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ABSTRACT

Recent work by Mitra et al. (2014) has shown that in strongly stratified forced two-layer turbulence with helicity
and corresponding large-scale dynamo action in the lower layer, and nonhelical turbulence in the upper, a magnetic
field occurs in the upper layer in the form of sharply bounded bipolar magnetic spots. Here we extend this model to
spherical wedge geometry covering the northern hemisphere up to 75° latitude and an azimuthal extent of 180°.
The kinetic helicity and therefore also the large-scale magnetic field are strongest at low latitudes. For moderately
strong stratification, several bipolar spots form that eventually fill the full longitudinal extent. At early times, the
polarity of spots reflects the orientation of the underlying azimuthal field, as expected from Parker’s Ω-shaped flux
loops. At late times their tilt changes such that there is a radial field of opposite orientation at different latitudes
separated by about 10°. Our model demonstrates the spontaneous formation of spots of sizes much larger than the
pressure scale height. Their tendency to produce filling factors close to unity is argued to be reminiscent of highly
active stars. We confirm that strong stratification and strong scale separation are essential ingredients behind
magnetic spot formation, which appears to be associated with downflows at larger depths.
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1. INTRODUCTION

Solar activity is characterized by the formation of magnetic
spots. Sunspots are relatively small concentrations of magnetic
field at the surface, where the radiation is suppressed
significantly, making these regions cooler than their surround-
ings. Similar phenomena are also expected to occur on other
stars exhibiting magnetic cycles, although the starspots
observed so far all tend to be significantly larger than sunspots
and not necessarily spatially correlated with the surface
temperature (Kochukhov et al. 2013). There is little doubt that
magnetic spots are associated with an underlying dynamo in
the outer convection zones of these stars, but it is not clear
whether they are caused by deeply rooted magnetic flux tubes
at the bottom of the convection zones (Caligari et al. 1995), or
whether they are merely shallow magnetic concentrations
formed locally where the near-surface magnetic field exceeds a
certain threshold. Magnetic field visualizations from convec-
tively driven dynamo simulations have shown serpentine-
shaped flux tubes that can be expected to intersect the surface
(Fan & Fang 2014; Nelson & Miesch 2014), but these tubes
would expand during their ascent, so some sort of re-
amplification of these tubes would be needed to explain
sunspots.

The foundations of magnetic spot formation have been
developed by Parker (1955), who identified magnetic buoy-
ancy as the main agent responsible for bringing magnetic fields
to the surface. In his subsequent work, Parker (1979) identified
the need for a special mechanism to make these concentrations
sufficiently cool and evacuated so as to explain the observed
values of the magnetic field in sunspots. He postulated the
existence of suitable downflows that would help to evacuate the
magnetic flux tube in its upper parts.

The appearance of such downdrafts in the region of
spontaneously formed magnetic spots has been observed in
the numerical simulations of Brandenburg et al. (2013) using
forced turbulence with weak imposed vertical magnetic field.

Downdrafts have also been seen in simulations of buoyantly
rising flux tubes some time after they reached the surface
(Rempel & Cheung 2014). A possible mechanism for
producing such downflows might well be the negative effective
magnetic pressure instability (NEMPI). It is based on the
magnetic suppression of the total (hydrodynamic plus
magnetic) turbulent pressure. The importance of the difference
in turbulent pressure inside and outside magnetic structure was
first emphasized by van Ballegooijen (1984). Subsequent
mean-field calculations have shown that, if the magnetic
Reynolds number is larger than unity, the effective large-scale
magnetic pressure (sum of turbulent and non-turbulent
contributions) becomes negative and a large-scale instability
(namely NEMPI) can be excited (Kleeorin et al. 1989, 1990,
1996; Kleeorin & Rogachevskii 1994; Rogachevskii &
Kleeorin 2007). This instability redistributes magnetic flux
and can cause the formation of magnetic structures. As the
work of recent years has shown, for horizontal magnetic fields,
negative effective magnetic pressure leads to negative magnetic
buoyancy at sub-equipartition field strengths (Brandenburg
et al. 2010, 2011). However, for vertical fields the return flow
replenishing the downflow occurs predominantly along mag-
netic field lines and has a much larger impact near the surface,
where it can lead to super-equipartition strength flux concen-
trations; Brandenburg et al. 2013). Corresponding mean-field
simulations (MFS; Brandenburg et al. 2014) have displayed
great similarity with Parker’s original picture (Parker 1979),
where he explicitly stated the need for postulating the existence
of downdrafts, leaving however the question about their origin
open. On the other hand, the downflows have strengths of only
about 20% of the turbulent rms velocity and are therefore not
easily recognized among the downflows due to convection.
Depending on circumstances, NEMPI can also lead to the
formation of bipolar spots (Warnecke et al. 2013, 2015) with
super-equipartition field strengths (Mitra et al. 2014). The latter
looks remarkably similar to the bipolar regions found by Stein
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& Nordlund (2012) in realistic simulations of solar convection
with an unstructured magnetic field being supplied at the
bottom of their domain.

