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ABSTRACT

Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations
at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from
the negative effective magnetic pressure instability (NEMPI).
Aims. We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations.
Methods. We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H− opacity. The
resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed
gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and
radiation, we ignore turbulence and convection.
Results. Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the
specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong
flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux
concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy.
Owing to the absence of turbulence, the downflows reach transonic speeds.
Conclusions. We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation
of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux
concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations
and homogenize the specific entropy to a stratification that is close to marginal.
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1. Introduction

In a series of a papers, Parker (1974, 1976, 1978) introduced the
idea of hydraulic flux concentrations at the solar surface. Here
the hydraulic device is formed by magnetic flux tubes of varying
sizes and pumping is accomplished by turbulence. In these pa-
pers, he envisaged turbulent pumping (analogous to a water-jet
vacuum pump) as the relevant driver, but other alternatives such
as the negative effective magnetic pressure instability (NEMPI),
first studied by Kleeorin et al. (1989, 1996), are possible and
have also been discussed (Brandenburg et al. 2014).

These tubes can be concentrated further through what is
known as convective collapse (Parker 1978; Spruit 1979). This
process is similar to the onset of convection, which can either
lead to downward or upward motion of the gas inside a verti-
cal flux tube (see also Spruit & Zweibel 1979). In the former
case, following the model of Spruit (1979), this can lead to a so-
called collapsed state in which the field inside the tube increases
from 1270 G to 1650 G. However, the collapsed state is not in
thermal equilibrium, so the system will slowly return to an un-
collapsed state. The detailed model of Spruit (1979) makes use
of a realistic equation of state in which ionization plays an im-
portant role. While this is also the case in our models with partial
ionization effects included, our models are always being pulled

out of dynamical equilibrium by the applied negative effective
magnetic pressure, which is not present in the model of Spruit
(1979).

The flux concentrations of Parker are thought to be just
around 100 km in diameter. Nevertheless, they might still be
relevant for sunspots which can be more than a hundred times
thicker. Indeed, in the cluster model of sunspots, an assembly of
many such smaller tubes are thought to constitute a full sunspot.
Even today, it is still unclear whether sunspots are monolithic
or clustered (see review by Rempel & Schlichenmaier 2011).
Nevertheless, the possibility of downward flows inside sunspots
(as seen in Parker’s models of hydraulic magnetic flux concen-
trations) may be a more universal feature, which has also been
identified as the driving mechanism for producing magnetic flux
concentrations by NEMPI (Brandenburg et al. 2014) and has
also recently been seen at the late stages of flux emergence
(Rempel & Cheung 2014).

In most of the work that invokes NEMPI, an isothermal equa-
tion of state is used. This allows these effects to be studied in iso-
lation from the downdrafts that occur in convection. However, it
is important to assess the effects of thermodynamics and radi-
ation, which might either support or hinder tube formation and
amplification.
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The goal of the present paper is to investigate how down-
ward flows produce flux concentrations in a partially ionized at-
mosphere with full radiative transfer. We model the effects of
an additional negative pressure by imposing an irrotational forc-
ing function which corresponds to a localized gradient force of
the form −∇φ on the righthand side of the momentum equation,
where φ is a localized Gaussian profile function that emulates
the effects of negative effective magnetic pressure in a control-
lable way. By imposing a vertical magnetic field, we force the
resulting flow to be mainly along magnetic field lines. If φ is
chosen to be negative, it corresponds to a negative extra pres-
sure. Horizontal pressure balance then leads to a localized gas
pressure and density increase and, consequently, to a downflow
owing to the weight of this density enhancement. The return flow
closes in the upper parts of this structure. The resulting flow con-
vergence drives magnetic field lines together and thus forms the
magnetic flux concentration envisaged by Parker (1974, 1976,
1978). These flux concentrations are also similar to those seen
in studies of NEMPI with a vertical magnetic field (Brandenburg
et al. 2013, 2014).

We construct hydrostatic equilibrium solutions using a
method similar to that of Barekat & Brandenburg (2014), here-
after BB14. They fixed the temperature at the bottom bound-
ary, which then also fixes the source function for the radiation
field. Here we assume either a generalized Kramers opacity with
exponents that result in a nearly adiabatic stratification in the
deep fully ionized layers, or we use an H− opacity that is es-
timated from the number density of H− ions using the Saha
equation with a corresponding ionization potential (Kippenhahn
& Weigert 1990). For our investigation, we restrict ourselves
to the ionization of hydrogen. This approach was also used by
Heinemann et al. (2007) in simulations of the fine structure of
sunspots.

A general problem in all approaches to time-dependent mod-
els of stellar atmospheres is the large gap between acoustic and
thermal timescales. Their ratio is on the order of the ratio of the
energy flux to ρc3

s , where ρ is the density and cs is the sound
speed. For the Sun, this ratio is less than 10−10 in the deeper
parts of the convection zone (Brandenburg et al. 2005). This
problem was identified long ago (Chan & Sofia 1986, 1989) and
can be addressed using models that are initially in equilibrium
(Nordlund et al. 2009). Another possibility is to consider mod-
ified models with a larger flux such that it becomes possible to
simulate for a full Kelvin–Helmholtz timescale (Käpylä et al.
2013). This is also the approach taken here and it allows us to
construct models whose initial state is very far away from the
final one, as is the case with an initially isothermal model.

