
A&A 576, A26 (2015)
DOI: 10.1051/0004-6361/201424521
c© ESO 2015

Astronomy
&

Astrophysics

Magnetically controlled stellar differential rotation
near the transition from solar to anti-solar profiles

B. B. Karak1, P. J. Käpylä2,3, M. J. Käpylä3, A. Brandenburg1,4, N. Olspert3, and J. Pelt5

1 NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
e-mail: bidyakarak@gmail.com

2 Department of Physics, Gustaf Hällströmin katu 2a (PO Box 64), 00014 University of Helsinki, Finland
3 ReSoLVE Centre of Excellence, Department of Information and Computer Science, Aalto University, PO Box 15400, 00076 Aalto,

Finland
4 Department of Astronomy, Stockholm University, 10691 Stockholm, Sweden
5 Tartu Observatory, 61602 Tõravere, Estonia

Received 3 July 2014 / Accepted 21 January 2015

ABSTRACT

Context. Late-type stars rotate differentially owing to anisotropic turbulence in their outer convection zones. The rotation is called
solar-like (SL) when the equator rotates fastest and anti-solar (AS) otherwise. Hydrodynamic simulations show a transition from SL to
AS rotation as the influence of rotation on convection is reduced, but the opposite transition occurs at a different point in the parameter
space. The system is bistable, i.e., SL and AS rotation profiles can both be stable.
Aims. We study the effect of a dynamo-generated magnetic field on the large-scale flows, particularly on the possibility of bistable
behaviour of differential rotation.
Methods. We solve the hydromagnetic equations numerically in a rotating spherical shell that typically covers ±75◦ latitude (wedge
geometry) for a set of different radiative conductivities controlling the relative importance of convection. We analyse the resulting
differential rotation, meridional circulation, and magnetic field and compare the corresponding modifications of the Reynolds and
Maxwell stresses.
Results. In agreement with earlier findings, our models display SL rotation profiles when the rotational influence on convection is
strong and a transition to AS when the rotational influence decreases. We find that dynamo-generated magnetic fields help to produce
SL differential rotation compared to the hydrodynamic simulations. We do not observe any bistable states of differential rotation. In
the AS cases we find coherent single-cell meridional circulation, whereas in SL cases we find multi-cellular patterns. In both cases, we
obtain poleward circulation near the surface with a magnitude close to that observed in the Sun. In the slowly rotating cases, we find
activity cycles, but no clear polarity reversals, whereas in the more rapidly rotating cases irregular variations are obtained. Moreover,
both differential rotation and meridional circulation have significant temporal variations that are similar in strength to those of the
Sun.
Conclusions. Purely hydrodynamic simulations of differential rotation and meridional circulation are shown to be of limited relevance
as magnetic fields, self-consistently generated by dynamo action, significantly affect the flows.
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1. Introduction

Differential rotation is an important ingredient for the genera-
tion of stellar magnetic fields. The internal rotation rate of the
Sun has been mapped by helioseismology, revealing that the an-
gular velocity within the convection zone mildly increases (de-
creases) as a function of radius at low (high) latitudes and that
the radial shear is concentrated in shallow layers at the base
of the convection zone and near the surface (e.g., Brown et al.
1989; Schou et al. 1998; Thompson et al. 2003). Thus the solar
equator rotates faster than its poles. This kind of rotation pro-
file is called solar-like (SL) differential rotation. The opposite
case where the equator rotates slower than the poles, is referred
to as anti-solar (AS) differential rotation. Because of the diffi-
culties in observing slowly rotating stars that might possess AS
differential rotation, it is not clear how common it is in main-
sequence stars. However, it has been observed in some K giants
(e.g., Strassmeier et al. 2003; Weber et al. 2005; Kővári et al.
2015).

Historically, the differential rotation and magnetic fields of
the Sun and other stars have been modelled following two
approaches – mean-field models and global convection simula-
tions. In the mean-field approach, small-scale turbulence is pa-
rameterised by expressing the Reynolds stress in the momentum
equation in terms of the mean velocity, the turbulent electromo-
tive force in the induction equation in terms of the mean mag-
netic field, and the turbulent heat flux in the entropy equation
in terms of the mean entropy. These parameterisations involve
turbulent transport coefficients that need to be calculated for
highly turbulent flows of stellar interiors. Analytical approaches,
such as first-order smoothing, involve approximations that are
ill-suited for stellar conditions and may yield inaccurate results.
A numerical method for determining the turbulent transport co-
efficients relevant for the electromotive force is the test-field
method (Schrinner et al. 2005, 2007), but for angular momen-
tum or heat transport no similar methods have been developed
yet. This means that the turbulent transport coefficients used in
mean-field models are often based on educated guesses or they
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are even used as free parameters. Despite these shortcomings,
hydrodynamical mean-field models are capable of producing SL
differential rotation (Brandenburg et al. 1992; Kitchatinov &
Rüdiger 1995; Rempel 2005; Kitchatinov & Olemskoy 2011)
as well as basic properties of the rotation in some other stars
(Küker & Rüdiger 2011; Kitchatinov & Olemskoy 2011; Hotta
& Yokoyama 2011). However, obtaining AS differential rotation
is less straightforward for mean-field models (e.g., Kitchatinov
& Rüdiger 2004). At the same time, mean-field dynamo mod-
els also reproduce some features of solar and stellar mag-
netic cycles either by including turbulent inductive effects (e.g.,
Käpylä et al. 2006; Pipin & Kosovichev 2011), or by apply-
ing the Babcock-Leighton process in the so-called flux trans-
port dynamo models (e.g., Choudhuri et al. 1995; Dikpati &
Charbonneau 1999; Karak 2010; Karak et al. 2014; Miesch &
Dikpati 2014).

On the other hand, there have been some successes in mod-
elling the differential rotation and magnetic fields using global
convection simulations, mainly in recent years (Miesch et al.
2006; Ghizaru et al. 2010; Racine et al. 2011; Käpylä et al. 2012,
2013; Warnecke et al. 2013; Augustson et al. 2014). However,
owing to the extreme parameter regimes of the Sun, realistic sim-
ulations are not possible at present. Nevertheless, the simulations
are able to reproduce solar values of the Coriolis number Co,
which measures the relative importance of rotation and turbulent
convection. For certain values of Co, but with different values
for other parameters, such as the fluid and magnetic Reynolds
and Prandtl numbers, simulations occasionally produce AS dif-
ferential rotation (e.g., Matt et al. 2011; Käpylä et al. 2014),
poleward migration of the large-scale magnetic fields (Gilman
1983; Käpylä et al. 2010b; Nelson et al. 2013), no clear mag-
netic cycles (Brown et al. 2010), or sometimes even no appre-
ciable large-scale contribution to the magnetic field (Brun et al.
2004).

According to mean-field hydrodynamics, differential rota-
tion is generated from the anisotropy of the Reynolds stress,
which is parameterised in terms of the so-called Λ effect
(Rüdiger 1980, 1989). A radially increasing (SL) angular veloc-
ity results if horizontal turbulent velocities dominate over verti-
cal velocities, while AS rotation follows if radial motions (even
laminar ones) are dominant. The importance of the Λ effect de-
pends on the rotational influence on the turbulence, i.e., the
value of Co, which is the ratio of the convective turnover time
to the rotation period. At large Co, the SL rotation is more
favourable and the transition from SL to AS rotation depends on
the Coriolis number (Brun & Palacios 2009; Chan 2010; Käpylä
et al. 2011a,b; Guerrero et al. 2013; Gastine et al. 2013, 2014).
Using Boussinesq convection, Gastine et al. (2014) discovered
that near the transition from AS to SL rotation, both states are
possible, depending on the initial conditions of the simulations.
This has been independently verified by Käpylä et al. (2014)
in fully compressible hydrodynamic convection simulations. If
this discovery were to apply to the Sun, this might have impor-
tant consequences because young rapidly rotating stars, which
preferably possess SL rotation, slowly spin down due to loss of
the angular momentum and can persist in the SL rotation state
even when their rotation is slow. Some doubts have already been
expressed by Fan & Fang (2014), who found that the bi-stability
disappears when magnetic fields are present.

In the magnetohydrodynamic (MHD) case, the situation
is more complicated than in the case of pure hydrodynam-
ics. A dynamically significant magnetic field, which possibly
varies cyclically, introduces extra time dependent effects into
the system that are capable of influencing the fluid flow both

through large-scale effect (Malkus-Proctor effect; see Malkus &
Proctor 1975; Brandenburg et al. 1992) and small-scale effects
(Reynolds and Maxwell stresses and therefore the Λ effect; see
Kitchatinov et al. 1994). Therefore, the magnetic field tries to
destabilize the equilibrium states of the rotation. To explore to
what extent the presence of a dynamically significant large-scale
magnetic field affects the bistable nature of the differential ro-
tation, we perform several simulations with the same setup as
in Käpylä et al. (2014), but our simulations include magnetic
fields. Similar to their work, we perform two types of simu-
lations. In one of them we run the simulations from scratch,
i.e., with an initially rigid rotation profile. Then we take either
a SL state or an AS state and vary the rotational influence by
varying the radiative heat conductivity to identify the transition.
We analyse the activity cycles using diagnostic tools of stellar
activity in Sect. 3.7. Next we measure the temporal variations of
the Lorentz forces (both from large-scale and small-scale contri-
butions) to understand the temporal variations of the large-scale
flows observed in the simulations (Sect. 3.8). Finally, we com-
pute the contributions of Reynolds stress, Maxwell stress, and
the stresses from the azimuthally averaged mean flow and mean
magnetic field to the angular momentum balance (Sect. 3.9).
Then we study the influence of the magnetic field on the angular
momentum transport by comparing the results with the hydro-
dynamic simulations.

