higher or-
ders terms in g · Ω, which are normally omitted in theoretical
calculations (Rüdiger & Brandenburg 1995).

As usual, the problem is governed by two dynamo numbers,

Cα = α0R/ηt0, CΩ = S 0R2/ηt0, (8)

where S (θ) = S 0 is now a constant. We consider the following
sets of boundary conditions:

∂θAr = Aθ = Aφ = 0 (SAA; regularity on θ = θ0), (9)

Ar = ∂θAθ = Aφ = 0 (ASA; perf. cond. on θ = θ0), (10)

∂θAr = Aθ = ∂θAφ = 0 (SAS; normal field on θ = θ0), (11)

where the sequence of letters S and A refer respectively to sym-
metric (∂θ = 0) and antisymmetric (vanishing function value)
of Ar, Aθ, and Aφ across the boundary. The same conditions
are also applied on the corresponding boundary in the southern
hemisphere where π − θ = θ0. In this work, no symmetry condi-
tion on the equator is applied, so the parity of the solution is not
constrained.

As initial conditions, we assume a seed magnetic field con-
sisting of low-amplitude Gaussian noise. Such a field is suffi-
ciently complex so that the fastest growing eigenmode of ei-
ther parity tends to emerge after a short time. We note that
mixed parity solutions are only possible in the nonlinear regime
(Brandenburg et al. 1989), but this will not be considered here.
In this work, we adjust the values of Cα and CΩ such that the
solutions are marginally excited, in other words, the field neither
grows nor decays.

3. Results

We consider separately the cases where the dynamo is driven
either solely by the α effect (α2 dynamos) or by the combined
action of the α effect and large-scale shear (α2Ω dynamos).

3.1. α2 dynamos

3.1.1. Varying θ0

We begin by considering the simplest case with a = (1, 0, 0) and
e = (1, 0, 0), resulting in a spatially constant turbulent diffusivity
and a cos θ profile for α. We have calculated the critical value of
Cα, hereafter C?

α , for an α2 dynamo where CΩ = 0. We used the
boundary conditions SAA, ASA, and SAS for selected values
of θ0.

It turns out that C?
α decreases as we approach the pole (θ0 →

0◦); see Fig. 1. The SAA and SAS boundary conditions result in
very similar non-oscillatory solutions with a C?

α of only approx-
imately 40% of that C?

α obtained for the ASA boundary condi-
tion. Oscillatory solutions show travelling waves that propagate
equatorward; see Fig. 2. The boundary condition with the great-
est variation of C?

α with θ0 is the perfect conductor, ASA. We
also find that the most easily excited dynamo mode changes from
stationary to oscillatory as θ0 increases from zero to one degree
in that case. For the case where θ0 = 1◦ we find both station-
ary and oscillatory solutions, depending on the initial conditions.

Fig. 1. Dependence of C?
α on θ0 for the three boundary conditions ASA,

SAA, and SAS.

Fig. 2. Azimuthal magnetic field Bφ for an oscillatory dynamo with θ0 =
5◦ and the boundary condition ASA.

The critical dynamo number is slightly higher for the oscillatory
mode than for the corresponding stationary solution.

These results suggest that we cannot regard the limit θ0 → 0◦
with the isotropic α effect and turbulent diffusivity using perfect
conductor boundaries as an approximation to the full spherical
shell model when searching for oscillatory solutions. Thus, the
limit θ0 → 0◦ is singular in this sense. Extending the model
to the poles with the ASA boundary condition changes the re-
sulting dynamo from oscillatory to stationary. The SAA and
SAS boundary conditions give stationary solutions with rela-
tively similar values for C?

α , but the ASA boundary condition
near the poles gives both oscillatory and stationary solutions,
depending on the initial conditions of the seed magnetic field.
While no stationary solutions were found for θ0 > 1◦, their exis-
tence is not ruled out by our models.

3.1.2. Varying latitudinal ηt profile

Given that we have found the limit θ0 → 0◦ in the case of the per-
fect conductor boundary condition not to be an approximation to
a full spherical shell model, we now investigate whether physi-
cally motivated alterations of the full spherical shell model with
the SAA boundary condition could produce oscillatory, equa-
torward solutions similar to those found for θ0 , 0◦ with the
ASA boundary condition. An obvious possibility is the use of
an ηt profile that corresponds to high conductivity near the pole.
Such a profile could correspond to the possible effect of rotation
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Table 1. C?
α for pure α2 dynamos with varied magnetic diffusivity and

α profiles and the corresponding oscillations frequencies in units of
ηt0/R2.

a
(1, 0, 0) (0, 1, 0) (0, 0, 1)

en e0 C?
α | ω C?