2. The model

2.1. Governing equations

We adopt the hydromagnetic equations for logarithmic density
ln ρ, velocity u, specific entropy s, and magnetic vector poten-
tial A, in the form

Dln ρ
Dt

= −∇ · u, (1)

ρ
Du
Dt
= −∇(p + φ) + ρg + J × B + ∇ · (2ρνS), (2)

ρT
Ds
Dt
= −∇ · Frad + 2ρνS2 + ημM J2, (3)

∂A
∂t
= u × B + η∇2 A, (4)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, p is the
gas pressure, g = (0, 0,−g) is the gravitational acceleration, ν is
the viscosity, Si j =

1
2 (ui, j + u j,i) − 1

3δi j∇ · u is the traceless rate-
of-strain tensor and S2 = Si jS ji contributes to the (positive defi-
nite) viscous heating rate, B = B0 + ∇ × A is the magnetic field
with B0 = ẑB0 representing an imposed vertical magnetic field,
J = ∇ × B/μM is the current density, μM is the magnetic vac-
uum permeability (not to be confused with the mean molecular
weight μ, defined below), η is the magnetic diffusivity, and Frad
is the radiative flux. For the equation of state, we assume a per-
fect gas with p = (R/μ)Tρ, whereR = kB/mu is the universal gas
constant in terms of the Boltzmann constant kB and the atomic
mass unit mu, T is the temperature, and the dimensionless mean
molecular weight is given by

μ(ρ, T ) = (1 + 4xHe)/(1 + yH + xHe), (5)

where yH(ρ, T ) is the ionization fraction of hydrogen and xHe is
the fractional number of neutral helium, which is related to the
mass fraction of neutral helium Y through 4xHe = Y/(1 − Y).
In the following, we use the abbreviation μ0 = 1 + 4xHe =
(1 − Y)−1 = X−1, where X is the mass fraction of hydrogen
(ignoring metals). In relating various thermodynamic quanti-
ties to each other, we introduce α = (∂ln ρ/∂ln p)T , which is
a known function of yH, as well as δ = (∂ln ρ/∂ln T )p and the
ratio γ = cp/cv of specific heats at constant volume and pres-
sure, cv = (∂e/∂T )v and cp = (∂e/∂T )p, respectively, which are
known functions of both yH and T ; see Kippenhahn & Weigert
(1990), Stix (2002), and Appendix A. When yH is either 0 or 1,
we have α = δ = 1 and cv = (3/2)R/μ with e = cvT . In general,
however, we have e = (3/2)RT/μ+eH, where eH = yHRTH/μ0 is
the specific energy that is used (released) for ionization (recom-
bination) and TH = χH/kB is the ionization temperature. Using
χH = 13.6 eV for the ionization energy of hydrogen, we have
TH ≈ 1.58 × 105 K.

Instead of solving Eq. (3) for s, it is convenient to solve di-
rectly for T using the relation (Kippenhahn & Weigert 1990)

ρT
Ds
Dt
= ρ

De
Dt
+ p∇ · u = ρcvT

(
Dln T

Dt
+
γ − 1
δ
∇ · u

)
. (6)

The pressure gradient is computed as

1
ρ
∇p =

c2
s

γ
(∇ln ρ + δ∇ln T ), (7)

where cs is the adiabatic sound speed with c2
s = γp/ρα. This

approach allows us to find the ionization fraction of hydrogen
from the Saha equation as

y2
H

1 − yH
=
ρe

ρ

(TH

T

)−3/2

exp
(
−TH

T

)
, (8)

where ρe = μ0mu(meχH/2π�2)3/2 is the electron density.
To compute∇·Frad, we adopt the gray approximation, ignore

scattering, and assume that the source function S is given by the
frequency-integrated Planck function, so S = (σSB/π)T 4, where
σSB is the Stefan–Boltzmann constant. The negative divergence
of the radiative flux is then given by

−∇ · Frad = κρ

∮
4π

(I − S ) dΩ, (9)

where κ is the opacity per unit mass (assumed independent of
frequency) and I(x, t, n̂) is the frequency-integrated specific in-
tensity in the direction n̂. We obtain I by solving the radiative
transfer equation,

n̂ · ∇I = −κρ (I − S ), (10)
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along a set of rays in different directions n̂ using the method
of long characteristics. For the opacity, we assume either a
Kramers-like opacity κ = κ0ρaT b with adjustable coefficients
κ0, a, and b, or a rescaled H− opacity. In the former case, fol-
lowing BB14, it is convenient to express κ in the form κ =
κ̃0(ρ/ρ0)a(T/T0)b, where κ̃0 is a rescaled opacity and is related
to κ0 by κ̃0 = κ0ρa

0T b
0 . With this choice, the units of κ̃0 are inde-

pendent of a and b, and always Mm−1 cm3 g−1 (=10−8 cm2 g−1).
In the latter case we use for the H− opacity the expression
(Kippenhahn & Weigert 1990)

κ = κ0(yH + xZ)(1 − yH)
ρ

ρe−

(TH−

T

)3/2

exp
(TH−

T

)
, (11)

where κ0 = σH−/4μ0mu is a coefficient, σH− = 4 × 10−17 cm2 is
the cross section of H− (Mihalas 1978), xZ = 10−4 is the fraction
of metals, TH− = χH−/kB and χH− = 0.754 eV are the ionization
temperature and energy of H−, and ρe− = μ0mu(meχH−/2π�2)3/2

is the relevant electron density.
An important quantity in a radiative equilibrium model is

the radiative conductivity K = 16σSBT 3/3κρ. According to the
results of BB14, K is nearly constant in the optically thick part.
This implies that ρ ∝ T n with n = (3−b)/(1+a) being effectively
a polytropic index of the model provided n > −1.