2. The model

2.1. Basic equations

Our model is similar to many earlier studies (Käpylä et al. 2012,
2013; Cole et al. 2014). The hydrodynamic part of this model has
been used in Käpylä et al. (2014). We model a spherical wedge
with radial, latitudinal, and longitudinal extents r0 ≤ r ≤ r1,
θ0 ≤ θ ≤ π− θ0, and 0 ≤ φ ≤ φ0, respectively. Here, r0 = 0.72 R�
and r1 = 0.97 R� are the positions of the bottom and top of the
computational domain, R� is the radius of the Sun, θ0 = π/12 is
the colatitude of the polar cap, and φ0 = π/2 is the longitudinal
extent. The following hydromagnetic equations are solved:

∂A
∂t
= u × B − μ0ηJ , (1)

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt
= g − 2Ω0 × u +

1
ρ

(J × B + ∇ · 2νρS − ∇p) , (3)

T
Ds
Dt
= −1
ρ
∇ ·

(
Frad + FSGS

)
+ 2νS2 +

ημ0

ρ
J2, (4)

where A is the magnetic vector potential, B = ∇× A is the mag-
netic field, J = ∇×B/μ0 is the current density with μ0 being the
vacuum permeability, u is the velocity, D/Dt = ∂/∂t + u · ∇ is
the advective derivative, ρ is the density, s is the specific entropy,
T is the temperature, p is the pressure, ν is the constant kinematic
viscosity, g = −GM�r/r3 is the gravitational acceleration with
M� being the mass of the Sun, Ω0 = (cos θ,− sin θ, 0)Ω0 is the
angular velocity vector, Si j =

1
2 (ui; j + u j;i) − 1

3δi j∇ · u is the rate
of strain tensor, where the semicolons denote covariant differ-
entiation. The radiative and subgrid scale (SGS) heat fluxes are
given by

Frad = −K∇T and FSGS = −χSGSρT∇s, (5)
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respectively. Here K is the radiative heat conductivity and χSGS is
the turbulent heat diffusivity, which represents the unresolved
convective transport of heat (Käpylä et al. 2013). The fluid obeys
the ideal gas law p = (γ − 1)ρe, where γ = cP/cV = 5/3 is
the ratio of specific heats at constant pressure and volume, and
e = cVT is the specific internal energy.

2.2. Initial and boundary conditions

The initial hydrostatic state is isentropic, so the temperature is
given by

∂T
∂r
= − GM�/r2

cV(γ − 1)(nad + 1)
, (6)

where nad = 1.5 is the polytropic index and the value of ∂T/∂r
at r = r0 is fixed. The density stratification follows from hy-
drostatic equilibrium. The initial state chosen is not in thermo-
dynamic equilibrium but closer to the final convecting state to
reduce the needed computational time to reach a thermally re-
laxed state. The heat conductivity profile is chosen such that ra-
diative diffusion is responsible for supplying the energy flux into
the system. Radiative diffusion becomes progressively less ef-
ficient towards the surface (Käpylä et al. 2011a). As in Käpylä
et al. (2013, 2014), this is achieved by taking a depth-dependent
polytropic index n(r) = δn(r/r0)−15 + nad − δn for the radiative
conductivity K(r) = K0[n(r)+1], where the reference conductiv-
ity is K0 = (L/4π)cV(γ − 1)(nad + 1)ρ0

√
GM�R�, with L being

the non-dimensional luminosity. Note that n = nad at the bot-
tom and n → nad − δn towards the surface. Hence, K decreases
towards the surface like r−15 such that the value of δn regulates
the flux that is carried by convection (Brandenburg et al. 2005;
Käpylä et al. 2014).

Along with the imposed energy flux at the bottom boundary
Fb = −(K∂T/∂r)r=r0, the values of Ω0, ν, η, and χSGS = χSGS
at the middle of the convection zone r = rm = 0.845 R� are de-
fined. The turbulent heat conductivity χSGS is piecewise constant
above r > 0.75 R� with χSGS = χSGS in 0.75 R� < r < 0.95 R�,
and χSGS = 1.35χSGS at r ≥ 0.95 R�. At r < 0.75 R�, χSGS
tends smoothly to zero (see Fig. 1 of Käpylä et al. 2011a).
We fix χSGS in such a way that at r = r1 it corresponds to
5 × 108 m2 s−1 in physical units. We also assume the density and
temperature at r = r0 to have solar values, ρ0 = 200 kg m−3 and
T0 = 2.23 × 106 K.

Radial and latitudinal boundaries are assumed to be impene-
trable and stress free for the flow, whereas for the magnetic field
we assume a radial field condition on the outer radial boundary
and perfect conductor conditions on the lower radial and latitudi-
nal boundaries; see Käpylä et al. (2013) for details. Density and
entropy have vanishing first derivatives on the latitudinal bound-
aries. A black body condition with σT 4 = −K∇rT −χSGSρT∇r s,
where σ is related to the Stefan-Boltzmann constant, is applied
on the upper radial boundary. However the value of σ is modi-
fied to attain the desired values of surface temperature and en-
ergy flux. Moreover, we chooseσ in such a way that in the initial
non-convecting state the flux at the surface carries the total lumi-
nosity through the boundary. We use small-scale, low-amplitude
Gaussian noise as initial condition for the velocity and magnetic
fields.

As discussed by Käpylä et al. (2013, 2014), in our fully com-
pressible simulation the time step is severely limited if we were
to use the solar luminosity. This would imply both huge Rayleigh
and small Mach numbers. This problem is avoided by taking
roughly 106 times higher luminosity in the simulation than in

the Sun. However, the convective velocity u becomes then in our
simulation 100 times larger than in the Sun because the con-
vective energy flux Fconv scales as ρu3. Therefore to achieve the
same rotational influence on the flow as in the Sun, we need
to increase Ω by the same factor. Consequently, we have the
relations: Ωsim = (L0/L�)1/3Ω� and usim = (L0/L�)1/3u�,
where L0 is the luminosity in simulation, L� ≈ 3.84 × 1026 W
is the solar luminosity, and Ω� is the average solar rotation rate
≈2.7×10−6 s−1. This allows us to quote values for angular veloc-
ity, meridional circulation, and magnetic field in physical units
that can be compared with solar values and with results of other
groups. However, we often quote ratios between different quan-
tities that are obviously non-dimensional and therefore not af-
fected. All computations are performed with the Pencil code1.

2.3. Dimensionless parameters and diagnostics

First, we define the non-dimensional input parameters. The lu-
minosity parameter L and the normalized pressure scale height
at the surface ξ are given by

L = L0

ρ0(GM�)3/2R1/2
�
, ξ =

(γ − 1)cVT1

GM�/R�
, (7)

where T1 is the temperature at the surface. The influence of ro-
tation is measured by the Taylor number,

Ta = (2Ω0Δr2/ν)2, (8)

where Δr = r1 − r0 is the thickness of the convecting shell. The
fluid, magnetic, and SGS Prandtl numbers are defined as

Pr =
ν

χm
, Pm =

ν

η
, PrSGS =

ν

χSGS
, (9)

respectively, where χm = K(rm)/cPρm is the thermal diffusivity
and ρm is the density, both evaluated r = rm. Furthermore, we
define the non-dimensional viscosity,

ν̃ =
ν√

GM�R�
, (10)

and the Rayleigh and convective Rossby numbers (Gilman
1977),

Ra=
GM�(Δr)4

νχSGSR2�

(
− 1

cP

ds
dr

)
rm

, Roc =

(
Ra

PrSGSTa

)1/2

, (11)

where the entropy gradient of the non-convecting hydrostatic so-
lution is evaluated in the middle of the convection zone, r = rm.
We also quote the initial density contrast Γ(0)

ρ ≡ ρ(r0)/ρ(r1).
As diagnostic quantities we define the fluid and magnetic

Reynolds numbers, and the Coriolis number as

Re =
urms

νkf
, Rm =

urms

ηkf
= PmRe, Co =

2Ω0

urmskf
, (12)

where urms =

√
(3/2)〈u2

r + u2
θ〉rθφt is the volume and time aver-

aged rms velocity during the time when the simulation is ther-
mally relaxed. We exclude uφ from urms as it is dominated by the
differential rotation, and use kf = 2π/Δr as an estimate of the
wavenumber of the largest eddies. The Taylor number can also
be written as Ta = Co2Re2(kfR�)4.

