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In light of new results, the one-dimensional mean-field dynamo model of Brandenburg & Käpylä (2007) with dynamical
quenching and a nonlocal Babcock-Leighton α effect is re-examined for the solar dynamo. We extend the one-dimensional
model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical
quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the
alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non-locality in the α effect, and
possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number.
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1 Introduction

The generation of large-scale magnetic fields is usually ex-
plained in terms of mean-field theory, in which one con-
siders solutions of the averaged induction equation (Parker
1979; Krause & Rädler 1980). In this theory, the evolution
of the mean magnetic field is governed by turbulent trans-
port coefficients such as the α effect and the turbulent mag-
netic diffusivity ηt. As long as the magnetic field is small
compared with the equipartition field strength Beq, and if
there is also helicity in the system, one expects the param-
eter α, which drives dynamo action, to be of the order of
the rms velocity of the turbulence, and ηt to be of the order
of the rms velocity times the mixing or correlation length
of the turbulence (Moffatt 1978). If this is indeed true, the
relevant time scale of the problem should be the dynamical
time scale, rather than the microscopic diffusion time which
would be longer than the dynamical one by a factor that is
equal to the magnetic Reynolds number Rm, which in turn
astrophysical relevance; 106 to 109 in the solar convection
zones.

Early attempts to determine α and ηt from simulations
have suggested that this may not be so simple, and that the
saturated field strength might decrease rapidly with increas-
ing Rm in a phenomenon called “catastrophic quenching”
(Cattaneo & Vainshtein 1991; Cattaneo & Hughes 1996).
The reason for this is that magnetic helicity, which measures
the twist of magnetic flux bundles, obeys a conservation
equation (Gruzinov & Diamond 1994). So, as the physics
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of the α effect describes the twisting of the large-scale mag-
netic field by helical fluid motions, it is constrained by the
magnetic helicity equation in a fashion which resists fur-
ther twisting of the field. This is possible because magnetic
helicity is signed: by producing magnetic helicity at small
scale of opposite sign, magnetic helicity can remain con-
stant even while dynamo action creates helical large scale
fields.

In the mean-field formalism, this can be described by an
α effect that depends not only on background fluid motions,
but also on the helicity of the small-scale magnetic field.
This provides an extra evolution equation for the magnetic
α effect which describes the production of magnetic helic-
ity locally where strong mean field twisting occurs. This
approach goes back to the early work of Kleeorin & Ruz-
maikin (1982), and is now usually referred to as the dynam-
ical quenching formalism. This formalism has been found
to describe many properties of direct numerical simulations
of turbulent dynamos (Field & Blackman 2002; Blackman
& Brandenburg 2002; Subramanian 2002).

This formalism is quite different from “algebraic” α
quenching that is often invoked to describe saturation of the
magnetic field by reducing α locally, depending on the am-
plitude of the mean field at that position. The dynamical
quenching formalism can even produce an α effect where
there was none to begin with, for example in the turbulent
decay of a helical large-scale magnetic field (Yousef et al.
2003; Kemel et al. 2011; Blackman & Subramanian 2013).
This can also occur when a mean magnetic field is produced
by the shear–current effect (Rogachevskii & Kleeorin 2003,
2004). While the shear-current effect is quite different from
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the α effect of dynamo theory, it produces a helical mean
field, and therefore must be accompanied by the generation
of small-scale magnetic helicity so that no net magnetic he-
licity is produced. This has been demonstrated within the
dynamical quenching formalism (Brandenburg & Subrama-
nian 2005), where a magnetic α effect was produced, even
though there is no kinetic α effect. Further examples are the
so-called interface dynamos (Parker 1993), where shear op-
erates at the bottom of the solar convection zone, and the
kinetic α effect operates at its top. Again, a magnetic α is
produced at locations where strong twisting of the mean
field occurs, regardless of the location of the kinetic α ef-
fect, as was demonstrated by simulations in spherical ge-
ometry (Chatterjee et al. 2010).

This situation is similar to models with a Babcock–
Leighton α effect which acts at the surface based on mag-
netic fields at the bottom of the convection zone (e.g. Char-
bonneau 2010). This effect is therefore highly non-local.
Dynamical quenching in such a model was considered by
Brandenburg & Käpylä (2007, hereafter BK07). There,
dynamical quenching was found to lead to catastrophic
quenching, i.e. the saturation field strength was found to de-
crease like R−1

m . Subsequent work of Kitchatinov & Olem-
skoy (2011, 2012) has now shown that, using a more realis-
tic model of the solar dynamo, catastrophic quenching may
be alleviated in the presence of strong downward pumping.
An alternate new line of research has shown that the “stan-
dard” set of dynamical quenching equations can fail in the
presence of shear (Hubbard & Brandenburg 2011). The pur-
pose of the present paper is to examine both recent results
in the context of the idealized model of BK07, determin-
ing both whether the results of KO11 depend on a more
complicated geometry and how more recent formulations of
dynamical alpha quenching behave in the presence of non-
local phenomena.