Strong stratification is a prerequisite for NEMPI to occur. In
recent direct numerical simulations (DNS) of Mitra et al.
(2014), it was demonstrated that stratification plays a crucial
role in the formation of magnetic spots that have surprisingly
sharp boundaries with opposite polarities on the two sides. In
these simulations, the turbulence in the deeper parts was made
helical such that a large-scale magnetic field can be generated
by the α effect associated with the kinetic helicity of the
turbulence. In the upper part of the domain in the DNS of Mitra
et al. (2014) the forcing was non-helical, so there is no α effect,
but NEMPI can still work. What is surprising in those
simulations is the fact that the magnetic fields in these
structures exceeds the equipartition value by a factor of three
or more. Since the effective magnetic pressure has not been
measured in the simulations of Mitra et al. (2014), it is not
obvious that the underlying mechanism is actually related to
NEMPI, even though downflows with a strength of about 20%
of the turbulent velocity have been detected by Mitra et al.
(2014). The physics of the formation of sharp magnetic edges
of bipolar structures in the turbulent flow remains however
elusive.

The magnetic field from the dynamo simulations of Mitra
et al. (2014) had the property of extending over the entire
horizontal length of the domain. As a consequence, only one
bipolar structure was produced, which occasionally developed
horizontal bands extending again over the full length of the
horizontally periodic domain. To overcome this artifact of
periodic boundary conditions, it is important to consider larger
domains with either no or at least with physically motivated
boundary conditions. A spherical shell is an obvious choice.

The dynamics of NEMPI from dynamo-generated magnetic
fields in spherical shells or wedges has recently been studied by
Jabbari et al. (2013) in a MFS, although in their case the
dynamo mechanism operated throughout the domain and not
just below a certain depth, as in the DNS of Mitra et al. (2014).
Here we combine the two-layer setup of Mitra et al. (2014)
with the shell geometry used in the MFS of Jabbari et al.
(2013). There is also another DNS study by Jabbari et al.
(2014) in which they investigated a combined system of
dynamo and NEMPI in Cartesian geometry. In that paper, the
combination of rotation and stratification leads to an α2

dynamo. In the present work, we ignore rotation to understand
first a simpler case using instead helically forced turbulence.
Investigation of a similar system with rotation and shear will be
the subject of a future study.

The purpose of the present paper is to study forced
turbulence in a strongly stratified spherical shell. As in Mitra
et al. (2014), the turbulence is made helical below a certain
radius ⋆r so as to enable the formation of large-scale magnetic
fields by the α2 dynamo mechanism. The sign of the helicity is
assumed to change across the equator. This leads to the
formation of dynamo waves that travel toward the equator with
opposite polarity in the southern hemisphere (Mitra et al.
2010). This is a property that has been associated with the
choice of perfectly conducting boundary conditions at high
latitudes of the wedge. On the other hand, changing the high-
latitude boundary condition to a normal field condition (often
referred to as a vertical field condition) causes dynamo waves
to propagate away from the equator and toward high latitudes,

but now with the same polarity in both hemispheres
(Brandenburg et al. 2009). In the present paper, we reconsider
the former case and apply a suitable boundary condition at the
equator to cut the computational costs.
There is another potential artifact of the dynamo waves of

Mitra et al. (2010) in that they tend to occur at high latitudes
where the kinetic helicity is assumed largest. On the other hand,
we have seen in DNS of turbulent convection in spherical
shells that kinetic helicity is in fact concentrated to regions
outside the inner tangent cylinder of the shell (Käpylä
et al. 2012b). This restricts the kinetic helicity essentially to
low latitudes below °45 . We model this feature here by
assuming a suitable profile for the kinetic helicity of the forcing
function in the deeper parts of the shell.

2. THE MODEL

In this paper we investigate a system similar to that of Mitra
et al. (2014), but in spherical geometry assuming either
symmetric (quadrupolar) or anti-symmetric (dipolar) field
properties about the equator. Jabbari et al. (2013) used MFS
in spherical geometry to show how the large-scale dynamo can
interact with NEMPI in such a coupled system. In their MFS,
the mean-field Lorentz force was parameterized, which is
subject to uncertainties. It is therefore useful to perform DNS
and to study how the results depend on domain size, density
stratification, geometry, and boundary conditions. As explained
above, the main difference here is the fact that the forcing is not
uniform in whole domain. As in Mitra et al. (2014), our
domain is divided into two parts. We apply helical forcing
(which leads to an alpha squared dynamo) in the lower part of
the domain and non-helical forcing in the upper part of the
domain. The position of the border between these two areas is
varied to see how it affects the results. We expect to detect
similar intense bipolar region of earlier DNS of Mitra
et al. (2014).
We use an isothermal equation of state, so no convection is

possible. Therefore, turbulence is driven using volume forcing
given by a function f that is δ-correlated in time and
monochromatic in space. It consists of random non-polarized
waves whose direction and phase change randomly at each
time step. We present a more detailed discussion about forcing
in Section 2.2.

2.1. Basic Equations

In DNS of an isothermally stratified layer we solve the
equations for the velocity U , the magnetic vector potential A,
and the density ρ,

S ρ ρ νρ ρ= × − + + +U
J B f g

D

Dt
c · (2 ) ( ), (1)s

2

η∂
∂

= × + ∇A
U B A

t
, (2)2


ρ ρ∂

∂
= − U

t
· , (3)

where the operator = ∂ ∂ + UD Dt t · is the advective
derivative, η is the magnetic diffusivity, = ×B A is the
magnetic field, = ×J B μ0 is the current density,

S δ= + − UU U( ) ·ij i j j i ij
1

2 , ,
1

3
is the traceless rate of strain

tensor (the commas denote partial differentiation), ν is the
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kinematic viscosity, cs is the isothermal sound speed, and μ0 is
the vacuum permeability. We adopt spherical coordinates
( θ ϕr, , ).

