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ABSTRACT
We use high resolution direct numerical simulations (DNS) to show that helical turbulence can
generate significant large-scale fields even in the presence of strong small-scale dynamo action.
During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-
invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian
& Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power
at small k in the negatively polarized component of the energy spectrum for a forcing with
positively polarized waves. Its strength B, relative to the total rms field Brms, decreases with
increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important,
the field generated by the unified dynamo orders itself by saturating on successively larger
scales. The magnetic integral scale for the positively polarized waves, characterizing the small-
scale field, increases significantly from the kinematic stage to saturation. This implies that
the small-scale field becomes as coherent as possible for a given forcing scale, which averts
the ReM-dependent quenching of B/Brms. These results are obtained for 10243 DNS with
magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, B/Brms grows from about
0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10,
B/Brms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that
there is a unified large/small-scale dynamo in helical turbulence.

Key words: dynamo – magnetic fields – MHD – turbulence – Sun: general – galaxies: magne-
tic fields.

1 IN T RO D U C T I O N

Astrophysical systems like stars and galaxies host magnetic fields
that are coherent on the scale of the system itself. These fields are
thought to arise due to the action of a turbulent dynamo, whereby
helical turbulence combined with shear amplifies and maintains
fields coherent on scales larger than the scales of random stirring.
Indeed, the scales of the stirring like convective scale in the Sun
or the supernova-induced turbulent scales in galaxies, are much
smaller than the coherence scale of the large-scale field. A dynamo
which amplifies fields on scales larger than that of the stirring is
referred to as a large-scale or mean-field dynamo.

There are two major potential difficulties associated with mean-
field dynamos. One is that small-scale helical fields which are pro-
duced during mean-field dynamo action, due to magnetic helicity
conservation, go to quench the dynamo. Thus, they have to be elim-
inated from the dynamo active region by some form of magnetic
helicity flux, to avoid such quenching (Brandenburg & Subramanian
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2005; Brandenburg, Sokoloff & Subramanian 2012; Blackman
2015). Equally important is the fact that, while mean-fields are
being generated, the same turbulence, for a large enough magnetic
Reynolds number, ReM, also generically lead to the small-scale
or fluctuation dynamo. The fluctuation dynamo rapidly generates
magnetic fields coherent on scales of the order of or smaller than
the outer scales of the turbulence, and in principle, at a rate faster
than the mean fields (Kazantsev 1968; Kulsrud & Anderson 1992;
Subramanian 1999; Haugen, Brandenburg & Dobler 2004;
Schekochihin et al. 2004; Brandenburg & Subramanian 2005;
Tobias, Cattaneo & Boldyrev 2011; Brandenburg, Sokoloff &
Subramanian 2012). The question then arises as to whether and
how the mean-field dynamo operates in the presence of such rapidly
growing magnetic fluctuations.

This issue was partially addressed by Subramanian & Branden-
burg (2014, hereafter SB14), through direct numerical simulations
(DNS) and by analysing the Kazantsev (1968) model, focusing on
the kinematic regime. They showed that in this regime, the magnetic
energy spectrum grows as an eigenfunction, i.e. at each wavenumber
k the spectrum grows with the same growth rate. Nevertheless, there
is indeed evidence for this large-scale field generation in the
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horizontally averaged large-scale field, which can also be seen as
excess power at small k in one of the oppositely helically polarized
components. However, they also found that the relative strength of
the large-scale or mean-field component compared to the rms field,
in the kinematic stage, decreases with increasing ReM like Re−3/4

M

for larger values of ReM. From both an analysis of the Kazantsev
model including helicity (Kazantsev 1968; Vainshtein & Kichati-
nov 1986; Subramanian 1999; Boldyrev, Cattaneo & Rosner 2005)
and the DNS, SB14 showed that this is a result of the magnetic
energy spectrum peaking on small resistive scales even in the pres-
ence of helicity. If such a feature persisted on saturation, it would be
difficult to explain the prevalence of large-scale fields. Of course,
as the dynamo-generated field grows, the Lorentz force will be-
come important, first at small scales, and saturate the growth of
small-scale fields. It is then important to determine whether the
mean-field dynamo can continue to grow large-scale fields as the
fluctuation dynamo saturates. And can this large-scale field become
more dominant at saturation, independent of ReM? Our aim in this
paper is to answer these questions.

For this purpose we have run DNS of magnetic field growth in
helically driven turbulence in a periodic domain, with resolutions up
to 10243 mesh points. These simulations are designed to adequately
capture the dynamics of scales both smaller and larger than the
forcing scale, and run from the kinematic regime to non-linear
saturation. The next section presents the simulations that we have
carried out to use for our analysis. Section 3 sets out the results of
our analysis to determine the evolution of both the large- and small-
scale fields generated by helical turbulence. Section 4 presents a
discussion of these results and the last section, our conclusions.