For large values of T , the exponential terms in Eqs. (8)
and (11) become unity, and only the terms 1− yH ∝ ρ/T 3/2 from
Eq. (8) and an explicit ρ/T 3/2 term in Eq. (11) remain. Therefore,
κ ∝ ρ2T−3, i.e., a = 2 and b = −3, resulting in a stable stratifica-
tion with polytropic index n = (3 + 3)/(1 + 2) = 2.

To identify the location of the radiating surface in the model,
we compute the optical depth as

τ(x, z, t) =
∫ Lz

z
(κρ)(x, z′, t) dz′. (12)

The τ = 1 contour corresponds then to the surface from where
most of the radiation escapes all the way to infinity. For the forc-
ing function, we assume

φ = φ0e−[x2+(z−z0)2]/2R2
, (13)

where φ0 is the amplitude with a negative value and R the radius
of the blob-like structure.

2.2. Boundary conditions

We consider a two-dimensional (2D) Cartesian slab of size
Lx × Lz with −Lx/2 < x < Lx/2, 0 ≤ z ≤ Lz. We assume the
domain to be periodic in the x direction and bounded by stress-
free conditions in the z direction, so the velocity obeys

∂ux/∂z = ∂uy/∂z = uz = 0 on z = 0, Lz. (14)

For the magnetic field we adopt the vertical field condition,

∂Ax/∂z = ∂Ay/∂z = Az = 0 on z = 0, Lz. (15)

We assume zero incoming intensity at the top, and compute the
incoming intensity at the bottom from a quadratic Taylor ex-
pansion of the source function, which implies that the diffusion
approximation is obeyed; see Appendix A of Heinemann et al.
(2006) for details. To ensure steady conditions, we fix tempera-
ture at the bottom,

T = T0 on z = 0, (16)

Table 1. Summary of 1D runs leading to equilibrium solutions.

Run opacity n T0 ρ0 zτ=1

A (1,−7/2) 3.25 6 × 104 5 × 10−4 7.6
B (1, 0) 1.5 1 × 105 1 × 10−3 8.6
C (1, 1) 1 1 × 105 2 × 10−3 6.8
D H− – 6 × 104 5 × 10−4 7.5
E H− – 1 × 105 2 × 10−3 13.8

Notes. For the opacity we either give the values (a, b) for Kramers
opacity or we indicate H−. All runs are carried out on either 576 or
1152 mesh points. n is the polytropic index, T0 and ρ0 are the initial
bottom temperature and density given in K and g cm−3, respectively,
and zτ=1 is the height where τ = 1. Runs A, B and C were carried out
with and without ionization.

while the temperature at the top is allowed to evolve freely. There
is no boundary condition on the density, but since no mass is
flowing in or out, the volume-averaged density is automatically
constant (see Appendix C of BB14). Since most of the mass re-
sides near the bottom, the density there will not change drasti-
cally and will be close to its initial value at the bottom.

We use for all simulations the Pencil Code1, which solves
the hydrodynamic differential equations with a high-order finite-
difference scheme. The radiation and ionization modules were
implemented by Heinemann et al. (2006). All our calculations
are carried out either on a one-dimensional (1D) mesh with
576 or 1152 points in the z direction or on a 2D mesh with
1152 × 576 points in the x and z directions.

2.3. Parameters and initial conditions

To avoid very large or very small numbers, we measure length in
Mm, speed in km s−1, density in g cm−3, and temperature in K.
Time is then measured in kiloseconds ( ks). We adopt the so-
lar surface value for the gravitational acceleration, which is then
g = 274 km2 s−2 Mm−1 = 2.74 × 104 cm s−2. In most models
we use (a, b) = (1, 0) and κ̃0 = 105 Mm−1 cm3 g−1, which yields
a top temperature of about 10 000 K (BB14). We also present
results using the H− opacity. In both cases, the opacities are low-
ered by 5 to 6 orders of magnitude relative to their realistic val-
ues to allow thermal relaxation to occur within a few thousand
sound travel times. As discussed in BB14, this also leads to a
larger flux and therefore a larger effective temperature. For the
H− opacity, we have applied a scaling factor of 10−6 in Eq. (11).
In all the models we use ν = η = 10−3 Mm km s−1, correspond-
ing to 1010 cm2 s−1. For the radius of the blob we take R = 1 Mm
and for the magnetic field we take B0 = 1 kG.

3. Results

First we run 1D simulations with φ0 = 0 and isothermal initial
conditions using Kramers opacity and H− opacity. A summary of
these runs is listed in Table 1. We use the resulting equilibrium
solutions from the 1D runs as initial conditions for the 2D runs
with φ0 � 0.