We define mean values as averages over longitude and time
and denote these by an overbar. Sometimes we also perform ad-
ditional averaging over latitude and/or radius, which we always
mention explicitly.

1 http://pencil-code.google.com
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3. Results

First, we perform a set of simulations for different values of
the radiative conductivity starting from the initial condition de-
scribed in Sect. 2.2. These are referred to as Runs A–E in
Table 1. Except for the allowance of a magnetic field, all other in-
put parameters of our Runs A–E are identical to those of Käpylä
et al. (2014). However, we have an additional Run BC in this set,
whose radiative conductivity lies between those of Runs B and
C. It turns out that Runs A–BC produce AS differential rotation,
while Runs C–E produce SL differential rotation. Next, we per-
form two further sets of simulations where we use Runs A and D
with AS and SL differential rotation, respectively, as progenitors
to study the possibility of bi-stability of the rotation profile.

3.1. Energy fluxes in our dynamo runs

The radiative conductivity in our model is controlled by the pa-
rameter δn, regulating the fractional flux that convection has to
transport. Increasing δn reduces the radiative flux and increases
the convective flux and thus urms. Having Ω0 fixed, changing δn
affects the rotational influence on the convection via the convec-
tive velocities (for further details see Käpylä et al. 2014). Hence,
different values of δn in Runs A–E imply different values of Co.
Thus, Run E is more rotationally dominated than Run A. For
Run A with δn = 2.5, the convective flux dominates over the
other fluxes and the radiative flux transports a very small frac-
tion of the luminosity. For the definitions of the fluxes, we refer
to Eqs. (26)–(31) of Käpylä et al. (2013).

In the statistically stationary state, the total luminosity
Ltot(r) = 4πr2Ftot(r) is constant, where Ftot is the time averaged
total energy flux. In Fig. 1 we show the radial dependence of
the contributions from radiation (Lrad) and convection (Lconv), as
well as kinetic (Lkin), viscous (Lvisc), and subgrid scale (LSGS)
energy fluxes in the convection zone for Runs A and E. For
comparison we also show the fluxes from the corresponding hy-
drodynamic simulations of Käpylä et al. (2014) with red lines.
We see that for Run A, the convective, kinetic, and SGS energy
fluxes have decreased in the lower part of the convection zone
in the magnetic case. In Run E there is very little change in the
SGS flux and only a small reduction of the convective and ki-
netic energy fluxes is visible. In Table 1 we show the fractions
of the radiative and the convective fluxes at the middle of the
convection zone for all the runs. In Runs A, B, and BC, the con-
vective flux is above 75% and the radiative flux is less than 25%.
By contrast, Runs C, D, and E have a convective flux of less than
70% and the radiative flux is larger than 25%.

We find that the rms-velocity is compatible with a one-third
power proportionality to the convective energy flux. This is the
case at least in the narrow range of parameters studied here; see
Fig. 2. This is in agreement with the scaling used in connec-
tion with the artificially high luminosities used in our simula-
tions (see also Brandenburg et al. 2005).

3.2. Differential rotation

In Fig. 3 we show the rotation profile Ω = uφ/r sin θ + Ω0 for
Runs A–E. We see that in Runs A, B, and BC the equator rotates
slower than the mid- and high latitudes, which is opposite to the
rotation profile observed in the Sun. However, we find that the
regions near the latitudinal boundaries have slower rotation than
mid-latitudes, which was not observed in the hydrodynamical
simulations of Käpylä et al. (2014). We have repeated Run B by
increasing and decreasing the latitudinal extent. Runs B′ and B′′

Fig. 1. Contributions of different energy fluxes of Runs A (top) and E
(bottom). The black (red) lines correspond to magnetohydrodynamic
(hydrodynamic) case. Thin solid: radiative, dashed: convective, long
dashed: viscous, dash-dotted: kinetic energy, dash-triple-dotted: SGS,
and thick solid: total. Dotted horizontal lines indicate the zero and unity
values. The vertical dotted line indicates the position of the middle of
the convection zone r = rm.

Fig. 2. Variation of (Fconv/ρu3
rms)

1/3
averaged over the whole con-

vection zone as a function of urms from different runs. Black as-
terisks: Runs A−E, red diamonds: Runs E1–E4, and blue triangles:
Runs A1−A8. The dotted line shows the linear dependence between
urms and (Fconv/ρu3

rms)
1/3.

in Table 1 correspond to these two cases where the latitudinal
end points are at ±84◦ and ±66◦, respectively. In Fig. 4, we show
Ω profiles for these two runs, whereas in Fig. 5 we show their
latitudinal variations at r = 0.96 R�. From these two plots we
see that the rotation profiles are very similar in all these runs up
to about±50◦ latitudes and the significant departures appear only
near the boundaries. However, the slowly rotating high-latitude
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Table 1. Summary of the runs.

Run Ra Pr δn Roc Re Co Δ
(θ)
Ω

Δ
(r)
Ω

Ẽkin[10−7] Emer/Ekin Erot/Ekin L̃rad L̃conv DR Activity cycle

A 3.93 × 105 39.9 2.5 0.73 33 1.34 −0.184 −0.185 0.25 3.77 × 10−3 0.173 0.09 0.95 AS fairly regular
B 3.54 × 105 20.3 2.25 0.69 32 1.35 −0.158 −0.143 0.24 2.87 × 10−3 0.134 0.19 0.84 AS fairly regular
BC 3.54 × 105 15.6 2.1 0.67 32 1.38 −0.151 −0.134 0.23 2.69 × 10−3 0.155 0.24 0.77 AS fairly regular
C 3.16 × 105 13.6 2.0 0.65 30 1.44 0.033 0.014 0.27 1.05 × 10−3 0.341 0.28 0.70 SL intermittent
D 2.92 × 105 11.3 1.85 0.63 26 1.67 0.118 0.059 0.26 0.67 × 10−3 0.487 0.33 0.57 SL irregular
E 2.77 × 105 10.2 1.75 0.61 25 1.75 0.111 0.057 0.23 0.81 × 10−3 0.468 0.37 0.52 SL irregular
D0 2.92 × 105 11.3 1.85 0.63 26 1.67 0.118 0.059 0.26 0.67 × 10−3 0.487 0.33 0.57 SL irregular
D1 3.16 × 105 13.6 2.00 0.65 30 1.46 0.013 0.008 0.29 1.53 × 10−3 0.333 0.28 0.71 SL irregular
D2 3.31 × 105 15.7 2.10 0.67 31 1.40 −0.069 −0.074 0.21 1.70 × 10−3 0.121 0.24 0.76 AS irregular
D3 3.47 × 105 18.5 2.20 0.68 32 1.38 −0.153 −0.140 0.23 2.69 × 10−3 0.143 0.20 0.81 AS fairly regular
D4 3.62 × 105 22.5 2.30 0.70 32 1.36 −0.167 −0.158 0.24 3.17 × 10−3 0.149 0.17 0.86 AS fairly regular

A0 3.93 × 105 39.9 2.5 0.73 33 1.34 −0.184 −0.185 0.25 3.77 × 10−3 0.173 0.09 0.95 AS fairly regular
A1 3.85 × 105 33.3 2.45 0.72 32 1.36 −0.172 −0.184 0.25 3.57 × 10−3 0.163 0.11 0.92 AS fairly regular
A2 3.78 × 105 28.5 2.4 0.71 32 1.36 −0.135 −0.144 0.23 2.93 × 10−3 0.122 0.13 0.89 AS irregular
A3 3.62 × 105 22.3 2.3 0.70 32 1.38 −0.154 −0.150 0.23 2.95 × 10−3 0.126 0.17 0.85 AS irregular
A4 3.47 × 105 18.3 2.2 0.68 32 1.38 −0.141 −0.133 0.23 2.79 × 10−3 0.124 0.20 0.81 AS irregular
A5 3.31 × 105 15.5 2.1 0.67 31 1.41 −0.075 −0.073 0.23 2.04 × 10−3 0.142 0.24 0.76 AS irregular
A6 3.16 × 105 13.4 2.0 0.65 30 1.44 0.066 0.017 0.24 1.40 × 10−3 0.212 0.28 0.71 SL irregular
A7 3.00 × 105 11.9 1.9 0.63 29 1.53 0.091 0.055 0.31 0.58 × 10−3 0.499 0.31 0.62 SL irregular
A8 2.85 × 105 10.7 1.8 0.62 27 1.61 0.121 0.073 0.29 0.61 × 10−3 0.553 0.35 0.54 SL irregular

B′ 3.54 × 105 20.3 2.25 0.69 32 1.34 −0.154 −0.149 0.21 3.66 × 10−3 0.117 0.19 0.82 AS fairly regular
B′′ 3.54 × 105 20.3 2.25 0.69 32 1.36 −0.132 −0.140 0.25 2.66 × 10−3 0.128 0.19 0.85 AS fairly regular

Notes. In all runs, Pm = 1, χSGS = 3.7 × 108 m2 s−1 by taking χSGS(r1) = 5 × 108 m2 s−1, ν = 9.3 × 107 m2 s−1, PrSGS = 0.25, L = 3.85 × 10−5,
Ta = 2.98 × 106, ξ = 0.0325, which gives Γ(0)

ρ ≈ 12, Ω0/Ω� = 1, and the grid resolution is 128 × 256 × 128. The volume and time averaged
total kinetic energy in units of GM�ρ0/R� is Ẽkin = 〈 1

2ρu
2〉 and the kinetic energies of the meridional circulation and the differential rotation are

Emer =
1
2 〈ρ(u2

r + u2
θ)〉 and Erot =

1
2 〈ρu2

φ〉, respectively. The quantities L̃rad and L̃conv are the fractions of total flux transported by radiative conduction
and resolved convection at the middle of the convection zone. Here, “DR” stands for differential rotation. Runs B′ and B′′ are same as Run B, but
with larger (±84◦) and smaller (±66◦) latitudinal extents, respectively.