2 SI M U L AT I N G L A R G E - S C A L E DY NA M O S

To study the growth of the large-scale or mean-field dynamo in the
presence of a small-scale or fluctuation dynamo, we have run a suite
of simulations of helically driven turbulence using the PENCIL CODE1

(Brandenburg & Dobler 2002; Brandenburg 2003). The continuity,
Navier-Stokes and induction equations are solved in a Cartesian
domain of a size (2π)3 on a cubic grid with N3 mesh points, adopt-
ing triply periodic boundary conditions. The fluid is assumed to be
isothermal, viscous, electrically conducting and mildly compress-
ible. The governing equations are given by

D

Dt
ln ρ = −∇ · u, (1)

D

Dt
u = −c2

s ∇ ln ρ + 1

ρ
J × B + Fvisc + f , (2)

∂

∂t
A = u × B − ημ0 J . (3)

Here ρ is the density related to the pressure by P = ρc2
s , where

cs is speed of sound. The operator D/Dt = ∂/∂t + u · ∇ is the
Lagrangian derivative, where u is fluid velocity field. The induction
equation is being expressed in terms of the vector potential A, so
that B = ∇ × A is the magnetic field, J = ∇ × B/μ0 is the current
density and μ0 is the vacuum permeability (μ0 = 1 in the DNS).
The viscous force is given as Fvisc = ρ−1∇ · 2νρS, where ν is the
kinematic viscosity, and S is the traceless rate of strain tensor with
components Sij = 1

2 (ui,j + uj,i) − 1
3 δij∇ · u. Here commas denote

partial derivatives. The forcing term f = f(x, t) is responsible for

1 https://github.com/pencil-code

Table 1. Summary of runs discussed in this paper. Here the values of urms

are from kinematic phase, whereas Brms and B refer to values from the
saturation phase after ∼624 eddy turnover times for Runs A, B, and C and
after ∼463 eddy turnover times for Runs D, E, and F; the eddy turn over
time is given by 1/(urmskf).

Run PrM ReM urms Brms B B/Brms N3

A 0.1 330 0.135 0.085 0.033 0.38 10243

B 0.1 160 0.130 0.092 0.046 0.49 2563

C 0.1 65 0.130 0.092 0.055 0.59 2563

D 10 3375 0.135 0.078 0.017 0.22 10243

E 10 1575 0.126 0.072 0.019 0.27 2563

F 10 665 0.133 0.082 0.026 0.32 2563

generating turbulent helical flow. The forcing is maximally helical as
described in SB14. In Fourier space, this driving force is transverse
to the wavevector k and localized in wavenumber space about a
wavenumber kf. It drives vortical motions in a wavelength range
around 2π/kf, which will also be the energy carrying scales of the
turbulent flow. The direction of the wavevector and and its phase
are changed at every time step in the simulation making the force
δ-correlated in time; see Brandenburg (2001), Haugen et al. (2004),
Subramanian & Brandenburg (2014) for details.

For all our simulations, we choose to drive the motions at a
wavenumber kf = 4. This choice is motivated by the fact that we
wish to resolve both the small-scale magnetic field structures in any
turbulent cell and at the same time include scales larger than the flow
(with k < kf). The strength of the forcing is adjusted so that the rms
Mach number of the turbulence, urms in the code (where velocity
is measured in units of the isothermal sound speed), is typically
about 0.1. This small value implies also that the motions are nearly
incompressible. We define the magnetic and fluid Reynolds number
respectively by ReM = urms/ηkf and Re = urms/νkf , where η and ν

are the resistivity and viscosity of the fluid. The magnetic Prandtl
number is defined as PrM = ReM/Re = ν/η.

For the simulations reported here we take PrM = 0.1 and PrM =
10; the former value was used in most of the DNS in SB14. This
was motivated by the fact that for such small values of PrM, the
non-helical small-scale dynamo was expected to be much harder
to excite (Iskakov et al. 2007), which would then provide a better
chance of seeing evidence for the large-scale field in the kinematic
stage. SB14 however found an efficient small-scale dynamo even
for PrM = 0.1. This is related to the fact that in SB14 the forcing
wavenumber was chosen to be kf = 4, while in the earlier work
of Iskakov et al. (2007) it was between 1 and 2. Furthermore, the
disappearance of the small-scale dynamo for kf = 1.5 is related to
the bump in the spectrum near the dissipation wavenumber, which
is known as the ‘bottleneck phenomenon’ (Falkovich 1994). In
the non-linear regime, however, this bump is suppressed by the
magnetic field and therefore the strength of the small-scale dynamo
is nearly independent of PrM (Brandenburg 2011). As we would
like to compare with the kinematic results of SB14 and extend it
to the non-linear regime, we consider first the value of PrM = 0.1.
For both values of PrM, we have studied a range of ReM. The
fiducial simulation of a helical dynamo considered in this paper
has a resolution of 10243 mesh points and ReM = 330 (hence Re =
3300), which we from now on refer to as Run A. The other run
with a similar resolution of 10243 mesh points has PrM = 10 and
is referred to as Run D. A summary of different runs used in this
paper is given in Table 1.