3.1. Kramers opacity

As listed in Table 1, for Kramers opacity we use three pairs of
(a, b), (1,−3.5), (1, 0), and (1, 1) in Runs A, B, and C, respec-
tively. In the absence of ionization, the resulting equilibrium

1 https://github.com/pencil-code
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Fig. 1. Comparison of ρ, T , s, yH, γ and cp along each row, top to bottom, from models with (solid, black) and without (dotted, blue) hydrogen
ionization for Runs A, B and C along each column, left to right, and κ̃0 = 105 Mm−1 cm3 g−1. The red dashed line is for a similar model except that
xZ = 0. In the plots of T (z), the filled circles (red) indicate τ = 1.

solutions have an optically thick part that is nearly polytropically
stratified, i.e., ρ ∝ T n, where n = (3 − b)/(1+ a) = 3.25, 1.5 and
1, respectively are the polytropic indices (BB14) for Runs A, B
and C; see Fig. 1. In the outer, optically thin part, the temperature
in all cases is nearly constant and its value is compatible with

(3/4)1/4 ≈ 0.93 times the effective temperature (Mihalas 1978).
For γ = 5/3, a polytropic index of 3/2 corresponds to an adia-
batic stratification. The pressure scale height, Hp = RT/μg, in
the case of n = 1.5 is about 3 Mm in the upper parts of the model
and increases to about 7 Mm at the bottom. In the 2D runs, for
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Fig. 2. Comparison of models with ρ0 = 0.002 g cm−3 (solid), 0.005 g cm−3 (dashed), and 0.01 g cm−3 (dotted lines). Here (a, b) is (1, 0), corre-
sponding to n = 1.5.

the Kramers opacity, we have only used (a, b) of (1, 0), corre-
sponding to n = 1.5.

In Table 1 we also list the height zτ=1 of the photosphere,
where τ = 1. For our models with Kramers opacity, the value of
zτ=1 is around 8 Mm, but comparing the models with T0 = 105 K
and ρ0 = 0.002 g cm−3 using either Kramers or H− opacity
(Runs C or E, respectively), we find that zτ=1 doubles from about
7 Mm to 14 Mm, which is the reason we choose a shallower do-
main for our 2D experiments using H− opacity.

3.1.1. Vertical equilibrium profiles

In Fig. 1 we compare vertical profiles of various thermodynamic
parameters in 1D models with (in solid black) and without (in
dotted blue) partial ionization with φ0 = 0. Both models have
in common that the temperature decreases approximately lin-
early with increasing z and then reaches a constant at a height
where τ = 1 (in the one with ionization); this height is nearly
the same in both cases. By requiring thermostatic equilibrium,
Eq. (3) yields ∇ · Frad = 0, and in the absence of ionization, it
is seen that the solutions for the temperature profiles are linearly
decreasing for τ � 1 and nearly constant for τ 	 1 (BB14).
The inclusion of ionization does not seem to affect the solutions
for temperature profiles much. It can be seen that the polytropic
density-temperature relation, ρ ∼ T n, nearly follows in the op-
tically thick part (τ > 1) across all atmospheres with different
polytropic indices. This is because in the optically thick part, the
degree of ionization, yH remains nearly constant. In our models,
the contribution of xZ is rather unimportant, because yH never
drops to low values-even when xZ = 0; see the red dashed lines
in Fig. 1. The remaining differences in the top layers are presum-
ably still artifacts of using moderate resolution, as we have seen
by comparison with lower resolution calculations which gave
larger discrepancies in the top layers, but identical solutions in
the deeper ones.

In the optically thin part, the models with ionization have
lower densities compared to the models without ionization, thus
increasing the density contrast. The specific entropy in the opti-
cally thick part is stratified according to the respective polytropic
indices (stable when n = 3.25, marginal when n = 1.5, and un-
stable when n = 1; cf. BB14).

Interestingly with ionization, all the entropy profiles in
Runs A, B, and C behave in a similar fashion near and above
the height where τ = 1. Near τ = 1, there is a narrow layer
where the vertical entropy gradient is negative, corresponding to
Schwarzschild-unstable stratification and the possibility of con-
vection. (We confirmed this and comment on it in the end of
the discussion.) It can be seen from Fig. 1 that, on comparing

the specific entropy profiles with the yH profiles, the extrema in
the entropy profiles coincide with the ones in the correspond-
ing yH profiles. This correspondence in the extrema between the
two quantities, specific entropy and degree of ionization can be
shown mathematically. We show in detail in Appendix B that,
using the equation of state, the first law of thermodynamics, and
the Saha ionization equation, for the case of τ� 1,

ds = dyH
R
μ0

[
1
Av

(n − 3/2)
(n + 3/2)

− Bv

]
, (17)

where Av and Bv are coefficients that are defined in Eq. (A.2) of
Appendix A. In the case of τ 	 1, we have

ds = dyH
R
μ0

[
1
Av
− Bv

]
. (18)

From Eqs. (17) and (18), we find that the change in specific en-
tropy is directly proportional to the change in degree of ioniza-
tion and when dyH = 0, then ds = 0. Thus, the extrema in s
directly correspond to extrema in yH.