For the ϕ direction we use periodic boundary conditions. In
the radial direction (the direction of the stratification), we
consider perfectly conducting boundary conditions at the
bottom and a vertical field boundary condition at the top. At
the equator, we adopt a symmetry condition such that the
magnetic field is either symmetric (quadrupolar) or anti-
symmetric (dipolar) with respect to the equator. For the
magnetic field we assume perfect conductor boundary condi-
tions on the latitudinal (θ θ= 0) and lower radial ( =r r0)
boundaries, and radial field boundary conditions on the outer
radius (r = R). On the equator, we assume either dipolar or a
quadrupolar symmetry. In terms of the magnetic vector
potential these conditions translate to

∂
∂

= = = =θ ϕ
A

r
A A r r0 ( ), (4)r

0

=
∂
∂

= −
∂
∂

= − =θ θ ϕ ϕ
A

A

r

A

r

A

r

A

r
r R0, , ( ), (5)r

θ
θ θ=

∂
∂

= = =θ
ϕ ( )A

A
A π0 , 2 (6)r 0

for quadrupolar symmetry and

θ θ
θ

∂
∂

= =
∂
∂

= =θ
ϕA

A
A

π0 ( 2) (7)r

for dipolar symmetry.
For the velocity field we use stress-free, non-penetrating

boundary conditions in the radial direction. The gravitational
acceleration is = − Φg , where

Φ = − −
⎛
⎝⎜

⎞
⎠⎟r GM

r r
( )

1 1
. (8)

m

Here G is Newton’s constant and M is the mass of the sphere
(or star). For an isothermal gas, the hydrostatic density
stratification obeys ρ ρ= −Φ cexp( )s0

2 , where ρ ρ= 0 is the
density in the middle of the shell at = = +r r r R( ) 2m 0 . The
radial component of the gravitational acceleration is then

= −g GM r2. The quantity GM determines the density contrast
ρ ρΓ =ρ bot top between bottom and top of the domain. Initially,

we have Γ = −ρ R rexp( 1)GM Rc
0 s

2
. The density scale height is

given by =ρH c GMs
2 . The thickness of the shell is

Δ = −r R r0, and it is used to define a reference wavenumber
= Δk π r21 .

2.2. The Forcing Function

The forcing function f is similar to that of Mitra et al.
(2014),

φ= +⎡⎣ ⎤⎦f x f k k xt N t i i( , ) Re ˜ ( , )exp( · ) , (9)

where x is the position vector, φ− < ⩽π π is a randomly
selected phase, and k is the wavevector which is chosen from a
set of wavevectors in a certain range around a given forcing

wavenumber, k f . The Fourier amplitudes, f k˜ ( ), are defined as

R R
δ σ

σ
= =

−

+


f k f k

i k
˜ ( ) · ˜ ( ) with

ˆ

1
, (10)ij

ij ijk(nohel)

2

where σ characterizes the fractional helicity of f , and

= × −( ) ( )f k k k ke e˜ ( ) ˆ · ˆ (11)(nohel) 2 2

is a non-helical forcing function, and ê is an arbitrary unit
vector not aligned with k and k̂ is the unit vector along k; note
that ∣ ∣ =f̃ 12 . The degree of helicity is modulated in space via
the function

σ θ
σ

θ θ= −
−⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥r

r r

w
( , )

2
1 erf * cos sin , (12)

f

nmax

where erf is the error function, r* is the radius above which the
helicity vanishes, w f is the width of the transition layer, and the
exponent n determines the latitudinal helicity profile. We
choose =w 0.01f for all the simulations. The amplitude of the
forcing is, however, independent of r and therefore also the rms
velocity is essentially independent of r. For more details of this
type of forcing see Mitra et al. (2014).
We note that the degree of helicity of the forcing function is

here assumed to be independent of the degree of stratification.
In reality, of cause, helicity is actually a consequence of
stratification together with rotation (Krause & Rädler 1980).
We return to this question in the conclusions, where we discuss
possible artifacts resulting from this assumption.

2.3. Parameters of the Simulations

During the exponential growth phase of the dynamo, the
growth rate is calculated as λ = d B dtln rms . The non-dimen-
sional growth rate is given as λ λ= u k˜

frms . However, the time
of the simulation is normally specified in terms of the turbulent-
diffusive time τ η= −k( )td t0 1

2 1, where η = u k3 ft0 rms is the
estimated turbulent diffusivity. In most of the calculations, we
use a scale separation ratio k kf 1 of 30 and a fluid Reynolds
number ν≡ u kRe frms of 20. Our magnetic Prandtl number

ν η=PrM is 1, so the magnetic Reynolds number is then
= =Re Pr Re 20M M . These values are chosen to have both k f

and Re large enough for NEMPI to develop at an affordable
numerical resolution. The magnetic field is expressed in units
of local equipartition magnetic field, ρ=B r μ r u( ) ( )eq 0 rms,
where ρ r( ) is the density averaged over time and spherical
shells. We also define ρ=B μ ueq0 0 0 rms. In the following, we
use non-dimensional units by setting ρ= = =c μ 1s 0 0 .