A quantity that was also evaluated in the DNS of SB14 and which
helps to understand how the growth rate of the fluctuation dynamo
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242 P. Bhat, K. Subramanian and A. Brandenburg

Figure 1. Evolution of EM(k, t) for Run A (solid black lines) together with
EK(k, t) (dotted blue), with the final curve in solid blue. The spectra are at
regular intervals of 100 code time units, starting at t = 100.

changes as compared to the mean-field dynamo is the growth rate
as a function of k, λ(k), of the magnetic energy residing in each k
defined in the following manner. We first extract the evolution of
magnetic energy at a given k, Mk(t) from EM(k, t) and perform a
running average with a suitable window, to smooth the evolution
curve, Mk(t). This window is chosen such that the smoothing reduces
the noise sufficiently but at the same time does not produce any new
false features in the curve. Subsequently, to determine λ, we take
the logarithmic derivative given by

λ = 1

Mk(t)

dMk(t)

dt
. (4)

We determine the λ for each k, to obtain λ(k).

3 R ESULTS

We first consider the results from one of our higher resolution
simulations of a turbulent helical dynamo with 10243 mesh points
(fiducial Run A) from the kinematic stage up to non-linear satura-
tion. Most of our results have been obtained using the spectral data
from the DNS.

3.1 The evolution of spectra

In Fig. 1, we show the evolving kinetic and magnetic energy spec-
tra, EK(k) and EM(k), of the helically driven dynamo, in dotted
blue and solid black lines, respectively. For a maximally helical
velocity field, the mean-field α2 dynamo in a periodic box, is ex-
pected to grow fields initially at a wavenumber k = kf/2 = 2 (see
Brandenburg, Dobler & Subramanian 2002 and SB14), which will
then move to even larger scales (smaller k) in the saturated state
(Brandenburg 2001). On the other hand, the fluctuation dynamo
is expected to be active at scales equal to and below the forcing
scale (larger wavenumbers). In the early kinematic stage, a single
common eigenfunction is seen growing in a self similar manner,
with the magnetic energy spectrum EM(k, t) increasing towards the
smaller resistive scales. This is similar to what is seen in the DNS
of large-scale dynamo action by SB14, during the kinematic stage.
Also the slope of EM(k) is close to k7/6, which agrees with a result
derived by SB14 using Kazantsev model including helicity.

Figure 2. Evolution of Mk(t) for k = 1, 4, 50, 200, and 500 has been shown
for Run A.

At late times, when the dynamo saturates, the slope of EM(k, t) as
a function of k flattens first, with the peak of the spectrum shifting
secularly to smaller and smaller wavenumbers (larger and larger
scales). The subsequent saturated spectra develop two peaks, one
at the forcing scale and another at the largest scale or smallest
wavenumber, k = k1 = 1.

To make this saturation behaviour clearer, we show for Run A
in Fig. 2 the evolution of magnetic energy residing in different
scales. The evolution of Mk is shown for wavenumbers k = 1, 4,
50, 200, and 500. It can be seen that Mk first grows almost expo-
nentially with similar slopes for all k in the kinematic stage, before
saturating. For higher wavenumbers, Mk stops growing and turns to
saturate at lower strengths, and earlier than magnetic energy at lower
wavenumbers. The M4 and M50 modes (dotted blue and dashed blue
lines), turn to saturate at around t = 525 and 450, respectively, as
compared to M1 in solid black, which has not saturated even at
late times. In fact, the M1 mode, which reflects the operation of the
large-scale dynamo, is seen to be still growing, and has a distinc-
tive positive slope compared to the saturated flatter curves at other
wavenumbers.