α | ω C?
α | ω

e2 0.01 0.236 | – 4.063 | 0.405 9.532 | 0.562
e2 0.05 0.558 | – 5.308 | 0.288 11.39 | 0.654

e4 0.01 0.096 | 0.008 1.045 | 0.207 4.144 | 0.298
e4 0.05 0.326 | – 2.587 | 0.332 7.039 | 0.548

e6 0.01 0.070 | 0.005 0.541 | 0.184 2.175 | 0.215
e6 0.05 0.265 | – 1.733 | 0.258 4.857 | 0.419

e8 0.01 0.059 | 0.003 0.403 | 0.131 1.463 | 0.165
e8 0.05 0.238 | – 1.384 | 0.199 3.727 | 0.364

on the magnetic diffusivity (Kitchatinov et al. 1994) at various
latitudes.

One possible alteration to the diffusivity profile is to use
higher order terms for ηt. In particular, we examine solutions
where the orders n = 2, 4, 6, and 8 are used for en; see Eq. (7).
Solutions are examined for e0 = η/ηt0 = 0.01 and 0.05. A non-
zero uniform value of η is needed to ensure the stability of the
solutions in the cases where the turbulent magnetic diffusivity is
zero at the poles due to the profiles being proportional to pow-
ers of sin θ, which vanishes at the poles. We have verified that
neither value of η used here leads to spurious growth in the ab-
sence of an α-effect. Furthermore, we calculate the oscillation
frequency as ω = 2π/T where T is the period of oscillation for
the large-scale magnetic field.

Values for C?
α are indicated in Table 1 for cases where the

turbulent diffusivity and α effect profiles are expanded up to or-
ders e8 and a4, respectively. We find that for a = (1, 0, 0), the
e0 = 0.05 case produces only stationary solutions, but at e0 =
0.01, only solutions for n = 2 are stationary and all higher orders
oscillate; see Table 1. Some solutions initially show rapidly os-
cillating behaviour, exhibiting antisymmetry with respect to the
equator, but these disappear later and only a slower, persistent
oscillatory mode remains; see Fig. 3a. These low-frequency os-
cillations have neither equatorward nor poleward migration and
are symmetric about the equator. C?

α increases with e0, and de-
creases as n increases for en, in accordance with the total dif-
fusivity increasing and decreasing, respectively. The frequency
of the oscillatory modes found for e0 = 0.01 decreases as n in-
creases. This is also consistent with mean-field theory where the
oscillation frequency is proportional to the magnetic diffusion
coefficient. The magnetic field is antisymmetric with respect to
the equator in all cases, except for a = (1, 0, 0) and e0 = 0.01;
see Fig. 3a.

The azimuthal magnetic field is strongly concentrated toward
the poles when the α effect has only the cos θ variation in lati-
tude; see the top panels of Figs. 3 and 4. In view of the equatorial
magnetic field concentration in the Sun and in three-dimensional
solar dynamo simulations, where the kinetic helicity is known
to be strongly concentrated toward the equator (Käpylä et al.
2012), it is of interest to consider models with a = (0, 1, 0)
and a = (0, 0, 1), so that the α effect is more concentrated to-
ward lower latitudes. Indications for α being stronger at lower
latitudes have been observed, for example, in models of rapidly
rotating convection (Käpylä et al. 2006). The values for C?

α are
given in Table 1, columns for a = (0, 1, 0) and a = (0, 0, 1). A

Fig. 3. Azimuthal magnetic field for e4, e0 = 0.01 in Table 1 with θ0 =
0◦ and the SAA condition.

similar trend as for the case where a = (1, 0, 0) is seen, where
higher orders of en result in lower values for C?

α , in accordance
with lower total diffusion. Changes in the α profile have a larger
effect on C?