We perform simulations with values of GM Rcs
2 between 1

and 17. With − ≈R rexp( 1) 1.540 , this implies that

Γ ≈ρ 1.54GM Rcs
2
between 1.5 and 1460 for the initial values.

In the following, however, we quote the values from the
relaxed run. We perform simulations with different values of
Γρ, which enables us to study the effect of stratification on the
formation of magnetic structures. The corresponding stratifica-
tion parameter of Jabbari et al. (2014), = ρ

−k HGr ( )f
1, varies

then between 0.002 (for =GM Rc 1s
2 ) and 0.03 (for

=GM Rc 17s
2 ). Even the latter value is still rather small

compared with the value of 0.16 expected from solar mixing
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length theory. Increasing the value of Gr leads to a slight
decrease of the growth rate of NEMPI compared with the
theoretically expected value; see Jabbari et al. (2014) for
details.

For most of the simulations, we choose n = 6 in
Equation (12), i.e., the helicity is maximum at lower latitudes.
This is also the case for our two reference runs, which have
Γ =ρ 450 and either quadrupolar or dipolar parity. However,
for comparison we also present cases where n = 0.

We use the PENCIL CODE
4 to perform DNS. This code uses

sixth-order explicit finite differences in space and a third-order
accurate time-stepping method. We use =r R0.70 and
θ = °150 . For runs with a ϕ extend of π, we use a numerical
resolution of × ×256 1152 1152 mesh points in the r, θ, and ϕ
directions, and × ×256 1152 288 for all other runs. Table 1
shows all runs with their parameters.

3. RESULTS

3.1. Nature of the Dynamo

MFS of α2 dynamos in spherical wedges have shown that the
magnetic field is strongest near the high-latitude boundaries
(Jabbari et al. 2013). However, in rapidly rotating stratified
spherical shell convection, the kinetic helicity is typically found
to be maximum close to the equator, e.g., at ± °15 latitude
(Käpylä et al. 2012b). For this reason, we focus in the present
paper on the case n = 6, which yields a maximum of the
magnetic field at about °22 .

In Figure 1 we show butterfly diagrams of θB t B( , )r eq at
=r R 0.75, 0.8, and 0.95 and ϕ = 0. We observe equatorward

migration of the magnetic field at low latitudes (below °20 ) and
poleward migration at higher ones. Note, however, that the
latitudinal variation of the magnetic field is much more
complex than the field variations of similar mean-field
calculations (Jabbari et al. 2013) and even DNS with forced
unstratified turbulence (Warnecke et al. 2011). A possible
reason for this can be the larger aspect ratio of the dynamo-

active layer, which is now rather thin. This can lead to a larger
number of toroidal flux belts (Moss et al. 1990). Another
reason could be the comparatively short run time ( τ6.5 td),
which might imply that the field is still in a transient. However,
in view of the comparatively large spatial resolution
( × ×256 1152 1152 mesh points), longer runs become
computationally prohibitive. Note also the occurrence of sharp
structures in the bottom panel of Figure 1 at τ ≈t 5.5td (and
also ≈3.5). This rapid time variation is a consequence of
plotting the field at fixed values of ϕ (here ϕ = 0) and the fact
that the non-axisymmetric structures drift in ϕ (here in the
westward direction).
The observed dynamo wave is generated by an α2 dynamo.

The fact that α2 dynamos with nonuniform α distribution can

Table 1
Summary of the Runs. The Reference Run is Shown in Bold

Run Γρ ⋆r ϕ ext. ReM n b.c. σmax λ̃
Q1 2 0.8 π 20 6 Q 1 0.079
Q1b 30 0.8 π 20 6 Q 1 0.085
Q1c 70 0.8 π 20 6 Q 1 0.083
Q2 450 0.8 π 20 6 Q 1 0.084
Q3 1400 0.8 π 20 6 Q 1 0.074
Q4 450 0.75 π 20 6 Q 1 0.074
D1 2 0.8 π 20 6 D 1 0.087
D2 450 0.8 π 20 6 D 1 0.082
D3 1400 0.8 π 20 6 D 1 0.077
D4 450 0.8 π 20 6 D 0.2 0.11
D5 450 0.8 π 20 6 D 0.5 0.11
R1 450 0.8 π 4 20 6 D 1 0.0083
R2 450 0.8 π 4 40 6 D 1 0.075
H1 2 0.8 π 20 0 Q 1 0.087
H2 450 0.8 π 20 0 Q 1 0.083
H3 1400 0.8 π 20 0 Q 1 0.076
H4 450 0.75 π 20 0 Q 1 0.081

Note. The column “b.c.” indicates whether the equatorial boundary condition is
dipolar (D) or quadrupolar (Q).

Figure 1. Butterfly diagram for our reference run (Run D2 with Γ =ρ 450) at
=r R 0.75 (top), 0.8 (middle), and 0.95 (bottom).

4 http://pencil-code.googlecode.com

4

The Astrophysical Journal, 805:166 (11pp), 2015 June 1 Jabbari et al.

http://pencil-code.googlecode.com


be oscillatory was known for some time (Shukurov et al. 1985;
Baryshnikova & Shukurov 1987; Stefani & Gerbeth 2005), but
their migratory properties were first pointed out by Mitra et al.
(2010). Not surprisingly, the magnetic field is generated in the
lower layer, as can be seen from Figure 2 where we show
meridional cross-sections of θB r B r( , ) ( )r eq at ϕ = 0 at six
different times. In this sequence we have chosen a fixed color
scale that saturates at the equipartition level. This allows us to
see at which times and heights the field reaches equipartition.
However, to see the spatial variation of the field, we show in
Figure 3 the first and last times with a color range that saturates
at 0.1 and 10 times the equipartition value.