A similar picture is seen also for Run D (PrM = 10), as shown
in Fig. 3. Here, the growth rate is much larger than for Run A
(PrM = 0.1). This is because for PrM > 1 (and also large ReM),
first, the smallest eddies whose scale-dependent ReM is greater than
the critical value for small-scale dynamo action, have a shorter
turnover time. Secondly, the larger value of ReM for Run D (by an
order of magnitude, compared to the PrM = 0.1 run), could make
the dynamo in that run more efficient – even for a similar eddy
turnover rate. Thus, the helical dynamo in Run D turns to saturate
at a much earlier time compared to Run A. As is well known start-
ing from the work of Brandenburg (2001) (see also Brandenburg
& Subramanian 2005; Brandenburg et al. 2012; Blackman 2015
for reviews), this growth of large-scale field requires small-scale
helicity to be lost from the system. In the present context of a com-
pletely homogeneous dynamo with uniform energy density of the
large-scale field, such a loss is purely due to resistivity, whereas
more realistically it would be aided by helicity fluxes out of the
dynamo active region. Nevertheless, the magnetic field evolution
reflected in Figs 1 and 2 goes to show that even after the fluctuation
dynamo saturates, the mean-field dynamo continues to grow
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Figure 3. Evolution of Mk(t) for k = 1, 4, 10, 50, and 200 has been shown
for Run D.

large-scale fields, provided also that small-scale magnetic helicity
can be lost.

An interesting behaviour to note is that the M1 mode is growing
together with all other modes at about the same rate and turns off to
saturate almost along with M4. From this a picture emerges where
there is one unified large- and small-scale dynamo in such helical
turbulence (Subramanian 1999), which simply grows fields on all
scales together, and saturates at successively larger and larger scales
(smaller and smaller wavenumbers). We return to this idea below.

3.2 Polarization spectra and wavenumber dependent
growth rate

For the large-scale dynamo action which arises in helical turbulence,
the turbulent emf, in a two-scale model, is expected to generate op-
positely signed small- and large-scale magnetic helicities. Thus,
one way of distinguishing large- and small-scale fields would be
to compute spectra from the field split into positively and nega-
tively polarized components, defined as (Brandenburg et al. 2002;
Brandenburg & Subramanian 2005)

E±
M(k, t) = 1

2

[
EM(k, t) ± 1

2 kHM(k, t)
]
. (5)

This would enable one to see a clearer signature of the large-scale
field and its evolution from the kinematic stage to non-linear satu-
ration. In the top panel of Fig. 4, we show for Run A the spectrum
of the two oppositely polarized field components (depending on he-
licity), E±

M(k, t), at three times, t = 200, 500, and 900. The spectra
of the negatively polarized field, E−

M(k, t), are shown as solid lines
and those of the positively polarized field are shown as dotted lines.
Also the continuous ordering of the field, and the continued growth
of large-scale field even when the small-scale field saturates, can
also be seen by examining the wavenumber-dependent growth rate,
λ(k). In the bottom panel of Fig. 4, the growth rates λ(k) corre-
sponding to E±

M(k, t) have been plotted. The black curves in both
panels are at t = 200, in the kinematic stage. We see that at this
time λ(k) is nearly uniform across k in both polarized components,
indicating in the presence of an eigenfunction which is growing at
the same rate at all scales, both large and small. This can also be
seen from Fig. 5. We see that both polarized spectra extend over all
k, and in fact overlap at large k, indicating that the magnetic field
has little helicity on such large k. However even at this time, there

Figure 4. In the top panel, spectra of E−
M for Run A are in solid curves and

E+
M are in dotted curves at three times, t = 200, 500, and 900. In the bottom

panel the corresponding growth rate, λ(k) is shown.

Figure 5. Growth rate λ(k) for Run A as a function of k at times t = 200,
300, 400, and 500.

is an excess of power in the negatively polarized field at small k,
indicating the presence of a large-scale field due to the mean-field
dynamo, as also found in SB14.

The blue curves at t = 500, in the top panel, show that the neg-
atively polarized (large-scale) field (given by the solid line) near
small k is starting to rise above the rest of the spectrum. Corre-
spondingly we see from the bottom panel that the growth rate of
the negatively polarized large-scale field component (solid curve)
peaks at small k, whereas that of the positively polarized field (the
dotted line) peaks at around k = 4. Furthermore, there is a decrease
in λ for the rest of the spectrum. This can also be noted from Fig. 5,
where the λ(k) at t = 500 for large k had decreased significantly as
compared to when t = 200 or t = 300. Note that the peak in λ(k) at
k = 2 for the negatively polarized component, is consistent with the
expectation that a fully helical α2 mean-field dynamo grows fields
at k = kf/2.