Fig. 3. Distribution of angular velocity Ω in the meridional plane from Runs A–E. The Ω is computed from Ω first by the longitudinal average and
then the time average over the last few cycles. The arrows in the leftmost panel show the colatitudes at which the latitudinal differential rotation is
computed in Eq. (13).

branch still exists in all runs. Therefore this is probably not due
to our restricted latitudinal extent, but may be a real feature that
might be caused by the magnetic fields.

By comparing the rotation profiles from hydrodynamic sim-
ulations of Käpylä et al. (2014) for Runs A–E, we see that the
pole-equator differential rotation is generally weaker in the mag-
netic runs, the reduction being strongest in the runs with a slowly
rotating equator. This will be discussed in Sect. 3.5, where we
give the ratio of the rotational energy of the hydrodynamic and

magnetic simulations. The overall reduction of the pole–equator
differential rotation by magnetic fields agrees with what has been
reported before (e.g., Brun et al. 2004; Beaudoin et al. 2013; Fan
& Fang 2014). In particular, for slow rotation Fan & Fang (2014)
found a switch from AS to SL differential rotation, which agrees
with our results reported below. By contrast, Brun et al. (2004)
and Beaudoin et al. (2013) only consider runs with SL rotation,
but in the models by Brun et al. (2004) the angular velocity at
high latitudes is not reduced much by magnetic fields. In the
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Fig. 4. Same as Run B in Fig. 3, except here the latitudinal extent is dif-
ferent. For the left panel, the latitudinal boundaries are at ±84◦, whereas
for the right panel they are at ±66◦.

Fig. 5. Variations of angular velocities Ω at r = 0.96 R� from Runs B
(solid line), B′ (red dashed), and B′′ (blue dash-dotted).

models of Beaudoin et al. (2013), on the other hand, there is
a lower overshoot layer, where angular velocity is constant and
equal to that at high latitudes when there is a magnetic field. This
is, however, not the case in their non-magnetic runs, so the mag-
netic field leads to a strong reduction in their case, which is sim-
ilar to ours, but different from what Brun et al. (2004) found. We
caution that comparing runs with and without overshoot layers
can be misleading because of different physical effects involved.

To illustrate the reduction of differential rotation in our mag-
netic runs, we show in Fig. 6 the differences inΩ between the hy-
drodynamic and magnetic versions of Runs A and E. We see that
for Run A the difference is even larger than the average rotation
rate of the Sun. Possible reasons for the reduction of differential
rotation will be discussed in Sect. 3.9.

In Runs C–E, the equator rotates faster than the polar re-
gions, as is also the case in the Sun. However, unlike some of the
non-magnetic solar-like cases of Käpylä et al. (2014), we never
obtain polar vortices or jet-like structures with magnetic fields. It
is also interesting to note that the pole-equator difference in the
rotational velocity is comparable to that of the Sun. The solar
value (∼430 nHz) is marked in each colourbar of Fig. 3.

3.3. Identifying the SL to AS transition

We measure the relative radial and latitudinal differential rota-
tion by the quantities

Δ
(r)
Ω
=
Ωeq −Ωbot

Ωeq
, Δ(θ)

Ω
=
Ωeq −Ω55

Ωeq
, (13)

Fig. 6. Difference of Ω between the HD and MHD runs. The left and
right panels are for Runs A and E, respectively.

where Ωeq = Ω(r1, π/2) and Ωbot = Ω(r0, π/2) are the equato-
rial rotation rates at the surface and at the base of the convection
zone, and Ω55 =

1
2 [Ω(r1, 35◦) + Ω(r1, 145◦)] is the rotation rate

at latitudes ±55◦ computed as an average of Ω at 35◦ and 145◦
colatitudes on the outer radius. The arrows in the leftmost panel
of Fig. 3 show the positions of these points in the r−θ plane.
The values of Δ(r)

Ω
and Δ(θ)

Ω
, listed in Table 1, help us to identify

AS and SL differential rotation. The SL differential rotation im-
plies Δ(r)

Ω
> 0 and Δ(θ)

Ω
> 0. Following this definition, we see

that Runs A, B, and BC are classified as AS and Runs C–E as
SL. Hence we see that there is a transition from AS to SL rota-
tion around Co ∼ 1.4. Although this transition has been reported
extensively in the literature (e.g., Gilman 1977; Rieutord et al.
1994; Käpylä et al. 2011b; Gastine et al. 2013; Guerrero et al.
2013), the possibility of a bi-stability has only recently been dis-
covered (Gastine et al. 2014; Käpylä et al. 2014), i.e., AS and SL
rotation profiles can be obtained for the same input parameters.
We compare the current results with the hydrodynamical results
and we see that the transition happens at a slightly larger value
of Roc, also manifested by the change of the AS hydrodynamical
counterpart of Run C to SL in the MHD regime. The transition
observed in the current dynamo cases is less abrupt than that
of earlier hydrodynamic studies. Therefore we conclude that the
magnetic field helps to produce SL differential rotation, which
has also been found in the recent anelastic simulations of Fan &
Fang (2014).

In Fig. 7 we show differential rotation parameters Δ(r)
Ω

and

Δ
(θ)
Ω

computed from Eq. (13) for all the runs as functions of
Roc and Ra. To compare with the hydrodynamic simulations
of Käpylä et al. (2014), we have analysed the latitudinal differ-
ential rotation in their data with our new definition (13). The
hydrodynamic values shown in Fig. 7 are now considerably
smaller for the AS branch than the ones reported by Käpylä
et al. (2014). Note that, had we defined Δ(θ)

Ω
as the difference

of rotation between equator and the endpoints of the domain
at θ = θ0 and π − θ0 as in Käpylä et al. (2013, 2014), in-
stead of Ω55, as we do here, we would have obtained smaller
values of Δ(θ)

Ω
because of the slowly rotating high-latitude re-

gions in our magnetic Runs A–C. Another way of character-
izing the SL or AS differential rotation can be done following
Käpylä et al. (2011b), who approximated the surface rotation
profile in terms of Gegenbauer polynomials, which is, Ω =
Ω0

∑
�=1,3,5ω�P

1
� (cos θ)/ sin θ. The sign of w3 indicates whether

a rotation is SL or AS. Following this procedure, we obtain the
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Fig. 7. Radial (left panel) and latitudinal (right panel) differential rotation, defined by Eq. (13), for Runs A–E (green crosses), A0–A8 (red
dashed line with triangles), and D0–D4 (black asterisks with dotted line). The other points are taken from the hydrodynamical simulations (black
diamonds: Runs A–E, blue dotted line with asterisks: Runs D0–D4, and red dashed line with squares: Runs B0–B10) of Käpylä et al. (2014).
The horizontal black dotted lines show the zero value. A red (black) arrow shows the transition point when differential rotation in the MHD (HD)
simulations changes from AS to SL rotation with the decrease of Roc.

same conclusion for the classification of the SL and AS differ-
ential rotation.

3.4. Checking for flow bi-stability

Next we study the flow bi-stability and take AS and SL cases as
initial conditions. Firstly, we have performed a set of simulations
by starting from the saturated state of Run A with AS differ-
ential rotation and decreasing δn slowly, which corresponds to
Runs A1–A8 in Table 1. The differential rotation parameters of
these runs are shown as red triangles in Fig. 7. Secondly, we start
from Run D with SL differential rotation and increase δn slowly
to produce Runs D1–D4. These are shown as black asterisks in
Fig. 7. We see that both sets of simulations produce similar re-
sults and there is no evidence for the existence of multiple so-
lutions at the same parameters. Therefore, we conclude that the
bistable nature of the differential rotation, recently discovered by
Gastine et al. (2014) and Käpylä et al. (2014), disappears when
dynamically important magnetic fields are allowed to be gener-
ated. This conclusion is supported by the recent study of Fan &
Fang (2014), who find a stable SL differential rotation indepen-
dent of the history of their convective dynamo simulations.