Interestingly, this kind of correspondence is observed even at
τ ∼ 1 from the Fig. 1 although it is only expected in the regimes
of τ � 1 and τ 	 1, see Eqs. (17) and (18). The hydrogen ion-
ization fraction yH, reaches a minimum of about 0.2 (in Runs A
and B) and about 0.4 (Run C) near the surface, but then increases
again. This is because of a low density and the exponential de-
crease in the upper isothermal layer, leading to larger values of
yH even when T is small. In the Sun, the surface temperatures
are of course smaller still, and therefore yH ≈ 0 can then be
reached. While the specific heats increase outward by a factor of
about five to ten, their ratio, γ, decreases below the critical value
of 5/3.

In Fig. 2 we compare models with three values of ρ0. We
recall that ρ0 is the bottom value of the density of the initially
isothermal model. Since temperature T0 is fixed at the bottom,
the pressure scale height remains unchanged, but since the strat-
ification evolves to a nearly adiabatic one, the density scale
height becomes larger than the pressure scale height, so den-
sity drops more slowly and the bottom density becomes smaller
by about two third; a corresponding expression for this is given
by Eq. (C.5) in BB14. Models with larger values of ρ0 result in
lower surface temperatures and lower degrees of ionization near
the surface. However, for a given number of mesh points the
height of the computational domain has to be reduced for larger
values of ρ0, because the density drops then much faster to small
values. This is just a numerical constraint that can be alleviated
by using more mesh points.
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Fig. 3. Snapshots of Run F3 (fixed ionization, yH = 1) showing tem-
perature (color coded), magnetic field lines, and velocity vectors at two
times before and after the flux concentration develops. The solid yellow
line at z ≈ 9 Mm indicates the τ = 1 surface while the dashed blue line
indicates the height z0 where suction operates.

3.1.2. Two-dimensional models

Next, we consider 2D models with φ0 � 0. The 1D vertical equi-
librium solutions form the initial condition here along z for all x.
A summary of all 2D runs is given in Table 2. We consider first
the case φ0 = −3 × 10−3 g cm−3 km2 s−2 using z0 = 3 Mm for the
height of the blob. In Fig. 3 we show the result for Run F3 (fixed
ionization, yH = 1) at t = 5 ks and 10 ks, while in Fig. 4 we show
the result for Run K3a2 with partial ionization effects included
at t = 1.6 ks and 2 ks.

In both cases (Runs F3 and K3a2 in Figs. 3 and 4), we see
the effects of downward suction. We also see how the magnetic
field lines are being pushed together at a place above the blob
where the return flow tries to replenish the gas in the evacuated
upper parts (compare the flows at t = 5 ks and 10 ks). In the

Fig. 4. Same as Fig. 3, but for variable partial ionization for Run K3a2
at two times just before and after the flux concentration develops.

case of partial ionization (Run K3a2 in Fig. 4), the upper parts
have a strongly negative specific entropy gradient, which leads
to a strong concentration after a short time (t = 1.6 ks), and is
most pronounced at a height considerably above the height of
the blob. Thus, as compared to the case without partial ionization
(Run F3), the inclusion of partial ionization (Run K3a2) causes
the flux concentrations to form at the τ = 1 surface. This is a con-
sequence of the highly unstable stratification just at the surface,
so the resulting flow is primarily a consequence of triggering in-
stability. By contrast, in Run F3 no such instability develops, so
the flow characteristics reflects directly the nature of the driv-
ing. In Run K3a2 at the later time (t = 2 ks), however, when the
magnetic structure has collapsed almost entirely, the converging
inflow has stopped and there are now indications of an outflow.

It is remarkable that at all times, the τ = 1 surface is ap-
proximately flat, so there is no Wilson depression in our models.
To examine whether this is an artifact of the rather small values
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Fig. 5. Temperature versus optical depth and height at different times
through x = 0 (solid lines and a dotted line for the last time) and x =
Lx/2 (dashed lines) for Run K3a2 at times 1.6–1.9 ks.

of opacity in our models, which results in comparatively larger
radiative flux and radiative diffusivity, and therefore horizontal
temperature equilibration, we ran a similar model, using how-
ever only vertical rays in the solution of Eq. (10). However, the
results were virtually identical, suggesting that the absence of
Wilson depression is not connected with the enhanced luminos-
ity of our models that is used to reduce the Kelvin–Helmholtz
timescale.

In Fig. 5 we show for Run K3a2 vertical temperature profiles
though x = 0 (i.e., through the structure) and x = Lx/2 (away
from it) as functions of τ and z. At x = 0, we clearly see that for
τ � 1, the temperature drops progressively below the value at
x = Lx/2. At z = z0, the temperature is below 50 000 K at x = 0,
while at x = Lx/2 we have 80 000 K. For τ < 1, the temperature
is slightly enhanced at x = 0 compared to x = Lx/2. This is
expected, because here the vertical gradient of specific entropy is
positive, corresponding to stable stratification, so any downward
motion would lead to enhanced entropy and temperature at that
position.