Therefore, at these later times, there is no longer a growing eigen-
function. Instead, the field is beginning to order itself both on large
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Figure 6. Evolution of the integral scale L+
int for Runs A, B, and C. In

the inset, their respective normalized saturated final magnetic spectra are
shown.

scales (due to the helical large-scale dynamo) and also now on
the forcing scale (due to the small-scale dynamo modified by the
Lorentz force). Finally, at t = 900, shown as the red curves, the
energy in the large-scale fields (E−

M(k, t) given by the solid line)
shows a peak at k1 as seen in the top panel. In the bottom panel,
we see that the growth rate for both polarizations are close to 0, but
the negatively polarized large-scale field (solid curve) still shows
a positive λ at small k. Thus, at this time the small-scale field has
saturated, but the large-scale field continues to grow in the presence
of a saturated small-scale dynamo (albeit due to the loss of helicity
through resistivity; see below).

3.3 Evolution of the small-scale field coherence

As our work is focused on the evolution of the large-scale field in
the presence of growing small-scale fields, it is also of interest to
examine the evolution of coherence properties of the small-scale
field. It is well known that the non-helically driven fluctuation dy-
namo generates fields whose power is concentrated on resistive
scales in the kinematic stage. We have seen from our DNS (and
from the work of SB14) that this continues to hold even when the
turbulence is helical. In fact, in the kinematic stage, the spectrum
is dominated by power which is concentrated at resistive scales due
to the fluctuation dynamo. For a high-ReM system, if such a fea-
ture persisted in saturation, the prevalence of a mean field would
be questionable. Thus, it is important to investigate whether for a
high-ReM system, there is a shift of magnetic energy from resistive
scales to larger scales closer to the stirring scale on saturation. To
address this question, we show in Fig. 6, the time evolution of the
integral scale of the positively polarized spectrum (which is pre-
dominantly the small-scale field), for Run A. Similar results were
obtained if we define the energy spectrum of the small-scale field to
be EM(k, t) with k > kf. This integral scale, defined here separately
for positively and negatively polarized components, is given by

L±
int(t) =

∫
(2π/k)E±

M(k, t)dk
∫

E±
M(k, t)dk

. (6)

In the following, we are particularly interested in L+
int(t), which

characterizes the small-scale part of the field. In Fig. 6, the integral
scale for the fiducial high resolution Run A is shown as a solid black

Figure 7. Evolution of the integral scale L+
int for Runs D, E, and F. In the

inset, their respective normalized saturated final magnetic spectra are shown.

line. We also show the results from two lower resolution runs, Runs
B and C, with PrM = 0.1. In Fig. 7, we show the results from Runs
D, E, and F, all of which have PrM = 10.

For the fiducial run, we see that the integral scale is roughly
constant at L+

int ∼ 0.17 during the kinematic stage, reflecting the
fact that the positively polarized field grows as an eigenfunction
during this stage, with a small coherence scale. However, as the
Lorentz force becomes important, L+

int(t) begins to increase rapidly.
This process begins at t ∼ 400, which is also the time when the
large k modes (k > 50) stop growing (see Figs 1 and 2). This
rapid increase stops at t ∼ 600 and L+

int ∼ 0.8, when the small-
scale field modes with k = kf have largely saturated. There is then
a subsequent slower rise of L+

int to ∼0.9, as the large-scale field
starts to dominate. Thus, there is considerable increase (by more
than a factor 5) in the integral scale of the small-scale field from the
kinematic to the saturated state. This factor is higher than that of ∼3
seen for fluctuation dynamo in the purely non-helical case, albeit
for PrM = 1 (Bhat & Subramanian 2013). In the case of PrM = 10,
as for Run D, L+

int increases from a value of ∼0.075 in the kinematic
stage to ∼0.6 at saturation, which is an increase by a factor of ∼8.

Similar evolutions are also seen at lower ReM. However here L+
int

is larger even in the kinematic state (reflecting the smaller resistive
wavenumber for a lower ReM). And L+

int also saturates at a larger
value for a lower ReM, reflecting the fact that the spectrum cuts off
at smaller k for lower ReM. This latter feature can be seen from the
normalized spectra shown in the inset of Fig. 6. Also note that, even
though the saturated L+

int is slightly different for Runs A, B, and C, in
all three cases, the peak power for the saturated small-scale dynamo
is always at the forcing scale, kf = 4. In fact, one can also compare
the L+

int obtained for our fiducial run with that expected for a small-
scale field coherent on the scale of forcing. Suppose we modelled
the spectrum of this field as E+

M = M0(k/kf )2 for k < kf and E+
M =

M0(k/kf )−5/3 for k > kf, then one gets L+
int = 0.6(2π/kf ) = 0.94,

which compares reasonably well with that obtained in our highest
resolution run. Thus, it appears that, on saturation, the small-scale
field at the given forcing scale has become almost as coherent as
possible. Note that, if the power in the small-scale fields were still
at resistive scales, any peak in EM(k, t) at k = 1 would have made
negligible contribution to Brms. Therefore, the above result provides
some assurance that, even in high ReM systems, the large-scale field
can indeed be significant and reveal itself on saturation.
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Figure 8. Evolution of the integral scale, L−
int, of the negatively polarized

E−
M(k) characterizing the large-scale dynamo, is shown for Runs A, B, and

C, corresponding to ReM = 330, 160, and 65, respectively.