We note that during the early growth phase of the dynamo,
the magnetic field grows exponentially and the non-dimen-
sional growth rate is of the order of 0.1 (in units of the inverse
turbulent diffusion time). It increases with magnetic Reynolds
number (cf. Runs R1 and R2), which might be related to the
possibility of small-scale dynamo action. This is supported by
the fact that the growth rate is not increasing with helicity (cf.
Runs D2 and D4).

3.2. Spot Formation

Next, we consider the surface appearance of the radial
magnetic field. We see the formation of structures at low

latitudes in less than a turbulent diffusive time. At first a few
bipolar regions form. As time goes on, these structures move,
rotate, and expand, and after a long enough time they form a
strong field concentration which move toward the equator and
forms three band-like structures with opposite polarities (see
Figures 4 and 5). A similar behavior was also observed by
Mitra et al. (2014); see Figures 3 and 4 of their paper.
Figures 4 and 5 illustrate the time evolution of our reference

simulations (Runs Q2 and D2) with Γ =ρ 450. As one can see,
at early times of bipolar spot formation, the two polarities are
very close to each other. One sees that each polarity consists of
a core with strong field and a shadow around it with weaker
field. As time elapses, both core and the shadow expand but the
speed of the expansion of the shadow is larger than the speed of
expansion of the core. This implies that two polarities start
moving apart form each other. The rest of the evolution is
somewhat different for Runs Q2 and D2. For Run Q2, the
bipolar spot orientation is preferentially in the azimuthal
direction, both at early and later times. For Run D2, on the
other hand, the spots tilt in such a way that the part of the
structure with the same polarity tends to occupy a certain
latitudinal band, while that of the opposite orientation occupies
a band at a different latitude; see Figure 5. This global structure
remains without change, no matter how much time passes.
The time dependence of magnetic energy and its radial

profile are shown in Figure 6 for different normalizations.
Different colors correspond to different degrees of stratifica-
tion. Earlier studies have demonstrated the importance of
stratification in the formation of structures through NEMPI. In
fact, by increasing the stratification, the structures were found
to be more intense. For the highest stratification (Γ =ρ 1400),
the total magnetic energy becomes somewhat larger than for
Γ =ρ 450, although the strength of the spots is about the same.
This suggests that there might be an upper limit for the density
contrast. A similar effect was also observed in the work of
Jabbari et al. (2014), which they referred to as gravitational
quenching, which saturates or even suppresses NEMPI. We
must also remember that NEMPI can only work in regions
where the magnetic field relative to the equipartition value is in
the optimal range (Kemel et al. 2012; Brandenburg et al. 2014;
Losada et al. 2014). However, in our strongly stratified system,
the regions where this would be the case can become rather
shallow. This gives another geometric constraint on the
possibility of NEMPI, which was already discussed by Losada
et al. (2014) in connection with polytropic stratifications,
where this limitation can become particularly severe. Further

Figure 2. Meridional cross-sections of B Br eq at different times for Run Q2.

Figure 3. Similar to the first and last panels of Figure 2, but the range of the
color scale is adapted to the actual extrema.
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studies are needed to understand the implications of this
geometric effect.

The middle panel of Figure 6 shows that in the deeper parts
( ⩽r R 0.77), the normalized magnetic field strength is
virtually independent of stratification. This demonstrates that
the dynamo is not affected by stratification or the resulting spot
formation. In the upper layers, on the other hand, the ratio

〈 〉B B r( )2
eq
2 varies significantly between the runs with different

stratification. This is mainly a consequence of the strong
variation of Beq, which can be seen from the bottom panel

where 〈 〉B B2
eq0
2 is shown.

Figure 7 shows the time evolution of B Br eq0 in the ϕr plane
along the active region belt (θ = °22 ). One can see the
formation of dynamo-generated large-scale field at the bottom
and an intense magnetic field concentration at the surface layer.
There is a similarity between Figures 7 and 8 of Mitra et al.
(2014), because in both cases there appears to be a mechanism
that concentrates the dynamo-generated sub-equipartition field
in the deeper parts into super-equipartition field in the upper.

3.3. Inclination Angle

Our spots show a systematic east–west orientation with
negative vertical field on the left and positive values on the
right. In addition, some of the regions also show a certain tilt,
although the apparent yin-yang structure makes it hard to say
whether the tilt angle is positive or negative. Most of the
bipolar regions are oriented in a similar fashion, although there
is also a large fraction of spots that show random orientation.
Parker (1955) suggested that sunspot pairs are produced by the
buoyant rise of a flux tube, which takes the form of an Ω loop
near the surface. To see whether this is also the case in the
present simulations, we show B Br eq at the surface together
with field vectors projected onto the horizontal plane (Figure 8).
Note that the vectors tend to point in the negative ϕ direction,
i.e., the azimuthal field points to the left. In most of the bipolar
spots in this figure, B Br eq tends to be positive on the right-
hand side of the spot (pointing upward) and negative on the
left-hand side of the spot (pointing downward). This
corresponds to the expected Ω loop scenario.