In Fig. 6 we show the corresponding temperature and mag-
netic field profiles through a horizontal cut at z = 8 Mm, which
is just beneath the surface. The temperature is reduced at the lo-
cation of the structure, but there is also an overall increase in
the broader surroundings of the structure, which we associate
with the return flow from deeper down. The magnetic field en-
hancement reaches values of the order of about 50 kG (an am-
plification by a factor of 50) in a narrow spike. These structures
are confined by the strong converging return flow. In Fig. 7, we
compare such magnetic field profiles from Runs K3a1, K3a2
and K3a3 which have R = 0.5, 1.0, and 1.5, respectively, as
listed in Table 2. It can be seen that at time t = 1.6 ks, the
flux concentrations in Run K3a1 is still in the initial stages of

Fig. 6. Temperature and vertical magnetic field strength versus x at
different times (1.4–2 ks) through z = 8 Mm for Run K3a2.

Fig. 7. Comparison of vertical magnetic field strength from Runs K3a1,
K3a2 and K3a3 at t = 1.6 ks.

Table 2. Summary of 2D models discussed in this paper.

Run Opacity z0 −φ0 p(z0) max |uz | R

F3 (1, 0) 3 3 × 10−3 1.00 1.1 1.0
K3a1 (1, 0) 3 3 × 10−3 0.94 45 0.5
K3a2 (1, 0) 3 3 × 10−3 0.94 45 1.0
K3a3 (1, 0) 3 3 × 10−3 0.94 45 1.5
K3b (1, 0) 3 3 × 10−4 0.98 40 1.0
H3 H− 3 7 × 10−4 0.06 22 1.0
H10 H− 10 3 × 10−2 0.07 15 1.0

Notes. For the opacity we either give the values (a, b) for Kramers opac-
ity or we indicate H−. φ0 and p(z0) are given in units of g cm−3 km2 s−2,
while max |uz | is given in km s−1.

formation, while for Runs K3a2 and K3a3, the field Bz at x = 0
has already increased to about 8 kG and 40 kG, respectively. This
implies that for smaller values of R, the formation of flux con-
centrations is slower and vice-versa.

The downward speed can become comparable with the local
sound speed; see Figs. 8 and 9, where we compare two cases
with different forcing amplitudes. Nevertheless, in both cases
the speeds are similar. This implies that the vertical motion is
essentially in free fall. To verify this, we note that the speed of
a body freely falling over a distance Δz is vff =

√
2gΔz. Using
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Fig. 8. Vertical velocity at x = 0 versus height at different times (1.6–
1.9 ks) for Run K3a2.

Fig. 9. Similar to Fig. 8, but for Run K3b with 10 times weaker suction.
The red dash-dotted lines shows the profile of sound speed.

Δz = 5 Mm, we find vff ≈ 50 km s−1, which is comparable with
the speeds seen in Figs. 8 and 9. As expected from earlier poly-
tropic convection models with ionization (Rast & Toomre 1993),
the downflow advects less ionized material of lower γ and larger
cp downward; see Figs. 10 and 11. Then again from time evo-
lution plots of s and yH shown in Figs. 10 and 11, we find a
correspondence between the profiles of specific entropy and yH,
as expected according to Eqs. (17) and (18). Not surprisingly,
the suction-induced downflow leads to values of s that, at larger
depths inside the structure, agree with the photospheric values
higher up. However, temporal changes in γ are not as dramatic as
the changes with height. Inside the structure, the specific entropy
has photospheric values also deeper down, and s is nearly con-
stant (about 0.14 km2 s−2 K−1) in the range 3 Mm ≤ z ≤ 9 Mm at
t = 1.9 ks.

3.2. H− opacity

Finally, we compare with models using the H− opacity. Again,
we use here the implementation of Heinemann et al. (2006,
2007), which was found to yield reasonable agreement with re-
alistic opacities.

3.2.1. One-dimensional equilibrium models

In Fig. 12, we give 1D equilibrium solutions as functions of
depth focusing on the top 5 Mm (Run D has a height of 9 Mm,
where we have chosen T0 = 6×104 K). We find a stably stratified
lower part with an unstable part just beneath the τ = 1 surface.

Fig. 10. Degree of ionization and ratio or specific heats versus height,
from Run K3a2.

Fig. 11. Specific entropy and specific heat at constant pressure versus
height, from Run K3a2.

The temperature decreases linearly from the bottom, where K
is seen to be constant, indicating the regime where the diffusion
approximation applies, similar to the other runs with Kramers
opacity. However, close to the τ = 1 surface there is a short
jump (decrease) in the temperature by a factor of ∼2, unlike the
runs with Kramers opacity, where the temperature profile simply
turns from linearly decreasing to a constant value. The temper-
ature profile eventually settles to a constant for z > zτ=1. This
jump in the temperature profile resembles the profile in Fig. 1
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Fig. 12. Profiles of T , s, ρ, yH, κ, and K for Run D, with H− opacity. The red symbol indicates the position of τ = 1.

and Fig. 14 of Stein & Nordlund (1998), where again the jump
is by a factor ∼2 in temperature. It is attributed to the extreme
temperature sensitivity of the H− opacity.

For comparison, we include Run E, for which we have cho-
sen T0 = 105 K and a height of 20 Mm. The value of zτ=1 is then
nearly 14 Mm. Now, however, there is an extended deeper layer
which is stably stratified.