In the Fig. 8, we also show the evolution of L−
int (for the large-

scale field) for the runs with PrM = 0.1. In the kinematic regime,
these curves are only slightly higher in amplitude compared to the
corresponding L+

int curves in Fig. 6, thus indicating the slight excess
in energy at large scales. Around the same time as L+

int, the L−
int

curves start increasing to higher values. For Run A, L−
int increases

from 0.17 to a value of 2.5 which is about factor of 3 larger than
the final L+

int. The difference in the final values between the three
curves for different ReM is because the large-scale fields are still
growing due to resistive dissipation of small-scale helicity.

3.4 Growth of the large-scale field

We define the strength of the large-scale field B(t), by integrating
the energy spectrum EM(k, t) between k = 1–2 and equating this to

B
2
/2. The ratio of strength of this large-scale field relative to the

rms field B(t)/Brms is shown in Fig. 9 evolving from the kinematic
stage to non-linear saturation, for Runs A, B, and C. For the fiducial
Run A, shown as a solid black line, B/Brms ∼ 0.04–0.05 in the
kinematic stage. This is a factor 2 larger than B/Brms determined
by SB14 (Fig. 6) on the basis of the mean power in horizontally
averaged fields. However we find that in the kinematic stage, the
ratio B/Brms in fact decreases with ReM approximately as Re−3/4

M ,
which agrees with the scaling found by SB14 for the horizontally
averaged mean field.

The ratio B/Brms begins to increase rapidly once the small-scale
field starts saturating, at t ∼ 400 for Run A. This reflects the fact
that, while the large k modes saturate, the k = 1, 2 modes which
determine B, continue to grow due to large-scale dynamo action.
This can also be seen explicitly in the inset of Fig. 9, where Brms in
solid black turns to saturate at around t = 400 while B in dashed blue
continues to grow, again reflecting the continued efficiency of the
mean (large-scale) field dynamo even when the fluctuation dynamo
begins to saturate. Finally, after t = 600, this ratio enters a phase of
slower growth; at this stage basically the large-scale field becomes
more and more dominant as the helicity of the small-scale field is
lost due to resistive dissipation. Note that, although larger k modes
begin to saturate by t = 400 as was seen earlier also in Fig. 2, modes
closer to the forcing scale (for example the mode in M4, also shown

Figure 9. The ratio B/Brms is evolving with time, for Runs A, B, and C.
In the inset panel, for Run A, the three curves of Brms(t), B(t) and

√
kMk

for k = 4 are shown separately, where the latter two curves are scaled by a
constant to make all curves overlap in the kinematic stage.

Figure 10. The ratio B/Brms is evolving with time, for Runs D, E, and F.

again in dashed red in the bottom panel of Fig. 9) are growing at
the same rate as the modes in k = 1, 2 between t = 400 and 500 and
they turn to saturate at nearly the same time, thus reinforcing the
picture of a unified dynamo. But from t = 600 onwards, while the
modes equal to k = 4 and larger saturate completely, the k = 1, 2
modes continue to grow on resistive time-scales. By the end of our
run we have B/Brms ∼ 0.4, for the fiducial run. The lower ReM

runs develop an even higher value of B/Brms ∼ 0.5 and 0.6, for
ReM = 160 and 65, respectively. This larger B/Brms for lower ReM

arises because the resistive dissipation of helicity is more important
in these cases.

We show the evolution of the ratio B/Brms also in the case of
PrM = 10 in Fig. 10 for Runs D, E, and F. Here again the ratio
B/Brms increases dramatically from the kinematic to the saturation
regime. We can assess how the scaling of the ratio B/Brms versus
Reζ

M changes from the kinematic to the saturation regime. In the
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former case of PrM = 0.1, ζ changes from a value of ∼−0.75 in
the kinematic phase to ∼−0.2 during saturation. In the case of
PrM = 10, the kinematic phase is rather short in the current runs,
but one can see that ζ again tends to a small value of about −0.2 upon
saturation. The small residual ReM dependence of B/Brms is also
expected to disappear in the final saturated state of the α2 dynamo,
where one expects this ratio to tend towards (kf/k1)1/2, provided the
small scale helicity can be lost effectively (Brandenburg 2001). In
the current simulations as the helicity is only lost resistively, this
has not yet occurred. All in all, we see that a significant large scale
field can be generated even in the presence of an active fluctuation
dynamo. By the time they saturate the curves come closer together
indicating that the mean field is dominant now.