3.5. Meridional circulation

For all the AS cases (Runs A, B, and BC), we find single cell
meridional circulation with poleward flow near the surface and
equatorward flow near the bottom of the convection zone. This is
also the usual assumption in flux transport dynamo models (e.g.,
Dikpati & Charbonneau 1999), although in such models only the
equatorward motion at the bottom of the convection zone matters
(Hazra et al. 2014). However, as we go to the SL differential rota-
tion cases, i.e., from Run C to Runs D and E, the meridional cir-
culation becomes weaker and shows multiple cells in radius and
latitude, which has been detected in recent observations (Zhao
et al. 2013; Schad et al. 2013; Kholikov et al. 2014). Guerrero
et al. (2013) also find multi-cell meridional circulation for SL
differential rotation and single or two-cell circulation for AS dif-
ferential rotation in their hydrodynamic simulations. Again in
our SL cases, we observe some equatorward flow near the bot-
tom of the convection zone, at least in mid to high latitudes.

Fig. 8. Meridional circulation from Runs A and E. The arrows show the
direction of flow um ≡ (ūr , ūθ) and the background colour shows uθ.
Upper (lower) panels are from magnetohydrodynamic (hydrodynamic)
simulations.

Table 1 shows that Emer/Ekin decreases rapidly from Runs A
to E (with increasing Co the energy in the azimuthal component
increases). The upper two panels of Fig. 8 show the merid-
ional circulation for an AS (Run A) and a SL case (Run E).
Note that, irrespective of the differential rotation profile, we ob-
tain a poleward flow near the surface and its amplitude is in
agreement with solar surface observations (see e.g., Hathaway
& Rightmire 2010; Zhao et al. 2013). The fact that it is pole-
ward both for AS and SL rotation suggests that the meridional
circulation is not just a consequence of differential rotation. This
has been discussed in detail by Rüdiger (1989), who has shown
that baroclinic forcing can also be an important driver for the
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Table 2. Summary of the diagnostic quantities of Runs A–E.

Run P1[yr](N) P2[yr](N) P1[yr](S ) P2[yr](S ) Beq[G] Brms[G]
Emag

Ekin

Epol

Ekin

Etor
Ekin

EHD
mer

EMHD
mer

EHD
rot

EMHD
rot

Pasym

A 2.96 ± 0.22 4.04 ± 0.70 2.85 ± 0.25 4.05 ± 0.24 3931 11 412 0.119 0.066 0.052 12.1 92.4 no
B 5.45 ± 0.20 7.88 ± 0.57 6.5 ± 1.5 8.7 ± 1.4 2956 11 339 0.068 0.038 0.030 16.1 114.8 no
BC 10.6 ± 0.33 − 10.8 ± 0.66 − 2724 11 150 0.060 0.033 0.026 − − no
C 7.0 ± 1.1 − − − 1789 10 686 0.028 0.017 0.012 37.6 36.9 yes
D 6.9 ± 1.1 − 9.4 ± 1.3 − 3152 9220 0.120 0.064 0.053 2.2 1.2 yes
E 4.49 ± 0.38 2.60 ± 0.67 2.58 ± 0.88 − 3472 8792 0.156 0.080 0.076 1.9 2.2 yes

Notes. Here, Emag = 〈B2〉/2μ0 is the total magnetic energy, Epol = 〈(B2
r + B

2
θ)〉/2μ0 and Etor = 〈B2

φ〉/2μ0 are the poloidal and toroidal components
of the energy of the azimuthally averaged magnetic field. All quantities are averaged over volume and in time over the thermally relaxed state. The
last two columns show the ratios of the meridional circulation and rotational energies from hydrodynamic to the magnetic simulations. The first
four columns list the candidate periods detected with the D2 statistics separately for the northern and southern hemispheres. In a multi-periodic
case, the boldface font indicates the most significant period. The last column marks cycle period asymmetry between the two hemispheres.

origin of meridional circulation; see Miesch & Toomre (2009)
(Sect. 3), who have demonstrated how in simulations the convec-
tive (and magnetic) angular momentum flux maintain meridional
circulation in the solar convection zone through the gyroscopic
pumping. We note that in our simulations we do not have the
near-surface shear layer, which helps to produce a poleward flow
in the upper layers through inward angular momentum transport
possibly by the down-flow plumes (Kitchatinov & Rüdiger 2005;
Miesch & Hindman 2011; Hotta et al. 2015).

It is important to compare these results with the hydrody-
namical counterparts of the same models shown in the two lower
panels. We see that the hydrodynamic flow is much stronger, al-
though the overall pattern is not very different. In Table 2, we
compare the energy ratios EHD

mer/E
MHD
mer and EHD

rot /E
MHD
rot of merid-

ional circulation and rotation respectively with their hydrody-
namic counterparts. The magnetic field clearly suppresses the
circulation in the AS cases, Runs A–BC, but also in Run C,
whereas in the other SL cases the effect is small. Moreover,
the flow shows significant temporal variation, which will be ex-
plored later in Sect. 3.8.

3.6. Magnetic variability and butterfly diagrams

The large-scale, spatio-temporal organization of the magnetic
field can be seen from a time-latitude or butterfly diagram of
Bφ, for example. The degree of radial coherence can be judged
by looking at different depths. We show such butterfly diagrams
for Runs A–E both at r = 0.74 R� (Fig. 9) and at r = 0.96 R�
(Fig. 10), where Bφ is given in Gauss. Here we only show the
first 70 years of each simulation, although in some cases we ran
for longer times (see below). We see that Runs A, B, and BC,
which produce AS differential rotation, show prominent activ-
ity cycles, but no clear polarity reversals. Therefore, these activ-
ity cycles are different from the Hale polarity cycle of the Sun.
However, we want to stress here that polarity reversals are veri-
fied only for the Sun, whereas for stellar cycles, most commonly
detected either from photometry or from Ca H & K lines with
spectroscopy, such information is not retrievable, and therefore
the reported variability might equally well be related to varia-
tions in the magnetic field strength as to polarity reversals.

For Runs A and B, the activity cycles are associated with a
weak poleward propagation at high latitudes. Another aspect we
notice is that, as we go from Run A to Run BC, the activity cy-
cles appear at a later time. This is surprising given that the rota-
tional influence on the turbulence actually increases. For Run C,

with SL rotation, the variations are rather irregular and show pe-
riods of very weak mean fields. The variations in Runs D and E
are irregular and a different dynamo mode appears to be excited
in these simulations, which is also characterized by a weaker
influence on the differential rotation than in the AS cases. By
comparing Figs. 9 and 10, we also see that Bφ is stronger near
the bottom of the convection zone, which could be caused by
downward pumping of the mean magnetic field (Nordlund et al.
1992; Brandenburg et al. 1996; Tobias et al. 2001).

In comparison to earlier work, we note that in several re-
cent global dynamo simulations (Ghizaru et al. 2010; Racine
et al. 2011; Brown et al. 2011; Käpylä et al. 2012, 2013; Cole
et al. 2014), regular cycles develop, resulting in butterfly dia-
grams with polarity reversals and sometimes even equatorward
migration of toroidal field at low latitudes. However, all these
simulations are for larger Coriolis numbers (for example, Co ≥ 5
in Cole et al. 2014), in which regime more coherent fields have
been found to be favoured (Brown et al. 2010, 2011).

3.7. Diagnostic stellar activity diagrams

The nature of stellar cycles can be characterized by the ratio of
cycle frequency ωcyc = 2π/P to the rotation rate Ω0, where P is
an estimate of the cycle period. There is a tendency for stars of
different characteristics to group at different positions in a “diag-
nostic” diagram of ωcyc/Ω0 versus Co (Brandenburg et al. 1998;
Saar & Brandenburg 1999). The more rapidly rotating stars of
Käpylä et al. (2013) were found to be located in three groups
with increasing slope in two of them and decreasing slope in
one.

In the present work, the values of Co are much smaller, so it
is important to repeat such an analysis for the more slowly rotat-
ing stars of the present paper. However, even by visual inspection
of the butterfly diagrams, it is evident that these variations are
not strictly harmonic, and therefore Fourier transform is not use-
ful for the analysis. Instead, we use the phase dispersion method
(Pelt 1983; Lindborg et al. 2013). It is based on the statistic

D2(P) =
1

2σ2

N−1∑
i=1

N∑
j=i+1
g(ti, t j, P,Δt)[ f (ti) − f (t j)]2

N−1∑
i=1

N∑
j=i+1
g(ti, t j, P,Δt)

, (14)

where f (ti), i = 1, . . . ,N is the input time series, σ2 is its vari-
ance, g(ti, t j, P,Δt) is the selection function, which in the general
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Fig. 9. Butterfly diagrams: contours of the toroidal field Bφ (in Gauss)
at r = 0.74 R� from Runs A, B, BC, C, D, and E (top to bottom).

case is significantly different from zero only when

t j − ti ≈ kP, k = ±1,±2, . . . and (15)∣∣∣t j − ti
∣∣∣ ≤ Δt. (16)

In the latter condition, Δt is the so-called correlation length.
In our case, the time series is evenly sampled, in which case a

Fig. 10. Same as Fig. 9 but here Bφ is shown at r = 0.96 R�.

modification to the general top-hat selection function is needed
to prevent artefacts: in this study we choose g as the product of
two gaussians: one with a half width at half maximum (HWHM)
of Δt and the other with an HWHM of a preselected phase sepa-
ration limit, for which we adopt 0.1. For the particular case when
Δt is longer than the full data span, the D2(P) statistics is es-
sentially a slight reformulation of the well-known Stellingwerf
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Fig. 11. Phase dispersion analysis results; from top to bottom, Runs A–E, in the middle column for the northern hemisphere, on the right for the
southern hemisphere. In the left column, we show the original time series analysed (blue/red for north/south). The time series are normalized by
their means, so values are not shown.

statistics (Stellingwerf 1978). As the correlation length is made
shorter, we match nearby cycles in a progressively narrower re-
gion, and consequently estimate a certain mean period, which
does not need to be coherent for the full time span. After hav-
ing continued Runs C, D and E for a longer time, we apply this

statistic to the time series of B
2
φ at r = 0.96 R�, averaged over

10◦ to 50◦ latitude, separately for north and south. This is shown
in the left column of Fig. 11, where we now depict the full length

of the simulation, excluding the initial exponential growth phase
of the dynamo.