2 Dynamical α quenching and non-locality

In the mean field theory we decompose the fields into mean
(overbar) and fluctuating (lower case) quantities, so for ex-
ample the magnetic field can be written as

B = B + b, (1)

where b = 0. Defining the mean turbulent electromotive
force

E ≡ u× b, (2)

we can write the mean field induction equation (Parker
1979; Krause & Rädler 1980) as

∂B

∂t
= ∇×

(
U ×B + E − ημ0J

)
. (3)

However, if there is helicity in the system, there is also the
occurrence of a magnetic α effect, αM, which characterizes
the production of internal twist in the system and is gov-
erned by

∂αM

∂t
+ ∇ ·F = −2ηtk

2
f

(
E ·B

B2
eq

+
αM

Rm

)
, (4)

as described in Brandenburg & Subramanian (2005). Fur-
ther, F is the mean flux of small scale magnetic helicity.

In this paper, E is assumed to have contributions from
the kinetic and magnetic α effects, αK and αM, respec-
tively, the turbulent magnetic diffusivity ηt, and the turbu-
lent pumping or γ effect, i.e. we write

E = α̂K ◦B + αMB + γ ×B − ηtJ . (5)

We are studying the effect of a non-local Babcock-Leighton
type α, which generates an E that is restricted to the surface
layers of the Sun, but depends only on the mean magnetic
field deep within the convective zone. Therefore, we treat
the kinetic α effect as nonlocal integral kernel, α̂K, and

α̂K ◦B =

∫ z2

z1

α̂K(z, z′)B(z′, t) dz′ (6)

denotes a convolution which is here restricted to be only in
z.

For simplicity, we use a Cartesian domain, with the xy
plane corresponding to surfaces of constant radius in the
Sun, and z corresponding to the radial direction. We have
restricted ourselves to xy averages in the Cartesian domain,
so B = B(z, t) depends only on z and t, and we assume
that the turbulent pumping parameter γ = γz only acts in
the vertical direction. Note that the magnetic helicity equa-
tion is unaffected by the γ effect – just like the large-scale
velocity term, U ×B, it does not directly affect the evolu-
tion of αM.

The possibility of nonlocal α and ηt effects has been
inferred also from simulations of magneto-rotational turbu-
lence in accretion discs (Brandenburg & Sokoloff 2002) and
for turbulence (Brandenburg et al. 2008). In principle, ηt

and γ should of course also be nonlocal, but this will here
be neglected. Following BK07, we restrict ourselves to a
simple expression of the form

α̂K(z, z′) = α0 gout(z) gin(z′), (7)

where α0 is a coefficient, to be specified below, and

gout(z) = 1
2

[
1 + erf

(
z − z2

d

)]
, (8)

gin(z′) = 1
2

[
1− erf

(
z′ − z1

d

)]
(9)

are simple profile functions representing the peak of the
source function near z = z2 with a sensitivity for fields lo-
cated near z = z1. For the following we choose−z1 = z2 =
2.5/k1 and d = 0.05/k1 in the domain −π < k1z < π; see
Fig. 1. Here, k1 is the smallest wavenumber in the compu-
tational domain and is used as our inverse unit length.

In most of the published literature on dynamical quench-
ing, the magnetic helicity flux has no contribution from a
term E × A, which enters with opposite signs in the evo-
lution equations for the magnetic helicity flux from small-
scale and large-scale fields. However, recent work (Hubbard
& Brandenburg 2011, 2012) now reveals that this is not
permissible, and including it tends to alleviate catastrophic
quenching. Nonetheless, for comparison with the published
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Fig. 1 Contributions gin(z) and gout(z) entering the nonlocal α

effect defined in Eq. (7). The dotted lines indicate the positions of
z1 and z2.

Fig. 2 Dependence of the saturation field strength on Cγ for
Rm = 104.

literature, we solve Eqs. (3) and (4) first for the case F = 0.
We use an implicit scheme for αM, as described in BK07.
We have considered a model using linear shear of the form
U(z) = (0, S(z)x, 0). In this paper, γ and ηt are assumed
constant. The strength of shear, α, and γ effects are quanti-
fied by the non-dimensional numbers

CS =
S

ηtk2
1

, Cα =
α0

ηtk1

, Cγ =
γ

ηtk1

. (10)

In the following, we use CS = 100, Cα = 0.1, and
kf/k1 = 5, while Cγ will be varied. In many cases an ex-
plicit treatment of the αM equation suffices (e.g. Blackman
& Brandenburg 2002), but in the present case an explicit
solution algorithm was found to be unstable; see BK07 for
details.