4 D ISCUSSION

Using high resolution DNS, we have shown that, for helical tur-
bulence at large ReM, the mean-field dynamo works efficiently to
generate significant large-scale fields – even in the presence of a
strong fluctuation dynamo. It appears that there is only one unified
large/small-scale dynamo in such helical turbulence where initially
fields on all scales grow together, and when the Lorentz force be-
comes important, successively larger scales saturate.

4.1 Shape-invariant growth of the spectrum

As in SB14, we find that in the kinematic stage the spectrum grows
as a shape-invariant eigenfunction of the helical dynamo, peaked
at small scales (or large k). There is clear evidence for a large-
scale field even at this stage, seen as excess power at small k in the
negatively polarized component of the energy spectrum. However,
the ratio of the strength of this large-scale field to the rms field
decreases with increasing ReM. This is due to efficient fluctuation
dynamo action, which amplifies power at small (nearly resistive)
scales. The question then arises whether, in the presence of a fluctu-
ation dynamo, the large-scale field can grow to a significant fraction
of the rms field – at least when the dynamo saturates.

4.2 Scale-dependent saturation of the unified dynamo

We show from the evolution of the spectra (Figs 1 and 2) that, as
the field grows, small scales (large k modes, k > 4) saturate first,
but the large-scale field (with k = 1) continues to grow at about
the same rate as the k = 4 mode, even when this happens. This
can be seen by examining the wavelength-dependent growth rate
of both the differently polarized components (Fig. 4) and the total
field (Fig. 5). These λ(k) start out as being independent of k in the
kinematic stage, but progressively decrease to zero, first at large k
and then at smaller and smaller k. This saturation behaviour where
small scales saturate first and then larger and larger scales saturate,
remains qualitatively unchanged for PrM = 10, even though the
small scale dynamo is more efficient, as can be seen in Fig. 3.

4.3 Increase of small-scale field coherence

At the end of our simulation, the spectra displays two peaks, one at
the forcing wavenumber kf, and the other at k = 1. Therefore the
back reaction due to the Lorentz force has enabled the small-scale
field coherence to increase from small scales to the forcing scale,
and at the same time allowed the large-scale field to develop.

The first feature can also be seen from Figs 6 and 7, where
we show the evolution of the integral scale L+

int of the positively

polarized component (identified with the small-scale field). For our
fiducial Run A (PrM = 0.1), we show that L+

int evolves from a value
of ∼0.17 in the kinematic stage to L+

int ∼ 0.9 upon saturation, a
significant fraction of the forcing scale (2π/kf). Also in the case of
PrM = 10, as in Run D, L+

int increases by a factor of ∼8. In fact,
through non-linear saturation, the small-scale field has become as
coherent as possible for the given forcing scale.

4.4 Significant growth of large-scale field upon saturation

The growth of the large-scale field to significant levels, even in the
presence of the fluctuation dynamo, was also shown by considering
the time evolution of B/Brms (see Figs 9 and 10). This ratio, in the
case of PrM = 0.1, starts from a small value of ∼0.04 during the
kinematic stage, but at the end of our run, we obtain a significant
large-scale field with B/Brms ∼ 0.4. A large increase in this ratio in
seen for also Runs D, E, and F with PrM = 10. The growth of the
ratio in Run A occurs in two stages. First between t ∼ 400–600 there
is a rapid growth of B/Brms as the fluctuation dynamo saturates. It
appears that the non-linear ordering effects of the Lorentz force that
saturate the small-scale fields, still allow growth of progressively
larger scale fields, including scales larger than the forcing scale at
k < 4. For t > 600, there is a slower growth of B/Brms presumably
driven by the resistive dissipation of the small-scale helicity. It
would be interesting to ask if, in very large ReM astrophysical
systems, the effect of this resistive dissipation of small-scale helicity
can also be achieved by having instead magnetic helicity fluxes
(Blackman & Field 2000; Kleeorin et al. 2000).