To determine the possible average period of the cycle in
the time series we proceed as follows: first we calculate the
D2 statistics for preselected period and correlation length ranges.
Then, by inspecting the phase dispersion diagrams (middle and
rightmost columns of Fig. 11), we detect the correlation lengths
for which there exist only distinct flat minima around certain

A26, page 10 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424521&pdf_id=11


B. B. Karak et al.: Magnetically controlled stellar differential rotation

periods (this must be the case for the shortest correlation length
if the lower bound has been chosen correctly). After eliminating
doubles or halves of the actual periods, we obtain a set of candi-
date periods. The period with the strongest minimum is selected
as the best candidate, others being possible modulating periods.

In Fig. 11, the results for the phase dispersion analysis are
depicted; the periods with error estimates for all the runs can
be found from Table 2. The error estimates were calculated by
building bootstrap re-samples for the differences between pairs
of data points with approximately the same time separation. For
Run A, a stable period of slightly less than three years is promi-
nent especially for the southern hemisphere, which is manifested
by the fact that the minimum does not split even if the correla-
tion length is increased. For the northern hemisphere, a period
with roughly the same value is obtained, but it is less coherent
and splits at correlation lengths of roughly 25 years. A secondary
period of roughly four years is also present in both hemispheres.
The hemispheres appear less synchronized for Run B: again, two
significant periods are detected for both hemispheres, the most
prominent periods being eight and seven years, respectively (al-
beit with large error estimates). Again, the dominant periods per-
sist even when the correlation length is increased. For Run BC, a
stable period of about 11 years is found in both hemispheres. In
the southern hemisphere, it is more persistent as the correlation
length is increased. For Run C, only the northern hemisphere
shows a prominent period around seven years, while the split-
ting of the minima starts already for the correlation length of
ten years in the south. Run D shows prominent periods around
seven and nine years for the northern and southern hemispheres,
respectively. Although splitting occurs, especially in the north,
we regard these periods as significant. Finally in the case of
Run E, multi-periodicity was detected for the northern hemi-
sphere with a stronger period around 4.5 years and a weaker one
around 2.5 years, while the latter period was detected also for
the southern hemisphere.

The plot of ωcyc/Ω0 versus Co is shown in Fig. 12a, where
we see that stars with AS and SL rotation are located in two dif-
ferent positions in this diagram. We know that the Sun lies on the
upper left branch in such a diagram for real stars (Brandenburg
et al. 1998), but in Fig. 12a this branch corresponds to AS rota-
tion, which obviously disagrees with the observations. However,
it is plausible that there are stars with AS rotation that have sim-
ply not yet been observed. Our simulations therefore suggest a
possible prediction in that these stars might occupy a possibly
separate branch further to the left of the solar branch, which al-
ready corresponds to the domain of inactive stars. We thus expect
there to be either a separate branch or a part of the branch with
inactive stars like the Sun with AS rotation however.

In Fig. 12b we show the mean magnetic field. Here the er-
rors of Brms are computed as the largest departure of the mean
from any one-third of the full time series. We see that for the AS
differential rotation runs (Runs A, B, and BC) the magnetic field
decreases with rotation rate, whereas for the SL rotation cases
(Runs C, D, and E) it increases.

In Fig. 12c we plot the cycle frequency ratio against the mean
magnetic field. Note that ωcyc/Ω0 increases with Brms, which
agrees with the observed trend found for active and inactive
stars. Following the interpretation of Brandenburg et al. (1998),
the cycle frequency ratio is essentially a measure of the α effect
in a mean-field dynamo, so the increasing trend in the cycle fre-
quency ratio suggests that the α effect increases with magnetic
field strength, which is referred to as anti-quenching. This inter-
pretation hinges on some ill-known assumptions, for example,

Fig. 12. Diagnostic diagrams showing a) ωcyc/Ω0, b) the strength of the
large-scale magnetic field over the whole convection zone measured by
Brms = 〈〈Br〉2φ + 〈Bθ〉2φ + 〈Bφ〉2φ〉1/2rθt vs. log Co, and c) ωcyc/Ω0 vs. Brms.
The red colour shows the values computed for the southern hemisphere.

the turbulent transport in this model is assumed to depend only
on the largest scale of the mean magnetic field and of course
the rather unconventional assumption of anti-quenching itself.
Anti-quenching of both α and turbulent diffusivity has actually
been detected in simulations (Chatterjee et al. 2011), and may
be possible more easily in a sphere than in a Cartesian layer, but
we have at present no further indication that this interpretation is
applicable to our model.

3.8. Magnetic modulation of the flow

We have seen that some of our runs show clear activity cycles.
Therefore we expect to see a corresponding modulation of the
flow. In Fig. 13, we show for Run A the temporal variation of
the mean large-scale magnetic field (B) normalized by Beq, the
latitudinal component of the meridional circulation uθ(r,±32◦)
at r ≈ 0.95 R� and r ≈ 0.73 R�, the mean rotation rate
Ω(0.95 R�,±32◦), Ω(r, 0◦) at r = 0.73 R� and r = 0.95 R�, as
well as the latitudinal and radial differential rotationΔ(r)

Ω
andΔ(θ)

Ω
,

defined in Eq. (13). We see that the meridional circulation varies
with the magnetic field, becoming weaker during maximum and
stronger during minimum, the overall temporal variation being
about 50% in this case. (The linear correlation coefficient be-
tween B and uθ(0.95 R�,±32◦) ≈ −0.36,−0.38.) This kind of
weak anti-correlation between the activity cycle and the merid-
ional flow has been found in solar observations (Chou & Dai
2001; Hathaway & Rightmire 2010) and is believed to arise at
least in part from the Lorentz force of the dynamo-generated
magnetic fields (see, e.g., Rempel 2006, Karak & Choudhuri
2012, Passos et al. 2012). The meridional circulation at the bot-
tom is also weakly correlated with the activity cycle (correlation
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Fig. 13. From Run A: a) the large-scale magnetic field over the whole
convection zone B = 〈〈Br〉2φ+〈Bθ〉2φ+〈Bφ〉2φ〉1/2rθ normalized by Beq; b) the
latitudinal component of meridional circulation uθ(r,±32◦) (smoothed
over 5 months) at r ≈ 0.95 R� (black and red) and r ≈ 0.73 R� (blue
and green); c) azimuthally averaged angular velocity Ω(0.95 R�,±32◦);
d) Ω(r, 0◦) at r = 0.73 R� (red dashed) and r = 0.95 R� (black). The
dashed (solid) line corresponds to the southern (northern) hemisphere;
e) radial shear Δ(r)

Ω
, and f) latitudinal shear Δ(θ)

Ω
, defined in Eq. (13), as

functions of time.

coefficients between B and uθ(0.73 R�,±32◦) ≈ −0.22,−0.47).
We see that Ω(0.95 R�,±32◦) (Fig. 13c) also shows a weak anti-
correlation with the magnetic variations (having correlation co-
efficient ≈−0.25). The strong magnetic fields during maxima
change Ω by a few per cent (≈6%). However Ω(0.95 R�, 0◦)
(Fig. 13d) shows positive correlation (correlation coefficient
≈0.36) and the overall variation is larger (≈12%). Because of
this variation of Ω at the equator, the values of Δ(r)

Ω
and Δ(θ)

Ω
(Figs. 13e, f) show a positive correlation with the magnetic field
(correlation coefficients 0.36, 0.21) with the overall variation be-
ing ∼75% and 166%, respectively.