2.1 Homogeneous shear

While the Sun has a strong shear layer at the base of the
convective zone, we first consider the case of homogeneous
shear (CS not depending on z). In this case, it turns out
that the inclusion of downward pumping in the model of
BK07 makes the dynamo stronger, as can be seen in Fig. 2,

where we show that B
2
∝ γ2. The reason for this is that

Fig. 3 Vertical dependence of B
2

, J · B, and αM for a model
with homogeneous shear, all normalized by their local extrema, for
different values of Cγ .

most of the field is generated in the middle of the domain,
while most of the quenching via αM occurs near the top
of the layer around z = z2; see Fig. 3. Nevertheless, this
model still experiences catastrophic quenching; see Fig. 4.
These results are quite similar to those obtained for local α
profiles (Brandenburg & Subramanian 2005). We note that
for Rm > 104 it is important to perform the calculations
using double precision arithmetics.

A somewhat surprising property of the present solutions
is the fact that J · B is still negative everywhere; see the
middle panel of Fig. 3. This is mainly a consequence of the
nonlocal α effect; for a local α effect, and certainly in the
absence of shear, J ·B would always be positive for posi-
tive α. Nevertheless, αM is negative everywhere, the oppo-
site sign as the kinetic α effect, so there is no possibility of
having anti-quenching anywhere in the domain.

2.2 Shear layer

Next, inspired by the solar tachocline, we consider a model
where shear is confined to a narrow layer at the bottom of
the domain. In that case we replace S by S(z) = S0gin, i.e.,
the shear layer coincides with the profile with which the α
kernel operates on the magnetic field. It turns out that in that
case the magnetic field becomes oscillatory. This means that
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Fig. 4 Dependence of the saturation field strength on Rm for
models with homogeneous shear, with and without downward
pumping or γ effect.

Fig. 5 Saturation behavior of a dynamo with a shear profile that
is identical to that of gin, which is localized only to the lower layer.

αM can now change sign and thereby offset the quenching
such that the saturation level becomes independent of the
magnetic field strength. This is shown in Fig. 5, where we

plot 〈B
2
〉 versus time for two values of Rm. Both the linear

growth rate and the initial saturation field strength are now
found to be independent of Rm.1 For Rm = 103 the model
saturates at a fixed level for all times, but in models with
larger values of Rm (104 or 105) the field achieves only tem-
porary saturation before it grows beyond any limit. This is in
agreement with earlier models of Kitchatinov & Olemskoy
(2011) and other dynamical quenching models, for example
in models of Brandenburg & Subramanian (2005), in which
an αM is driven by a magnetic helicity flux of Vishniac-Cho
type (Vishniac & Cho 2001).

1 For smaller values of Rm the linear growth rate would become pro-
gressively smaller, because the effective dynamo number would decrease.

Fig. 6 Dynamo behavior at early times with homogeneous shear
using the alternate quenching formulation. CS = −100, Cα =
−0.1, Cγ = −1, Rm = 105. Note the difference in the scale of
the x-axes, the dynamo waves are too numerous to plot fully. Fur-
ther, the energy in the top left panel is a running mean.

3 Alternate quenching

Quite different results are obtained when a different formu-
lation of dynamical α quenching is used. Using the results
in Hubbard & Brandenburg (2011, 2012), we can replace
Eq. (4) with

∂h/∂t = −2η
(
J ·B + αMB2

eq/ηt

)
, (11)

αM = ηtk
2
f

(
h−A ·B

)
/B2

eq. (12)

This formulation gives better results in the geometries stud-
ied in Hubbard & Brandenburg (2012), namely shearing-
periodic with a homogeneous α effect. This approach has
now also been applied to solar-like models in spherical ge-
ometry (Pipin et al. 2013).

In this case, it is important to consider how an os-
cillatory dynamo functions. First the x-component of the
field at the bottom, Bbot

x , is sheared into a y-directed field
Bbot

y with sgn Bbot
y = sgnSBbot

x . In the assumed high-
shear regime (|CS| � Cα, Cγ), this y directed toroidal field
dominates the energetics. From this toroidal field the non-
local α-effect generates an x-directed poloidal field Btop

x at
the top, with sgnBtop

x = sgn (−α′SBbot
x ), where the prime

denotes a z derivative due to taking the curl in Eq. (3).
If sgnBtop

x �= sgnBbot
x , then when the field is transported

downwards (via pumping through the gamma effect, or dif-
fusion), it will counter the original field, resulting in dy-
namo waves, as seen in Fig. 6. If the signs are the same,
there is only amplification, with no back-reaction mecha-
nism available in the formalism we consider, although alge-
braic quenching or similar must eventually play a significant
role. In this section we therefore only present results for the
oscillatory case.