α than changes in the diffusivity profile. However,
this is simply because, owing to the presence of the cos θ factor
in the α profile, its maximum value diminishes as higher powers
of sin θ are used, while the maximum value of ηt is always unity,
irrespective of the profile. The oscillation frequencies of the so-
lutions for a = (0, 1, 0) and a = (0, 0, 1) are two orders of magni-
tude higher than the low-frequency mode seen for a = (1, 0, 0).
It turns out that the magnetic field is then more uniformly dis-
tributed over all latitudes; see Figs. 3 and 4. For e0 = 0.01, this
distribution is largely uniform with very slight equatorward drift
(Figs. 3b and c), and when e0 = 0.05, the equatorward drift be-
comes more pronounced and extends to lower latitudes (Figs. 4b
and c).

In summary, extending the model all the way to the poles
and including an ηt profile concentrated toward the equator re-
sults in oscillatory behaviour with long cycles but no equator-
ward migration. Including an α-effect also concentrated at lower
latitudes produces equatorward cycles with shorter cycle periods
with the strongest magnetic fields appearing at lower latitudes.
These results are in qualitative agreement with direct and large-
eddy simulations (Käpylä et al. 2012, 2013b; Augustson et al.
2015; Duarte et al. 2016).
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Fig. 4. Azimuthal magnetic field for e4, e0 = 0.05 in Table 1 with θ0 =
0◦ and the SAA condition.

We examine the impact of changing θ0 on the resulting mag-
netic field using the same a and e in Fig. 4c. As θ0 approaches
zero, C?

α changes in a continuous fashion both for the ASA and
SAA boundary conditions; see Fig. 5. Thus, the limit θ0 → 0◦ is
now no longer singular. If the azimuthal fields are compared for
the oscillatory solutions (Figs. 6 and 4c), solutions are equator-
ward and the only significant difference is that the ASA bound-
ary condition produces fields strongest at the boundary, whereas
the SAA boundary condition concentrates the field at lower
latitudes.

3.2. α2Ω dynamos

Given that the commonly used ASA boundary condition was
previously found to yield non-singular behaviour – even for a
uniform ηt profile (Jennings et al. 1990), it is now of interest to
re-address this problem in the context of the present model.

3.2.1. Overall behaviour of dynamo solutions

We now add large-scale radial shear and a damping term given
by µR2/ηt and use µ̃ to denote µR2/ηt0. We first explore the dy-
namo regimes and the dependency on µ̃ by setting θ0 = 1◦ and
once again use a = (1, 0, 0) and e = (1, 0, 0). The critical value

Fig. 5. Dependence of C?
α on θ0 for the ASA and SAA boundary condi-

tions for e4, e0 = 0.05 and a = (0, 0, 1)

Fig. 6. Azimuthal magnetic field for θ0 = 5◦, a = (0, 0, 1), e4, e0 = 0.05,
and the SAA (a) and ASA (b) boundary conditions.

C?
α now depends on the value of µ̃; see Fig. 7. We now con-

centrate on studying the dynamo modes that are excited in the
system for values of µ̃ between 0 and 4 and various values of
CΩ.

When µ̃ = 0, all resulting dynamos are stationary, with the
exception of the case where CΩ = 0 where oscillations depend
on initial conditions, and C?

α decreases as CΩ increases. For so-
lutions pertaining to µ̃ = 1, two solutions exist in the regime
CΩ

>∼ 33.5 with either oscillatory or stationary magnetic fields.
When CΩ is less than this value, we find only stationary solu-
tions. Near this limit, the frequency of oscillations is sensitive
to both C?

α and CΩ and even small changes can double the fre-
quency. The C?

α for stationary dynamos is significantly less than
for oscillating solutions. It is possible that for µ̃ > 1 a similar bi-
furcation also exists, as there always appears a change in the de-
pendence of cycle frequency on C?

α as the dynamo mode changes
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Fig. 7. Values for C?
α as a function of CΩ for oscillatory (filled circles)

and stationary (open circles) solutions for θ0 = 1◦ (blue) and θ0 = 0◦
(red).

Fig. 8. Dependence of ω on CΩ for θ0 = 1◦ (blue) and θ0 = 0◦ (red) for
µ̃ = 1.

from stationary to oscillatory. However, at least in the case with
µ̃ = 2, the stationary solutions were found to disappear. For cases
where µ̃ > 2, C?

α decreases with CΩ, and oscillations only occur
above certain critical values for CΩ. In the regime of negative
shear (CΩ < 0), all solutions found were oscillatory.