3.4. Dependence on ⋆r , σmax, Reynolds Number,
Stratification, and Scale Separation

We recall that we adopt a similar forcing setup as Mitra et al.
(2014) with a transition at a radius ⋆r from helical forcing in the
deeper parts to non-helical in the upper parts. Mitra et al.
(2014) found that, when the border is moved closer to the
bottom of the convection zone, the structures appear later. This

Figure 4. Time evolution of B Br eq at =r R 0.98 for a simulation with Γ =ρ 450 for Run Q2.

Figure 5. Same as Figure 4, but for Run D2.

Figure 6. Upper panel: time evolution of 〈 〉B B r( )2
eq
2 for Runs D1 (dotted,

blue), D2 (solid, black), and D3 (dashed, red). Middle panel: radial
dependence of 〈 〉B B r( )2

eq
2 at τ =t 1td for Runs D1–D3. The inset shows

the radial dependence of 〈 〉B B r( )2
eq
2 for Run D2 inside the <r R 0.8 (helical

zone) at τ =t 0.2td (dotted), 0.6 (dashed), and 1 (solid). Lower panel: radial
dependence of 〈 〉B B2

eq0
2 for fixed normalization.
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is due to the fact that it takes a longer time for dynamo to affect
the upper layers. Similar behavior was observed when the
helicity parameter σmax is decreased from its maximum value of
1. In such a case the formation of structures occurs again with
time delay, which is due to the weaker dynamo.This is shown
in Figure 9, where we present the time evolution of B Br eq at

=r R 0.98 for Run D5 with σ = 0.5max . One can see the
appearance of spots at later times ( τ ≈t 2td ). Figure 9 also
illustrates the fact that by weakening the helicity the spots
become more intense and regular in comparison with the fully
helical case (compare with Figure 4). However, the present
simulations show that the dynamo growth rate does slightly
increase with decreasing helicity; cf. Runs D2 and D4 or D5.
On the other hand, lowering the value of ⋆r does lead to a small
decrease of the growth rate; cf. Runs Q2 and Q4 as well as
Runs H2 and H4.
The effect of stratification on the formation of the spot is

shown in Figure 10. For the lowest density contrast, no
structures form, independently of time, size of the shell, value
of Reynolds number, and position of the border between helical
and non-helical turbulence. This confirms that stratification
plays a crucial role in the formation of bipolar regions.
Simulations with different density contrasts (Γρ between 2 and
1450) show that bipolar structures form for Γρ larger than 30.
We note that for weak stratification (Γ =ρ 30 for instance)
spots appear only at late times ( τ ≈t 3td ), while for stronger
stratifications (Γ =ρ 70) they appear earlier ( τ ≈t 1td ) and are
more concentrated. In the deeper parts ( =r R 0.75), on the
other hand, the magnetic field evolution for Run Q1 with weak
stratification is similar to that of Run Q2, which demonstrates
that the dynamo is not effected by the strength of stratification.
One also sees that the late time evolution of the magnetic field
is similar for Runs Q1 and Q2, even though spots form in
Run Q2, but not in Q1. This suggests that the formation of
spots does not affect the dynamo. In spherical geometry, it is
possible to investigate the effect of different ϕ extent on the
formation of structures. Not surprisingly, it turns out that for
small ϕ extent (below π 6) the size of the spots is limited by
the domain size because the formation of strongly innomogen-
ous structures requires strong-scale separation between the
energy-carrying eddies and the domain.

3.5. Effective Magnetic Pressure

To assess whether NEMPI is operating, we now calculate the
effective magnetic pressure, following Brandenburg et al.
(2012) and adapting the formulation to the spherical case. The
total stress from the fluctuating velocity and magnetic fields is
given by

ρ δΠ = + −bu u b b
1

2
, (13)ij

f
i j ij i j

2

where the superscript f denotes the fluctuating terms. In the
following we only need the three diagonal components of Πij

f ,

which we denote by Πi
f , where i refers to r, θ, or ϕ. As we are

interested in the contribution from the part that results from the
mean field, we should calculate the stress also for zero mean

Figure 7. ϕr projection of B Br eq0 along the active region belt for Run D2.

Figure 8. Mercator projection of B Br eq with θ ϕB B( , ) vectors superimposed
just below the surface at τ =t 0.7td for Run Q2.
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field and subtract it from the total stress, so

ρΔΠ = − + − − −( ) ( ) ( )b bu u b b
1

2
, (14)i

f
i i i i
2

0
2 2

0
2 2

0
2

where subscript 0 refers to the case with zero mean magnetic
field. But as the background field is here dynamo-generated, we
use the values of the related quantities in the upper part of the
domain (non-helical part) at early times. This gives us the
possibility to estimate the effective magnetic pressure in
spherical geometry with dynamo-generated magnetic field. In
Equation (14), ΔΠi

f denotes the three diagonal components of

the tensor ΔΠij
f . In the mean-field description, it depends on the

mean magnetic field B and is parameterized as

β β δΔΠ = − +⎜ ⎟⎛
⎝

⎞
⎠Bq q q g gˆ ˆ 1

2
ˆ ˆ , (15)ij

f
s i j p ij g i j

2

where β̂i and ĝi are the unit vectors along B and g, respectively.
The effective magnetic pressure is defined as a sum of non-
turbulent and turbulent contributions:

β= − ( )q
1

2
1 , (16)peff

2

where β = B B2 2
eq
2 and qp is a turbulent transport coefficent

that depends on the mean magnetic field and can be computed
from the DNS as

= − ΔΠ + ΔΠ − +θ ϕ θ ϕ
⎡⎣ ⎤⎦( )

B
q q B B

1
, (17)p

f f
s2

2 2

with

= ΔΠ − ΔΠ −θ ϕ θ ϕ( ) ( )q B B , (18)s
f f 2 2

and

= −ΔΠ + −
⎡
⎣⎢

⎤
⎦⎥B

Bq q B q
1 1

2
. (19)g r

f
s r p2

2 2

Previous studies (Brandenburg et al. 2012; Käpylä
et al. 2012a) in Cartesian geometry have shown that qs and
qg are very close to zero. This is also confirmed by the present

simulations, where ΔΠ − ΔΠθ ϕ
f f is found to correlate poorly

with −θ ϕB B2 2. We therefore ignore qs and qg in most of the
following.
Next, we subtract the time average of an early time interval

between times t1 and t2 and compute the diagonal components
of the change of the stress as

∫

θ θ

θ

ΔΠ = Π −
−

× Π ′ ′

r t r t
t t

r t dt

( , , ) ( , , )
1

( , , ) ,
(20)

i
f

i
f

t

t

i
f

2 1

1

2

where τ=t 0.11 td and τ=t 0.52 td denote the time interval over
which the turbulence in the upper layer is not yet affected by
the mean magnetic field. We thus compute

= − ΔΠ + ΔΠθ ϕ( )q B , (21)p
f f 2

so we get β= − q(1 )peff
1

2
2.

In Figure 11 we show eff versus t and θ for =r R 0.85
using Runs Q1, Q2, and Q3. The bottom panels show scatter
plots of β ( )eff . It is customary to fit such data to an expression
of the form (Kemel et al. 2012)

β β β β= +( )q ( ) , (22)p p*
2 2 2

Figure 9. Time evolution of B Br eq at =r R 0.98 for a simulation with σ = 0.5max (Run D5).

Figure 10. B Br eq at =r R 0.98 for simulations with different stratifications for Runs Q1, Q2 and Q3 with density contrasts 2, 450 and 1400 from left to the right,
respectively.
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where β β( *, )p is a set of fit parameters. They have previously
been determined for Cartesian simulations with an imposed
magnetic field (Brandenburg et al. 2012). In Figure 11,
the dashed lines show for comparison the result for two
representations of Equation (22) with β β =( *, ) (0.39, 0.013)p

and (0.21, 0.008) for curves with the deeper and less deep
minimum, respectively. Neither of the curves fit the data points
well. Nevertheless, it is important to note that eff is always
negative for β < 0.1, although in the runs with stronger
stratification the number of such points is rather small.

One may speculate that in Runs D2 and D3, which produce
strong fields, there are two stages of magnetic field concentra-
tions. At early times, the field is below the equipartition field
strength, so NEMPI works and the effective magnetic pressure
is negative. At later times, when the field is of the order of or
larger than the equipartition field strength, the effective
magnetic pressure becomes positive and the standard magnetic
buoyancy instability might play a role in bringing magnetic

field to the surface, perhaps as what is seen in Figure 7. We
may conclude that, while there is evidence for negative values
of eff , there may still be other effects playing important roles.
In particular the formation of relatively sharp boundaries of our
spots, which is a marked feature of both the present
calculations and those of Mitra et al. (2014), may be due to
such a new effect. It is reminiscent of the appearance of sharp
structures as a result of ambipolar diffusion under laminar
conditions (Brandenburg & Zweibel 1994). If so, it may be
related to mean-field terms in the induction equation rather than
the momentum equation.
In the near-surface layers, on the other hand, there is no

evidence for negative effective magnetic pressure, as can be
seen from Figure 12 (left panels), where we show the results
for eff at =r R 0.98 and for Γ =ρ 450. This is however
consistent with the idea that spots are formed mainly due to
suction from deeper layers (Brandenburg et al. 2014). For
Run D5 with σ = 0.5max , the results are similar to Run D2,
although eff is slightly smaller (middle panels of Figure 12)

Figure 11. eff vs. t and θ for =r R 0.85 in the top panels, for Γ =ρ 2 (Run D1, left), 450 (Run D2, middle column), and 1400 (Run D3, right). The horizontal lines
in black, red, and blue indicate three latitudes (50°, 35°, and 20°), for which we show eff vs. t in the middle panels. The bottom panels show scatter plots of β ( )eff .

Figure 12. Similar to Figure 11, but for =r R 0.98 and for Γ =ρ 450 at σ = 1max (left), σ = 0.5max (middle), and =r R 0.85, again with σ = 0.5max (right).
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and at =r R 0.85 the values of eff are generally less negative
(right panels of Figure 12).

To check whether there are downflows at greater depth
where NEMPI can act, we compare in Figure 13 for Runs D1,
D2, and, D3 contours of negative and positive vertical velocity,
〈 〉 <Ur kR 50, superimposed on a gray-scale representation of
〈 〉 <B B r( )r kR 100

2
eq
2 at =r R 0.85. Here, 〈 〉· kR denotes Fourier

filtering, applied to obtain smoother contours. (For Br we also
apply some filtering, but only above kR = 100 to eliminate
patterns on the scale of the forcing.)We see that for sufficiently
strong stratification (Runs D2 and D3), there are indeed many
locations where the field is strong and 〈 〉 <Ur kR 50 is negative, but
the correlation is not very strong. However, the speed of the
downflows increases with increasing stratification (compare the
last two panels of Figure 13). Furthermore, since the field
strength exceeds the equipartition value even at this greater
depth, NEMPI must have seized to work. Nevertheless, it could
have operated at earlier times when the field was weaker.