We have seen that Runs B, BC, and C produce clear activity
cycles similar to Run A and in all these runs we do see a corre-
sponding variation in the flow. However, for Runs C, D, and E,
which produce SL differential rotation, the magnetic variations
are not so regular. In Fig. 14, we show the temporal variations
for the SL differential rotation case Run E. We see that the large-
scale magnetic field does not have a regular cycle. The merid-
ional circulation does not appear to show a close correlation with
the magnetic field (with correlation coefficients being about−0.1
and −0.3 for surface and bottom meridional circulation, respec-
tively). However significant variations (up to 45%) exist. An ir-
regular variation in meridional circulation is found to be crucial
in modelling many aspects of the solar cycle in flux transport
dynamo model (Karak & Choudhuri 2011, 2013). The situa-
tion is similar in the case of differential rotation and rotational
shear: the early part of the time series (t = 30 . . .50 yr) show

Fig. 14. Same as Fig. 13, but from Run E, which produces SL differen-
tial rotation.

an anti-correlation with the magnetic field strength, but at later
times this correlation is not so obvious (the overall linear cor-
relation coefficients are −0.32, −0.22, −0.43, 0.28, −0.55, and
0.19 for Ω(0.95R�,±32◦), Ω(0.95R�, 0◦), Ω(0.73R�, 0◦), Δ(r)

Ω
,

and Δ(θ)
Ω

, respectively). The variation in differential rotation is
about 4%, whereas for the radial and latitudinal shear it is about
50% and 60%, respectively.

Significant variations observed in the large-scale flows in
all the simulations motivate us to measure the Lorentz force.
The Lorentz force can change the flow by acting in two ways,
through large-scale and small-scale magnetic fields. Firstly, it
can act directly on the large-scale flow, which is known as
“macro-feedback” (caused by the mean Lorentz force) and has
been applied in several mean-field models (e.g., Schüssler 1979;
Brandenburg et al. 1992). Secondly, it can affect the large-scale
flow by affecting the convective motions and the best example of
this is the magnetic quenching of the Λ effect, which is known
as “micro-feedback” (for an application, see Küker et al. 1999).

To get an idea of these effects we measure the φ compo-
nent of the Lorentz force (which appears in the zonal momen-
tum equation) from the large-scale magnetic field (J × B)φ and
the small-scale contribution ( j × b)φ, which are shown in Fig. 15
both during magnetic maximum (left two panels) and minimum
(right two panels) from Run A. We see that the small-scale
Lorentz force, which enters into the total stress and thus theΛ ef-
fect, is typically stronger than the Lorentz force of the large-scale
field and both have significant temporal variations, becoming
weaker during magnetic minimum. Clearly both contributions
are important, which was already emphasized by Beaudoin et al.
(2013), who discussed in detail the differences in the integrated
stresses for hydrodynamic and magnetic models in the case of
SL rotation. Our results also show that both small-scale and
large-scale contributions to the Lorentz force are responsible for
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Fig. 15. From Run A: contributions of the φ component of the large-
scale Lorentz force J × B and small-scale Lorentz force j × b during a
magnetic maximum (left two panels) and minimum (right two panels).
Values are given in units of 10−9 N m−3.

producing temporal variations in the large-scale flows. Beaudoin
et al. (2013) also emphasized the importance of magnetic fields
in providing coupling to the radiative interior, which is absent
in their hydrodynamic models. This is also the case in our mag-
netic models, which lack the presence of a lower overshoot layer.
Finally, we note that while the Lorentz force from the mean field
shows, during magnetic maximum, a systematic variation with
distance from the axis, there are variations on similarly small
scales both from the mean and fluctuating fields. This property
is related to poor scale separation and may also apply to real
stars.

3.9. Turbulent angular momentum transport

Numerical simulations have been used on various occasions to
study angular momentum transport in both hydrodynamic and
magnetic cases, but they usually focus on the regime of SL rota-
tion (Brun & Toomre 2002; Brun et al. 2004; Beaudoin et al.
2013). Furthermore, the contributions to the stress are often
integrated over latitude or radius. In such representations, the
stresses from opposite signs tend to cancel.

To make contact with mean-field theory invoking theΛ effect
(Rüdiger 1980, 1989), it is useful to look at the profiles with-
out integration over latitude or radius and to separate between
diffusive and non-diffusive contributions. Simulations have con-
firmed many aspects of Λ effect in mean-field theory (Pulkkinen
et al. 1993; Rieutord et al. 1994). The aim here is to interpret
the differences between hydrodynamic and magnetic cases in the
AS and SL regimes in terms of corresponding changes in the
underlying Λ effect. For this purpose we first compute the con-
tributions of the Reynolds stress Qi j = u′iu

′
j, and the Maxwell

stress Mi j = (ρμ0)−1B′i B
′
j to the angular momentum balance in

the convection zone. Here, primes denote fluctuating quantities,
which are calculated by subtracting the longitudinal mean from
the original quantity, e.g., u′i = ui − ui. The radial and latitu-
dinal angular momentum transports are determined by the off-
diagonal components of Qi j and Mi j, namely Qrφ, Qθφ, Mrφ, and
Mθφ, respectively. In the mean-field theory of hydrodynamics,
the Reynolds stress contributions to angular momentum trans-
port are approximated in terms of the turbulent viscosity νt and
the Λ effect (Rüdiger 1980, 1989)

Qrφ = u′ru′φ ≡ ΛV sin θΩ − νtr sin θ
∂Ω

∂r
, (17)

Qθφ = u′θu
′
φ ≡ ΛH cos θΩ − νt sin θ

∂Ω

∂θ
· (18)

The coefficients ΛV and ΛH are the vertical and horizontal
Λ effects, which are non-diffusive contributions to the Reynolds
stress that arise from the interaction of anisotropic turbulence
and rotation (Kitchatinov & Rüdiger 1995). As in earlier work
(Käpylä et al. 2014), we adopt the mixing length formula to
estimate νt

νt =
1
3 urmsαMLTHp, (19)

where αMLT = 1.7 and Hp(r) = −(∂ ln p/∂r)−1. By computing
urms = urms(r, θ) using φ averages, we get the profile of νt in the
meridional plane.

The two leftmost panels of Fig. 16 show Qrφ and Qθφ nor-
malized by νtΩ0, and the third panel shows νt normalized by
the micro-physical viscosity ν from Run A. We see that Qrφ is
negative in most of the convection zone, which implies inward
transport of angular momentum. This is expected given the fact
that the differential rotation in this case is AS. The negative Qrφ
is in agreement with Rieutord et al. (1994) and Käpylä et al.
(2014). However for Run E, which produces SL differential rota-
tion, Qrφ is positive at low latitudes (Fig. 17). On the other hand,
the latitudinal stress Qθφ is positive (negative) in the northern
(southern) hemisphere, which implies equatorward angular mo-
mentum transport. This is true for both Runs A and E (Figs. 16
and 17). The recent observation of Qθφ (Hathaway et al. 2013)
finds the same sign.

The magnetic field is expected to change the total (Reynolds
and Maxwell) stress over the activity cycle. In fact, magnetic
quenching of the Reynolds stress is known to have important
consequences in mean-field models, particularly in connection
with explaining the origin of the torsional oscillation of the Sun
or grand minima (e.g., Kitchatinov et al. 1999; Küker et al.
1999). Therefore, to see the variations over the activity cycle,
we show Qrφ and Qθφ both during maximum and minimum
phases. Note that these are not computed from one snapshot, but
from averages over four maxima or minima phases. Comparing
top and bottom panels of Fig. 16, we find that Qrφ is slightly
stronger during magnetic maximum, although Qθφ is weaker.
Even if we ignore the fact that our model is very far from that
of Beaudoin et al. (2013), a quantitative comparison of our re-
sults is not straightforward. Moreover, Beaudoin et al. (2013)
show the temporal variations of fluxes integrated across spheri-
cal shells; see their definition of Ir in Eq. (22) and Fig. 7. During
magnetic maximum, our Qrφ becomes stronger, whereas Ir in
Beaudoin et al. (2013) becomes weaker and its overall variation
is higher than ours. The temporal variations of Reynolds stresses
show spatial coherence over all depths as seen in Beaudoin et al.
(2013).

Next, we see in the middle panels of Fig. 16 that νt is signifi-
cantly weaker during maximum because of magnetic quenching.
The normalized value is around 40, which is similar to the value
of Re. We note that νt decreases towards high latitudes, but in-
creases towards deeper regions of the convection zone.

After solving Eqs. (17) and (18) for ΛV and ΛH, using the
computed values of Qrφ, Qθφ, and νt, we find ΛV and ΛH again
during magnetic maximum and minimum. These are shown in
the last two panels of Fig. 16. We see that ΛV is negative in
most of the convection zone, which is in agreement with the find-
ings from the first-order smoothing approximation (Kitchatinov
& Rüdiger 1995, 2005), and with earlier numerical studies (e.g.,
Pulkkinen et al. 1993; Käpylä et al. 2004, 2014; Rüdiger et al.
2005; Käpylä & Brandenburg 2008). However, for Run E with
SL rotation, ΛV is positive at low latitudes and does not change
much from maximum to minimum, which is why we show in
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Fig. 16. Normalized profiles of Qrφ, Qθφ, νt, ΛV, and ΛH for Run A. The top and bottom panels show data averaged over four maxima and minima,
respectively.