We calculate the frequency ω of oscillatory solutions as in
the previous section and show the results in Fig. 8. It can be seen
that for positive shear, ω approaches 0 as CΩ → 33.55. There
also exists a jump in frequency around CΩ ∼ 70, correspond-
ing to a change in the symmetry of the azimuthal field. This is
demonstrated in Fig. 9 where time-latitude diagrams of the az-
imuthal magnetic fields are shown for a representative selection
of CΩ values for models with θ0 = 1◦. The symmetry change
corresponding to the frequency jump in Fig. 8 can be seen in the
change from antisymmetric about the equator (Fig. 9c, CΩ = 40)
to symmetric (Fig. 9d, CΩ = 80). The magnetic field is also sym-
metric in the oscillatory solution found for CΩ = 0.

All oscillatory solutions with positive (negative) shear
show poleward (equatorward) migration in accordance with the
Parker-Yoshimura rule (Parker 1955; Yoshimura 1975), com-
pare Figs. 9c and e, respectively, for representative results.
The frequency of the oscillations increases with greater CΩ

in accordance with linear theory of αΩ dynamos, except that

Fig. 9. Azimuthal magnetic field for θ0 = 1◦ with the ASA boundary
condition; α2Ω dynamo with µ̃ = 1.

there |ω| ∝ C1/2
Ω

(e.g. Brandenburg & Subramanian 2005). Most
of the magnetic field is concentrated at high latitudes above
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Table 2. C?
α for runs with θ0 = 0◦, 1◦, 5◦, and 15◦ with a = (1, 0, 0) and

e = (1, 0, 0) and µ̃ = 1.

θ0 Boundary CΩ C?
α

condition
0 SAA 60 5.17
1 ASA 60 4.71
5 ASA 60 4.18

15 ASA 60 4.22

|90◦ − θ| > 60◦ for cases where CΩ is positive, Figs. 9b–d. When
CΩ ≤ 0, the field is even more concentrated close to boundaries;
see Fig. 9e.

3.2.2. Comparison between θ0 = 0◦ and θ0 = 1◦ cases

The model is now extended to the poles to study the differences
between wedges and full spheres. The boundary condition on
θ0 = 0◦ is changed to comply with the regularity requirement
(SAA). We focus on the case where µ̃ = 1. We consider a few
models with µ̃ = 0 and 2 to probe whether the behaviour is sim-
ilar to the θ0 = 1◦ case. We find that the values of C?

α are fairly
close to those obtained for the corresponding θ0 = 1◦ models;
see Fig. 7. Similarly as in the θ0 = 1◦ case, a bifurcation into sta-
tionary and oscillatory solutions exists in the positive CΩ regime
with a cut-off point at CΩ ≈ 33.2, which is slightly lower than in
the θ0 = 1◦ case. For negative shear, unlike for θ0 = 1◦ where all
values produce oscillatory dynamos, the regime for oscillations
is found only for CΩ

<∼ −21. The oscillatory mode gradually
disappears and only a stationary mode persists.

The oscillation frequencies (Fig. 8) are similar to those in
the case of positive shear. Similarly to the θ0 = 1◦ case, a jump
in frequency is observed when the azimuthal field changes sym-
metry with respect to the equator, as shown in Figs. 10c and d
for antisymmetric (CΩ = 40) and symmetric (CΩ = 80) field
configurations, respectively. In the antisymmetric regime, the az-
imuthal field is concentrated at approximately the same latitudes
as for the case θ0 = 1◦. In the symmetric regime where CΩ & 70,
the azimuthal field extends to lower latitudes, |90◦ − θ| > 30◦;
see Fig. 10d. The main difference occurs at the boundary itself
such that for θ0 = 1◦ (ASA) the magnetic field peaks at the
boundary whereas it vanishes at the pole for θ0 = 0◦ (SAA).
When shear is negative, the field instead becomes concentrated
and symmetric around the equator, and in accordance with the
Parker-Yoshimura rule, the dynamo has an equatorward drift.
The case of negative shear results in a dramatically different con-
centration of the azimuthal field when compared with the θ0 = 1◦
counterpart; see Figs. 9e and 10e for runs with CΩ = −40 for the
two cases. Even though the values for C?

α are similar for θ0 = 0◦
and 1◦, the frequency of oscillations is less by about a factor of
two in the former case; see Fig. 8.

Finally, we examine the effect that θ0 has on the results by
holding CΩ constant and determining C?

α . The results are given
in Table 2. We find that there is a dependency on θ0, but the
behaviour is consistent if one goes to the poles and changes the
boundary condition; see Table 2 where the change between θ0 =
5◦ and 1◦ is comparable to the difference between 1◦ and 0◦. All
solutions are oscillatory with poleward migration.