4.5 Quantum mechanical analogy

It may be instructive to think in terms of the Kazantsev model
incorporating helicity (Subramanian 1999; Boldyrev et al. 2005;
Subramanian & Brandenburg 2014), where the dynamo problem is
mapped to a quantum mechanical potential problem, with growing
small-scale dynamo modes mapped to bound states in the potential
and with helicity allowing for tunnelling to have enslaved large-
scale field correlations with the same growth rate. The effect of the
Lorentz force could be to make the potential well at the small scale
k−1

f to become shallower, allowing for only the marginally bound
state to exist, while still having sufficient depth at the large scale
k−1

1 , to allow the tunnelling free-particle states to grow.
Such behaviour is indeed obtained in a related real-space double-

well potential problem, arising in non-axisymmetric galactic dy-
namos, where the dynamo is enhanced along a spiral (Chamandy,
Subramanian & Shukurov 2013a,b). There the potential wells are
near the galactic centre and the corotation radius of the spiral. The
fastest growing kinematic eigenfunction is largest in the central
regions. But its tail is enhanced along the magnetic spiral, near
corotation radius. However, saturation of the field near the galac-
tic centre, still allows for the field to grow around corotation and
become significant. From our work here, it appears that such a sit-
uation can also be obtained for a double-well potential in ‘scale’
or wavenumber space, when one incorporates non-linear saturation
effects. It would be of interest to demonstrate this also in a non-
linear version of the Kazantsev model, perhaps generalizing the
work of Subramanian (1999); Brandenburg & Subramanian (2000)
to include helicity loss.

4.6 The very limited role of α effect growth rates

In the early days of mean-field dynamo theory, computing linear
growth rates was about the only way different dynamo modes could
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be characterized. In the late 1980s, their limited usefulness be-
came clear. Only the marginally excited case of zero growth rates
remained truly useful. In particular, the dominance of one mode
over the other is entirely determined by non-linearity, and not at all
by differences in their kinematic growth rates (Brandenburg et al.
1989).

Linear growth rates have traditionally also been used to estimate
the time it takes for the large-scale dynamo to reach saturation. The
linear growth rate of the α2 large-scale dynamo is expected to be
much smaller than that of the small-scale dynamo. We have seen
however that all modes grow together in the kinematic stage, and
large-scale modes at k = 1–2 continue to grow at the same rapid rate
even when the small-scale modes (k > 4) saturate. Note that it is the
linear growth rate which has been important in discussions of the
strength of the large-scale field in young galaxies (Kronberg, Perry
& Zukowski 1992; Bernet et al. 2008; Joshi & Chand 2013; Farnes
et al. 2014). Our this work does not really apply to galaxies, where
shear is also important and the magnetic Prandtl number is large,
but it highlights quite clearly that any estimate based on the value
of α, or the value of |α∇�|1/2 in models with differential rotation �

(Beck et al. 1996) must be irrelevant. This was in principle already
recognized by Beck et al. (1994), who invoked a small-scale dynamo
at early times to kick-start the large-scale dynamo at later times.

In galaxies, the turnover time on the integral scale can be as short
as 106 or 107 years, but with fluid Reynolds numbers well above
107, the relevant e-folding time of dynamo growth will be shortened
by a factor of Re1/2 ≈ 3 × 103 or more. Based on this argument,
galactic dynamos may reach saturation first at the smallest eddy
scales, on a time-scale as short as several hundred years. A relevant
limitation of reaching coherent large-scale fields comes only from
the late saturation phase when magnetic helicity fluxes are expected
to play an important role.

5 C O N C L U S I O N S

The results presented here support the idea that large-scale fields can
be efficiently generated even in the presence of strongly growing
fluctuations driven by the fluctuation dynamo. Clearly, the growth
of the larger scale field is aided by the presence of helicity in the
turbulence. But it is not as if there is an α2 large-scale dynamo
independent of the small-scale dynamo; as the growth rate of the
k = 1 mode does not seem to change significantly right from the
kinematic to the non-linear stage. Rather it appears that there is
one unified dynamo, with all scales initially growing together at
one rate, and then the largest scales continuing to grow (aided by
small-scale magnetic helicity loss) as the small-scale fields saturate.

Several extensions of our model can be envisaged. Our dynamo
is a homogeneous one, making catastrophic (resistive) quenching
effects more pronounced. It would therefore be useful to extend our
studies to inhomogeneous systems, for example when there is shear.
In that case, the magnetic energy density of the mean magnetic field,
B2, is no longer constant in space, which leads to a non-uniformity
of the magnetic helicity flux divergence and can thereby alleviate
catastrophic (premature) quenching, as was shown by Hubbard &
Brandenburg (2012). Such models should therefore be studied more
thoroughly. However, as astrophysical systems are all confined in
space with a corona and low-density material outside, it would
be useful to address such systems in some fashion. It would be

interesting to see whether this could remove the slow-down of the
growth caused by total magnetic helicity conservation during the
saturation phase. This would be particularly important in view of
understanding the observed levels of coherent magnetic fields in
young galaxies.
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