Finally, a comment regarding the possible importance of the
qs term is in order. As we have mentioned above, qs cannot be
determined owing to the poor correlation between ΔΠ − ΔΠθ ϕ

and −θ ϕB B2 2. However, at =r R 0.85 and near °35 latitude,
the correlation is not quite as poor and qs can be determined in
the time interval τ< <t0.7 0.85td , where for Run D2 ≈q 20s
is found. On the other hand, in the neighborhood of this
latitude, qs turns out to be in the range < <q0 20s . The
corresponding values of qg are found to be in the range from −5
to 10. Furthermore, if the qs term in Equation (19) were
ignored, we find values in the range − < <q5 0g . Interest-
ingly, MFS of NEMPI have shown earlier that values in the
range− < <q10 10g do not significantly affect the growth rate
(Käpylä et al. 2012a), suggesting that qg remains subdominant,
regardless of whether or not the qs term is taken into account.

3.6. High-latitude Spots

Before concluding, let us return once more to the occurrence
of magnetic spots and its dependence on the parameter n in
Equation (12). When the helicity is large at high latitudes, i.e.,
when we choose the helicity profile with n = 0, magnetic spots
are found to form close to the poles in a fashion reminiscent of
recent simulations by Yadav et al. (2015). Figure 14 presents
the formation of bipolar spots near the pole for run H2. By
contrast, the work of Yadav et al. (2015) showed just a single
spot. However, in both cases the underlying dynamo process is
a distributed one, so the lower boundary at the bottom of the
domain is not critical for its operation.

The results of the simulations with n = 0 show similar
behavior and parameter dependence as the case with n = 6. As
for n = 6, for weaker stratification no spots form and for

smaller σmax and deeper ⋆r , the structures form with a time
delay.

4. CONCLUSIONS

The present work has demonstrated that in a strongly
stratified two-layer spherical model with helical turbulence in
the lower layer and non-helical turbulence in the upper one, the
α2 dynamo produces large-scale magnetic fields that develop
sharp spot-like structures at the surface. This extends the results
of Mitra et al. (2014) to spherical geometries. We therefore see
for the first time that the bipolar magnetic spots have a finite
size that is not limited by the domain size as in the work of
Mitra et al. (2014). However, contrary to earlier expectations
(Kemel et al. 2012; Brandenburg et al. 2014), the size of these
structures exceeds the local value of the density scale height by
much more than the earlier expected value of about ten.
In our present simulations the dynamo (caused by the α2

dynamo) was very efficient, because the forcing was assumed
to be fully helical. In reality, the helicity is caused by the
combined action of rotation and stratification (Krause &
Rädler 1980). In this sense, dynamos do depend on stratifica-
tion, contrary to the present case with helical forcing, where
this was found to be not the case; see Section 3.2. As a
consequence of the strong helicity, the resulting large-scale
field is rather strong and the magnetic spots begin to fill
eventually the entire horizontal surface. This is also what is
expected for very active stars where the filling factor of the
surface magnetic field is known to reach unity as the star
becomes more active (Saar & Linsky 1985). Conversely, to
model sunspots, which are much smaller, we expect that we
would need to decrease the fractional helicity below the values
explored in the present work.
Visualizations of the three-dimensional magnetic field

structure in convectively driven dynamos has revealed the

Figure 13. Contours of negative (blue, solid lines) and positive (red, dashed) vertical velocity 〈 〉 <Ur kR 50 superimposed on a gray-scale representation of
〈 〉 <B B r( )r kR 100

2
eq
2 in Mercator projection at =r R 0.85 and τ =t 0.7td for Run D1 (left panel, Run D2 (middle panel) and Run D3 (right panel)).

Figure 14. Formation of the high-latitude spots for the case n = 0 (Run H2).
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formation and subsequent rise of serpentine-shaped flux tubes
(Fan & Fang 2014; Nelson & Miesch 2014). Our work has
now shown that strong stratification may provide the key to
understanding how such structures can experience re-amplifi-
cation, which is required if they are to be responsible for spot
formation.

While it is clear that strong stratification and large scale
separation between the turbulent integral scale and the size of
the box are essential elements behind spot formation, the
results presented here are different from our earlier findings that
were obtained under more idealized conditions such as the use
of an imposed magnetic field. However, like the earlier results
of Mitra et al. (2014) we find again evidence for downflows
below the sites of spot formation and, in particular, the
formation of sharply bounded structures. The latter is
reminiscent of the appearance of sharp structures as a result
of ambipolar diffusion under laminar conditions (Brandenburg
& Zweibel 1994). This raises the question, whether for strongly
stratified turbulence the effective magnetic diffusivity can
attain a nonlinear dependence on the magnetic field that is
similar to that of ambipolar diffusion, i.e., it increases with
increasing field strength. To address these questions, it would
be best to return to Cartesian geometry where it would be
possible to determine turbulent transport coefficients with
dedicated methods such as the test-field approach. This is
however beyond the scope of the present work.
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