This nonlocal αΩ dynamo does not have the same be-
havior as a uniform one. Perhaps most significantly, the en-
ergy in the magnetic fields shows strong fluctuations as the
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Fig. 7 Dynamo behavior at intermediate times with homoge-
neous shear for a dynamo with CS = −100, Cα = −0.1, Cγ =
−1, Rm = 500. The alternate quenching formulation was used.
Here the energy is not a running mean.

Fig. 8 Alternate quenching dynamo behaviors for three val-
ues of Rm, other parameters S = −100, α = −0.1, γ = −1.
Black/solid: Rm = 500; red/dashed: Rm = 50; blue/dash-dotted:
Rm = 104 (not included in top panel).

magnetic field oscillates. Accordingly, for most figures in
this section, our energies are running means. The exception
is Fig. 7, where we show a time-magnification of the dy-
namo, and a strong time variation is visible.

In Fig. 8 we examine the dependency of the system on
Rm. In the top panel, we see that the time dependence is
similar for Rm = 50, 500, although it appears that Rm =
50 is not yet in the asymptotically high Rm regime. Note
that the time axis is scaled to the resistive time. In the mid-
dle panel, we show the early (kinematic) behavior, which is
identical for all three values of Rm = 50, 500, 104, with a

Fig. 9 Alternate quenching dynamo behavior at intermediate
times with inhomogeneous shear. CS = −100, Cα = −0.2, Cγ =
−1, Rm = 500. Notably, here the shear is not homogeneous, in-
stead it has the same spatial variation as gin. The dynamo control
parameters had to be changed (Cα from −0.1 to −0.2) to allow
dynamo growth. The dips in the temporal log-linear cuts are sign-
changes.

non-scaled time axis. In the bottom panel, we see the early
non-linear evolution, where the results for Rm = 500, 104

are identical, but again it appears that Rm = 50 is too low
for fully asymptotic behavior. Note that the time of entrance
into the linear growth regime is different for the three cases
because of the scaling of t. Intriguingly, the slow-saturation
phase shown is similar to that predicted for closed heli-
cal systems. We see no evidence for a declining final field
strength with Rm.

As a final comment in this section, in Fig. 9 we include a
run with not merely a non-local α effect, but also non-local
shear, to model a Babcock-Leighton α effect at the surface,
and the strong shear localized in the solar tachocline. The
dynamo is overall similar to the case with homogeneous
shear but, predictably, far less strongly excited, necessitat-
ing an increased magnitude of Cα = −0.2.

4 Conclusions

The present work has demonstrated that, within the frame-
work of the dynamical quenching model, a nonlocal α effect
of Babcock-Leighton type combined with downward pump-
ing can alleviate catastrophic quenching only when the
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shear layer is separated from the layer where the Babcock-
Leighton α acts. Downward pumping can lead to a strong
enhancement of the dynamo even in models where shear is
uniform. While this can compensate for some of the field
reduction suffered from large values of Rm, it nevertheless
does not change the R−1

m scaling.
The model of Kitchatinov & Olemskoy (2011) con-

tains an important feature that is found here only in time-
dependent cases, namely the sign reversal of αM in some
places, which leads to catastrophic anti-quenching (or am-
plification). Similar sign reversals of the local value of αM

have been seen in some earlier models with a local α effect
(Guerrero et al. 2010; Chatterjee et al. 2011), but it needs to
be seen whether this behavior is physically realistic and still
compatible with the original equations.

Further, it is clearly only a simplification to neglect the
flux term in Eq. (4). Even though the domain may be closed,
we must always expect there to be internal magnetic helic-
ity fluxes resulting from the inhomogeneity of the model.
Magnetic helicity fluxes between local extrema in the small-
scale magnetic helicity density and across the equator have
been detected in direct numerical simulations (Mitra et
al. 2010; Hubbard & Brandenburg 2010; Del Sordo et al.
2013). Such fluxes might well be sufficient for alleviating
catastrophic quenching without the need for invoking the
non-locality of α.

On the other hand, an improved integration of shear with
dynamical quenching can avoid catastrophic α-quenching,
but only functions and generates an oscillatory dynamo
when the signs of the α effect and the shear are the same.
When the signs are different, dynamical quenching predicts
no feedback, so the field grows without bound (although
some form of geometric α quenching must eventually con-
trol the system).
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