3.2.2. Two-dimensional models

In the 2D model with H− opacity, we chose φ0 = −3 ×
10−3 g cm−3 km2 s−2 with z0 = 3 Mm for the height of the blob.
In Fig. 13, we see that the flux concentrations form much above
the blob location, close to the τ = 1 surface. This is again mainly
due to the negative gradient in entropy just below τ = 1 surface
as seen in Fig. 12. Furthermore, there is a very narrow dip in the
τ = 1 surface in the lower panel of Fig. 13 at t = 1.1 ks, but is
flanked by two peaks, which is due to the return flows.

Owing to the stable stratification of the lower part, the result-
ing speeds are much lower than those in Runs K3a2 and K3b.
As a consequence, the cooling in the temperature profile due to
the downflow of low entropy material, shown in Fig. 14, is de-
creased. Compared to the case of Kramers opacity in Fig. 5, most
of the cooling here takes place to much lesser extent in depth.
This is further limited because the stratification soon becomes
unstable towards larger values of z.

Comparing with the deeper model, where T0 = 105 K
(Run H10, whose equilibrium model was Run E), significant
downflows can only be obtained when we place the blob higher
up (z0 = 10 Mm) and increase the forcing (φ0 = −3 ×
10−2 g cm−3 km2 s−2). This is because of the more extended sta-
bly stratified deeper layer. The maximum downflow speed is
only 15 km s−1.

In reality, of course, strong convection would commence
which would change the stratification in the deeper layers from
stable to marginally stable, or even marginally unstable; see
(Brandenburg 2015) for details. In this sense, the present case
with H− opacity would in practice be close to the case with
marginal background stratification studied in Sect. 3.1.2.

4. Conclusions

The inclusion of partial ionization along with radiative transfer
forms an important step towards bridging the gap between ideal-
ized models of magnetic flux concentrations and more realistic
ones. In this work, we have studied the effects of partial ioniza-
tion firstly in 1D hydrostatic models of the atmosphere in ther-
mal equilibrium and then in 2D hydraulic models of flux con-
centrations. In the radiative transfer module, we have used either
Kramers opacity or H− opacity.

Comparison of the final 1D equilibrium atmospheres with
and without partial ionization shows that, while the solutions do
not differ much in the optically thick part, they are significantly
different in the range 1 < τ < 100, especially with respect to
the specific entropy and density profiles. An interesting feature
is the narrow layer with a negative gradient in specific entropy
close to the τ = 1 surface, which is persistent across different
atmospheres with either Kramers opacity (for any polytropic in-
dex; shown for n = 3.25, 1.5 and 1) or the H− opacity. This
minimum in the s profile is directly connected to the minimum
in yH profile. In fact from Eqs. (17) and (18), it is clear that the
extrema in s correspond to the extrema in yH. This unstable layer
near τ = 1 is important since, in the 2D models, it causes the flux
concentrations to form right at the surface.

In 1D models with H− opacity, the τ < 1 part is stably strat-
ified as expected and here also a narrow unstable layer is seen
close to surface. Due to the extreme sensitivity of the H− opacity
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Fig. 13. Same as Fig. 4, but for Run H3 using the H− opacity with a
scaling coefficient of 10−6.

to temperature, there is a distinctive jump (by a factor ∼2) in the
temperature profile after a prolonged decrease.

To study the effect of partial ionization on hydraulic flux con-
centrations, the model we used employed an artificially imposed
source of negative pressure in the momentum equation. This
work has demonstrated that such a forcing function can lead to
a dramatic downflow that is channeled along vertical magnetic
field lines. A corresponding return flow is produced that con-
verges in the upper parts and draws vertical magnetic field lines
together, which leads to significant magnetic field amplification.
This strong amplification is connected with the high-speed de-
scent of gas. It is much faster than what is expected based on
the artificially applied pumping and it is, in fact, virtually in-
dependent of it. Weaker forcing only leads to a delay in what
later always tends to develop into nearly free fall. We do not ex-
pect such rapid descent speeds to occur in the Sun, because there
the gas is turbulent and will behave effectively in a much more

Fig. 14. Same as Fig. 5, but for Run H3 using the H− opacity with
a scaling coefficient of 10−6. Note the increase in temperature at
z ≈ 8 Mm.

viscous and also more irregular fashion, where downdrafts break
up and change direction before they can reach significant speeds.

In the case of H− opacity, the flux concentrations are weaker
because the deeper parts are stably stratified. Here again, the tur-
bulence would have mixed the gas even before triggering down-
flows, so the background stratification would be more nearly adi-
abatic to begin with. This can be seen clearly from realistic solar
simulations of Stein & Nordlund (1998); see their Fig. 13.

In models without partial ionization, flux concentrations
form just above the height where the forcing function is placed,
whereas in models including partial ionization, such flux con-
centrations form at the surface (where τ = 1). Here the specific
entropy is unstably stratified and tends to drop by a significant
amount. Under the influence of downward suction, this could
still lead to significant descent speeds with a corresponding re-
turn flow as a result of mass conservation. The return flow, in-
stead of closing near the height where the forcing function is
placed, closes at the surface, from where the gas had earlier been
pulled down.

It is surprising that the temperature reduction inside the
downdrafts is rather modest and to some extent compensated for
by the supply of hotter material from the converging return flow.
Thus, the magnetic structure is in our case largely confined by
dynamic rather than gas pressure. Therefore the changes in the
thermodynamic properties across the flux tube are only moder-
ate. As a consequence, the τ = 1 surface remains nearly flat.