Our results suggest that, at least in the cases where CΩ > 0, a
setup with θ0 = 1◦ and the perfect conductor boundary condition
(ASA) gives similar results as full sphere models with θ0 = 0◦
and the regularity (SAA) condition. Furthermore, solutions for

Fig. 10. Azimuthal magnetic field for θ0 = 0◦ with the SAA boundary
condition; α2Ω dynamo with µ̃ = 1.

33.4 < CΩ < 75 are also fairly similar. This indicates that the
wedges are a fair approximation of full spheres in this parameter
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Fig. 11. Azimuthal magnetic field for θ0 = 0◦ with e0 = 0.05, µ̃ = 1,
and a = e = (0, 0, 1) for CΩ = 40 (upper panel), and CΩ = −40 (lower
panel).

regime. If the shear is negative, there is a qualitative change in
the results between θ0 = 1◦ and θ0 = 0◦ cases. It appears that for
weak negative shear, oscillatory solutions are obtained only for
the ASA boundary condition.

3.2.3. Varying the α and ηt profiles

Finally, we consider changes to the turbulent magnetic diffusiv-
ity profile. We do not perform a thorough parameter study but
consider a pair of cases corresponding to CΩ = ±40, a = e =
(0, 0, 1), e0 = 0.05, µ̃ = 1, and θ0 = 0◦ with regularity conditions
for the magnetic field. We show the time–latitude diagrams of
the azimuthal field from these models in Fig. 11.

In the case of positive shear, the combination of shear, α and
ηt profiles, creates a steady migration poleward at latitudes above
±45◦. Comparing this to an α2 dynamo with the same profiles of
α and ηt (Fig. 4c), and to an α2Ω run with no sin2n θ contributions
in the profiles but the same value of CΩ (Fig. 10c), shows that the
migration direction is reversed in comparison to the α2 run and
that the poleward drift is more coherent than in the α2Ω model.
These results indicate that the shear determines the direction of
the dynamo wave in this parameter regime. The azimuthal field
in both of the comparison cases is antisymmetric, and this result
also carries over to the case when shear is included with the same
α and ηt profiles. The frequency of the oscillations is ω = 5.54,
and the critical dynamo parameter is C?

α = 5.62. These values
are somewhat close to the values (ω = 3.90 and C?

α = 4.94)
obtained in Sect. 3.2.1 in the case with more uniform profiles of
the turbulent transport coefficients.

We found earlier that in the case of negative shear, the az-
imuthal field was symmetric about the equator; see Fig. 10e.
With more equatorially concentrated turbulent diffusivity and α
profiles we also find solutions with equatorial symmetry, see the
bottom panel of Fig. 11. Furthermore, the magnetic field now
has a minimum around latitudes ±25◦. The Parker-Yoshimura
rule still holds true, and the migration is equatorward. However,

C?
α has almost doubled from 5.62 to 10.75, and the frequency

of oscillations is much larger, ω = 14.56 in comparison to 5.54.
The main effect from the more concentrated profiles for α and ηt
in the case of α2Ω dynamos is seen in the latitudinal profile of
the resulting magnetic fields, but the qualitative character of the
solutions remains unchanged in comparison to models with sim-
pler latitude dependence of the turbulent transport coefficients.

Concerning the earlier work of Jennings et al. (1990), we can
now conclude that they have been lucky, because in their case,
although they used negative shear, they found similar solution in
a wedge and a full spherical shell. This could have been because
in their case θ0 = 45◦. As we now know, the solutions for θ0 = 0◦
and 1◦ are quantitatively different, although qualitatively similar;
see Fig. 8.

4. Conclusions

Motivated by earlier results of global simulations in wedge ge-
ometry, we have studied the robustness of oscillatory solutions
in α2 dynamos in simple one-dimensional mean-field dynamo
models. We found that the latitudinal boundary conditions play
a major role in the realised solutions for α2 dynamos with a sim-
ple cos θ profile for α and constant turbulent diffusivity. Impos-
ing the perfect conductor boundary condition creates oscillating
solutions only for cases where θ0 >∼ 1◦. For θ0 = 1◦, both oscilla-
tory and stationary solutions were found to appear with slightly
differing critical dynamo numbers. We found no oscillatory solu-
tions for the normal field (SAS) or regularity conditions (SAA).
On the one hand, this motivates future experiments with SAS or
SAA conditions in global simulations in wedge geometry. On the
other hand, the oscillatory solutions found in global simulations
in wedge geometry might still be physical and not an artefact of
using a perfect conductor boundary condition on the latitudinal
boundaries. Some global simulations in wedge geometry with
the SAS condition have already been performed (Käpylä et al.
2016b), but their cases were in a regime where no oscillations
occur.