Fig. 17. Similar to Fig. 16, but for Run E and time-averaged over the last few maxima and minima.
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Fig. 18. From Run A: RLS
rφ = ur(uφ + Ω0r sin θ), RLS

θφ = uθ(uφ + Ω0r sin θ) (left two panels), Mrφ = B′rB′φ/ρμ0, Mθφ = B′θB
′
φ/ρμ0 (middle two),

MLS
rφ = BrBφ/ρμ0 and MLS

θφ = BθBφ/ρμ0 (right two), normalized by νtΩ�. Upper and lower panels are during magnetic maximum and minimum,
respectively.

Fig. 17 averages over all time. Another important property is
that ΛV is of the same order as νt, which is consistent with ear-
lier findings (Käpylä et al. 2010a). We find that ΛH is positive
for both Runs A and E, which is again in agreement with the
analytical results. Comparing the present results with the hydro-
dynamic counterparts of Käpylä et al. (2014, see their Fig. 10),
we find that the Λ effect, is weaker. This could be a reason for
getting strongly suppressed differential rotation, compared to the
hydrodynamic simulations, particularly in AS cases (Runs A–
BC). Furthermore we see a significant cycle-related variation in
the Λ effect. In AS cases, both ΛV and ΛH are smaller during
maximum (see last two columns in Fig. 16). This could be one of
the reasons for significant temporal variations in the large-scale
flow.

Next we compute the radial and latitudinal components to
the angular momentum transport by the meridional circulation,
RLS

rφ = ur(uφ + Ω0r sin θ) and RLS
θφ = uθ(uφ + Ω0r sin θ). We

show these in Fig. 18 for Run A both, during magnetic maxi-
mum and minimum. Again, they are normalized by νtΩ� using
the νt computed earlier. We see that these stresses, particularly
the latitudinal component, are the most dominating stresses for
transporting angular momentum. This is because in this run we
have strong meridional circulation, mostly poleward near surface
and equatorward near the bottom. We also observe temporal
modulations of transport due to meridional circulation, which
become stronger during magnetic minimum. Therefore this tem-
poral variation could lead to a variation in the differential rota-
tion. In fact, Beaudoin et al. (2013) found significant temporal

variation in the angular momentum flux from meridional cir-
culation and suggested that it could be the primary source of
the torsional oscillations. The temporal variations of RLS

rφ are not
well-correlated spatially, which is also seen in Beaudoin et al.
(2013, see Fig. 7B). For Run E, which is shown in Fig. 19, we
find smaller values of the stresses from the mean flows than in
Run A, which is expected because of a much weaker meridional
circulation in this case.

In the middle four panels of Fig. 18, we show the radial and
latitudinal components of the Maxwell stress, Mrφ = B′rB′φ/ρμ0

and Mθφ = B′θB
′
φ/ρμ0, respectively, from Run A, both during

magnetic maximum and minimum. We see that these are an
order of magnitude smaller than Qrφ and Qθφ and they have
the same signs as Qrφ and Qθφ, respectively. During magnetic
maximum, both Mrφ and Mθφ (top middle panels of Fig. 18)
are significantly larger than during magnetic minimum (lower
middle panels). Therefore the Maxwell stresses may be another
source of the temporal variation in the differential rotation. We
recall that Beaudoin et al. (2013) also find large variations of the
Maxwell stress in their simulation with highly correlated spa-
tial variations. In Run E, shown in middle panels of Fig. 19,
we again find similar values of Mrφ and Mθφ and acting in the
opposite to Qrφ and Qθφ, respectively.

The Maxwell stress discussed above contributes to the
redistribution of angular momentum by fluctuating (non-
axisymmetric) magnetic fields. The mean axisymmetric field
also contributes to the angular momentum balance (see, e.g.,
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Fig. 19. Same as Fig. 18 but from Run E and averaged over last few maxima and minima.

Brun et al. 2004; Beaudoin et al. 2013). This mean contribution
is the result of correlations of the mean toroidal field with the
radial and latitudinal components of the mean magnetic fields,
which are MLS

rφ = BrBφ/ρμ0 and MLS
θφ = BθBφ/ρμ0. The two

rightmost columns of panels in Fig. 18 show these two terms
from Run A, both during magnetic maximum and minimum. For
Run E, they are shown in the two rightmost panels of Fig. 19.
Again we see that both components of the stress from the mean
field are much smaller than the Reynolds stresses Qrφ and Qθφ
and comparable to the fluctuating contributions, Mrφ and Mθφ.
Importantly, they become much weaker during magnetic mini-
mum. The variation in the large-scale magnetic tension is much
larger than the variations in the other stresses and also much
larger than what Beaudoin et al. (2013) found. They concluded
that the variation in the large-scale magnetic tension is not re-
sponsible for the torsional oscillations. Comparing the top and
bottom rows of the four rightmost panels of Fig. 18, we see
that the temporal coherence of the spatial structures is not pre-
served during the activity cycle, which was also observed by
Beaudoin et al. (2013). However, we must bear in mind that here
we are comparing our Run A, which produces AS differential ro-
tation, with a SL case in Beaudoin et al. (2013). In our SL cases,
there are no prominent cycles and the temporal variations in the
stresses are less pronounced than in Run A.

4. Conclusion

Motivated by the recently discovered bi-stability of stellar dif-
ferential rotation in hydrodynamic spherical convection sim-
ulations (Gastine et al. 2014; Käpylä et al. 2014), we have
performed several sets of magnetohydrodynamic simulations.
Except for the allowance of dynamo-generated magnetic fields,
our models are essentially the same as those of Käpylä et al.
(2014). Taking different radiative conductivities, the convective
velocities and hence the rotational influence are varied in the
simulations. Runs A, B, and BC (Co = 1.34, 1.35, and 1.38)
produce AS differential rotation, whereas Runs C, D, and E
(Co = 1.44, 1.67, and 1.75) produce SL differential rotation.
When we take an AS (SL) rotation profile as initial condition
and perform a set of simulations by slowly increasing (decreas-
ing) the radiative conductivity, we find similar states of differ-
ential rotation as in simulations that were started from scratch,
i.e., with an initially rigid rotation profile. Therefore the bistable
states of differential rotation seem to disappear in the MHD sim-
ulations, and we only find mono-stable solutions.

Besides the disappearance of the bistable differential rotation
in MHD simulations, we find several other new results: (i) the
abrupt transition from AS to SL rotation in hydrodynamic sim-
ulations now seems to become more gradual and this transition
happens at slightly larger values of Roc (≈0.66) and thus smaller
values of Co (≈1.4). This means that the magnetic field helps to
produce SL differential rotation, which is also in agreement with
the recent study of Fan & Fang (2014). (ii) The polar vortices or
jet-like structures that were observed in previous hydrodynamic
simulations (e.g., Heimpel & Aurnou 2007; Käpylä et al. 2014)
are now absent. (iii) Both differential rotation and meridional
circulation are now strongly suppressed in comparison to the hy-
drodynamic values and lie within the observed range. The sup-
pression of these large-scale flows in the magnetic runs, partic-
ularly in AS differential rotation cases, could be a consequence
of a reduction of the Λ effect and the presence of the Lorentz
force of the magnetic field acting on the flow (Malkus & Proctor
1975). (iv) The large-scale flows show significant time variation
as a consequence of the magnetic variations. All cases with AS
differential rotation (Runs A–BC) show clear activity cycles and
their large-scale flows have corresponding variations. Run A,
which is more solar-like in terms of its highest convective flux
and lowest Co value, shows ≈6% variation in Ω(r, θ) about its
mean. However the variation in meridional circulation is as large
as 60% and in large-scale shear, Δ(r)

Ω
and Δ(θ)

Ω
, the variations are

about 75% and 160%, respectively. All runs that produce SL dif-
ferential rotation (Runs C–E) also show some magnetic varia-
tions, although they are not as regular and prominent as for AS
differential rotation. In these runs we also see a detectable tem-
poral variation in the large-scale flows, which is primarily caused
by the variations of the large-scale (axisymmetric) magnetic ten-
sion, the Maxwell stresses, and the stress from the mean flow.
For Run E, which has the smallest convective flux and SL differ-
ential rotation, the variation in Ω(r, θ) is about 4%, whereas in
both meridional circulation and large-scale shear the variation is
about 50%.

Many authors simulate the large-scale flows in stellar con-
vection zones using hydrodynamical models assuming that the
magnetic field does not have a significant effect (Brun & Toomre
2002; Ballot et al. 2007; Gastine et al. 2013, 2014; Guerrero et al.
2013; Käpylä et al. 2014, to mention just a few). It is difficult
to quantify the effects of dynamo-generated magnetic fields on
flows in the Sun from simulations as all the existing models are
still far from the real Sun. However, from observations (Chou &
Dai 2001; Hathaway & Rightmire 2010; Antia et al. 2008) we
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do see significant variations in both meridional circulation and
rotational shear as well as a small variation in differential rota-
tion in the form of torsional oscillations, which are believed to be
(at least partially) coming from cyclic variations of the magnetic
fields. The present study suggests that magnetic fields cannot be
neglected in simulating the large-scale flows in the solar convec-
tion zone.
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