In view of applications to sunspots, it would be important
to consider the effects of turbulent convection and its suppres-
sion by the magnetic field. Such effects have been used in the
models of Kitchatinov & Mazur (2000) that could explain the
self-amplification of magnetic flux by a mechanism somewhat
reminiscent of the negative effective magnetic pressure instabil-
ity. In our model, convection would of course develop automati-
cally if we only let the simulation run long enough, because the
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stratification is already Schwarzschild unstable. The degree to
which the resulting convection contributes to the vertical energy
transport should increase with increasing opacity, but with the
rescaled opacities in our models it will be less than in the Sun.

Our findings also relate to the question of what drives turbu-
lence in the bulk of the solar convection zone. Solving just the
radiative equilibrium equations for the solar envelope would re-
sult in a stable stratification, because the standard Kramers opac-
ity with a = 1 and b = −7/2, corresponding to a stable polytrope
with n = 3.25. Yet, those layers are unstable mainly because of
the continuous rain of low entropy material from the top (Spruit
1997; Brandenburg 2015). Clearly, a more detailed investiga-
tion of this within the framework of the present model would
be needed, but this is well outside the scope of the present paper.
Based on the results obtained in the present work, we can say
that the effects of partial ionization and resulting stratification
are of crucial importance for the production of strong magnetic
flux amplifications just near the visible surface.
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Appendix A: Thermodynamic functions

For completeness, we list here the relevant thermodynamic func-
tions as implemented by Tobias Heinemann into the Pencil
Code. We have

cp =

(
5
2
+ ApB2

p

) R
μ
, cv =

(
3
2
+ AvB

2
v

) R
μ
, (A.1)

as well as α = Ap/Av and δ = 1 + ApBp, where

Ap =
yH(1 − yH)

(2 − yH)xHe + 2
, Bp =

5
2
+
χH

kBT
,

Av =
yH(1 − yH)

(2 − yH)(1 + yH + xHe)
, Bv =

3
2
+
χH

kBT
·

(A.2)

Appendix B: Effect of partial ionization
on entropy profile

On differentiating the equation of state, p = RTρ/μ, we have,

dp =
RT
μ

dρ +
ρR
μ

dT − ρRT
μ2

dμ. (B.1)

Then we express dμ in terms of dyH using Eq. (5),

dp =
ρRT
μ0

[
(dln ρ + dln T ) (1 + yH + xHe) + dyH

]
. (B.2)

We substitute Eq. (B.2) into the equation for first law of thermo-
dynamics, Tds = de + pdv, where v = ρ−1 is specific volume,

ds =
1
T

[
de + d(pv) − 1

ρ
dp

]
(B.3)

=

(
3R
2μ0

dln T − R
μ0

dln ρ

)
(1 + yH + xHe)

− R
μ0

dyH

[
3
2
+
χH

kBT

]
, (B.4)

where we have used e = (3/2)RT/μ+ eH. Next, differentiate the
Saha equation of ionization, y2

H/(1 − yH) = R, where

R = (ρe/ρ) (TH/T )−3/2 exp (−TH/T ) , (B.5)

we have,

2yH

(1 − yH)
dyH +

y2
H

(1 − yH)2
dyH = dR (B.6)

and

dR = ρe/ρ (TH/T )−3/2 exp (−TH/T ) (B.7)

×
[
−dlnρ − 3

2
dln T +

χH

kBT
dln T

]
.

After substituting Eq. (B.7) into Eq. (B.6), we obtain a relation
between dyH, dln T and dln ρ,

(2 − yH)
yH(1 − yH)

dyH =

[
−dln ρ −

(
3
2
− χH

kBT

)
dln T

]
. (B.8)

Based on the behavior of temperature profile we can have two
cases, the optically thick τ � 1 and the optically thin τ 	 1. In
the case of τ � 1, ρ ∝ T n and hence, dln ρ = n dln T . We use
this relation in Eq. (B.8), and have,

dln T = − 1
(n + 1.5)

(2 − yH)
yH(1 − yH)

dyH. (B.9)

In the optically thick part, T is large, thus TH(dT/T 2) is small
and can be neglected in Eq. (B.8). Again we use the relation
dln ρ = n dln T in Eq. (B.4) to eliminate dln ρ and finally substi-
tute Eq. (B.9) into Eq. (B.4), to obtain,

ds = dyH
R
μ0

[
(n − 1.5)
(n + 1.5)

(2 − yH)(1 + yH + xHe)
yH(1 − yH)

− 3
2
− χH

kBT

]
·

(B.10)

In the case of τ	 1, we use the fact that dln T = 0 as T is nearly
constant here and then obtain,

ds = dyH
R
μ0

[
(2 − yH)(1 + yH + xHe)

yH(1 − yH)
− 3

2
− χH

kBT

]
· (B.11)

Both Eqs. (B.10) and (B.11) can be written in the following form
using expressions in Eq. (A.2),

ds = dyH
R
μ0

[
1
Av

(n − 3/2)
(n + 3/2)

− Bv

]
, (B.12)

ds = dyH
R
μ0

[
1
Av
− Bv

]
. (B.13)

From Eqs. (B.12) and (B.13), its clear that the extrema in entropy
profile correspond to the extrema in yH.
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