Keeping a simple cos θ profile for the α effect and varying
the ηt profile creates oscillating solutions with a low frequency
and no clear migration or stationary solutions, depending on the
value of the underlying (constant) magnetic diffusivity. The mag-
netic field is largely concentrated near the poles. If the α profile
is changed to be concentrated near the equator, similar to profiles
observed in rapidly rotating turbulent convection, the magnetic
field becomes more evenly distributed towards the equator. The
magnetic field also exhibits clear equatorward migration and an-
tisymmetry with respect to the equator. The overall conclusion
is that α2 dynamos can produce solar-like magnetic activity if
the α effect and turbulent diffusivity have latitudinal profiles that
are sufficiently concentrated toward the equator. One may spec-
ulate that this could actually be the case in the spherical wedge
simulations of Käpylä et al. (2012), where most of the magnetic
activity and most of the magnetic helicity were found to occur
away from the axis, outside the inner tangent cylinder.

We then added positive shear to study α2Ω dynamos and how
they connect to the pure α2 solutions in the same wedge geome-
try with θ0 = 1◦. For weak shear the azimuthal magnetic field is
concentrated at the poles and shifts equatorward. Over a certain
interval in CΩ, which depends on the added local friction µ̃, os-
cillatory solutions are found and the field is more concentrated
across all upper latitudes. For µ̃ = 1, we found that both sta-
tionary and oscillatory solutions exist with the oscillatory one
having a substantially higher critical dynamo number. Going to
a full sphere with θ0 = 0◦ and changing the boundary condition
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to SAA produced qualitatively and quantitatively similar results
when the shear was positive. Results are less similar if negative
shear is introduced. When θ0 = 1◦, all solutions with CΩ < 0
were found to oscillate. However, when θ0 = 0◦, shear had to
exceed a critical value, CΩ < −21, for solutions to oscillate.
Furthermore, the structure of the azimuthal field over time was
significantly different, showing symmetry about the equator and
concentration at the equator. In all cases with shear, the Parker-
Yoshimura rule was found to be obeyed where oscillatory so-
lutions with negative shear migrated equatorward and positive
shear, poleward. When combining the ηt profile with shear, the
direction of migration was determined by the sign of CΩ. The
frequency increased in the case of negative shear when using an
ηt and α profile with higher order terms.

In summary, we may conclude that large-scale dynamo ac-
tion in spherical domains can, under certain conditions, be ap-
proximated by solutions in wedge-shaped geometries. This may
well be the case for the simulations of Käpylä et al. (2012,
2016a). At least in the outer parts, close to the surface, those
solutions exhibit a phase relation between poloidal and toroidal
fields that is only seen in α2 dynamos of the type presented in
Sect. 3.1; see Sect. 3.6 of Käpylä et al. (2013b). A subsequent
study by Warnecke et al. (2014) showed, however, that the equa-
torward migration is the result of a standard α2Ω dynamo oper-
ating in deeper layers; see their Figs. 5c and d.

The angular velocities used in the simulations of
Käpylä et al. (2013b) were probably too large to represent
the Sun. The solar dynamo may therefore still be of α2 type.
However, as we have seen, those dynamos would only be oscil-
latory if the polar regions can be regarded as highly conducting;
see Sect. 3.1.1. There may be alternative possibilities for ob-
taining oscillatory solutions to the α2 dynamo. One possibility
is to study the effect of decreasing the (microphysical) magnetic
diffusivity even further. Another possibility is to study the
memory effect, which has recently been identified as a means
to facilitate oscillatory behaviour (Rheinhardt & Brandenburg
2012), although so far only decaying solutions have been found
to be modified in that way (Devlen et al. 2013). However, under
suitable conditions such solutions can indeed become oscillatory
(Rheinhardt et al. 2014) and may present a possible solution to
the problem where equatorward motion obtained via varying
the α profile with a = (0, 0, 1), for example, is limited to certain
latitudes.
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