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ABSTRACT
Using direct numerical simulations (DNS), we verify that in the kinematic regime, a turbulent
helical dynamo grows in such a way that the magnetic energy spectrum remains to high-
precision shape-invariant, i.e. at each wavenumber k the spectrum grows with the same growth
rate. Signatures of large-scale dynamo action can be identified through the excess of magnetic
energy at small k, of one of the two oppositely polarized constituents. Also a suitably defined
planar average of the magnetic field can be chosen such that its rms value isolates the strength
of the mean field. However, these different means of analysis suggest that the strength of the
large-scale field diminishes with increasing magnetic Reynolds number ReM like Re−1/2

M for
intermediate values and like Re−3/4

M for larger ones. Both an analysis from the Kazantsev model
including helicity and the DNS show that this arises due to the magnetic energy spectrum still
peaking at resistive scales, even when helicity is present. As expected, the amplitude of the
large-scale field increases with increasing fractional helicity, enabling us to determine the
onset of large-scale dynamo action and distinguishing it from that of the small-scale dynamo.
Our DNS show that, contrary to earlier results for smaller scale separation (only 1.5 instead of
now 4), the small-scale dynamo can still be excited at magnetic Prandtl numbers of 0.1 and
only moderate values of the magnetic Reynolds numbers (∼160).

Key words: dynamo – magnetic fields – MHD – turbulence – Sun: magnetic fields – galaxies:
magnetic fields.

1 IN T RO D U C T I O N

The origin of large-scale magnetic fields in astrophysical bodies
such as stars and galaxies remains an outstanding problem, given
that those fields are coherent on the scale of the systems themselves.
Indeed, the observed scale is often larger than the scale of the turbu-
lent motions, which would be the convective scale in the Sun or the
turbulent length-scales induced by supernova remnants in galaxies.
These large-scale magnetic fields are typically explained as being
due to turbulent dynamo action, whereby the combined action of
helical turbulence and shear amplifies and maintains fields coherent
on scales larger than the scales of random stirring. We refer to this
as the large-scale or mean-field dynamo. However, when the mag-
netic Reynolds number, ReM, is large, such turbulent motions also
generically lead to the small-scale or fluctuation dynamo, whereby
magnetic fields coherent on scales of the order of or smaller than
the outer scales of the turbulence are rapidly generated. In the fol-
lowing, we use mean-field and fluctuation dynamos synonymously
with large-scale and small-scale dynamos, respectively.

� E-mail: kandu@iucaa.ernet.in

Typically, the growth rate of the fluctuation or small-scale dy-
namo is much larger than the growth rate associated with the mean-
field or large-scale dynamo. Then, in a system where both types of
dynamos can in principle operate, at least in the kinematic stage,
magnetic fluctuations generated by the fluctuation dynamo would
in principle rapidly overwhelm the large-scale field which could be
generated by mean-field dynamo action. The question then arises,
whether in such a system there is any evidence for large-scale fields
at all in the kinematic stage.

Large-scale dynamo action from helical turbulence has clearly
been seen in several direct numerical simulations (DNS) during the
late non-linear stage when the magnetic field is close to saturation
(e.g. Brandenburg 2001). This is partially due to the phenomenon of
‘self-cleaning’, which means the suppression of power on scales be-
tween the largest and the driving scale of the turbulence. However,
during the early phase, there is no clear evidence for large-scale dy-
namos, especially when small-scale dynamo action is also expected
to be possible.

Small-scale dynamo action is best studied in the case when there
is no helicity (see Brandenburg & Subramanian 2005a, for a review).
In the presence of helicity, however, not only the large-scale dynamo
may become possible, but also the small-scale dynamo might get
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Large-scale dynamos in the kinematic stage 2931

modified such that large-scale and small-scale dynamos are just
different aspects of a single dynamo (Subramanian 1999).

It is instructive to think of the kinematic small-scale dynamo
problem as a quantum mechanical potential problem, where the
existence of bound states in the potential corresponds to growing
modes of the small-scale dynamo (Kazantsev 1968). An extension
of this picture in the presence of helicity is that the corresponding
potential allows for ‘tunnelling’ of these bound states into ‘free-
particle’ states (Subramanian 1999; Brandenburg & Subramanian
2000; Boldyrev et al. 2005). The larger growth rate of the small-
scale dynamo, compared to that of the large-scale dynamo, is then
reflected in the fact that the potential well at the scale, say l, where
the bound state is located, is deeper than the scale where the free-
particle states exist, say L. In case there is only a single fastest
growing eigenfunction, which grows fastest during the kinematic
state, this change in the potential depths at scales l and L could
then reflect itself in the corresponding strength of the eigenfunc-
tion, which would have a larger amplitude on the scale l than the
scale L, or corresponding wavenumbers proportional to l−1 and L−1.
Whether this picture is indeed a useful description of the kinematic
eigenfunction is currently unknown.

Our aim here is to examine whether in helical turbulence there
is evidence for the existence of the large-scale dynamo even in the
presence of the fluctuation dynamo. To isolate features of the large-
scale dynamo, we consider here, for most part, the regime of small
magnetic Prandtl numbers, PrM = ν/η, where ν is the kinematic
viscosity and η the magnetic diffusivity. For small values of PrM,
e.g. for PrM = 0.1, the small-scale dynamo is expected to be much
harder to excite if there were no helicity in the flow (Iskakov et al.
2007). The large-scale dynamo, on the other hand, is known to
be virtually independent of PrM and ReM once ReM > O(1); see
Brandenburg (2009) and Malyshkin & Boldyrev (2010). One then
expects this to provide a better chance of seeing evidence for the
large-scale field in the kinematic stage.1 However, as we will see
below, even this small PrM case does not yield a decisive change, in
preferentially hosting a large-scale dynamo.

We restrict ourselves to the study of subsonic flows with Mach
numbers around 0.3. While this is relevant to stars that also have
small values of PrM, larger Mach numbers would be interesting
and relevant to the study of the warm and cold components of
the interstellar medium, but this has the problem that it results
in the possibility of shocks. This would force us to increase the
viscosity, resulting in smaller values of the Reynolds number. It
is well known that in supersonic flows, the small-scale dynamo
is harder to excite (Haugen, Brandenburg & Mee 2004b; Federrath
et al. 2011; Schober et al. 2012; Schleicher et al. 2013), but the large-
scale dynamo, which is the subject of the present study, depends
essentially on the scale separation ratio of the turbulence and may
not (or only weakly) depend on the Mach number. For example,
supernova-driven turbulence in galaxies, involving flows at high
Mach number, has been shown to be capable of driving a large-
scale dynamo (Gressel et al. 2008a,b; Gent et al. 2013a,b).

We begin by presenting the basic equations of our DNS (Sec-
tion 2), discuss then the results for different magnetic Reynolds
and Prandtl numbers (Section 3), and place them within the

1This is reminiscent of ideas by Tobias & Cattaneo (2013) and Cattaneo
& Tobias (2014), where strong shear suppresses small-scale dynamo action
and then allows large-scale dynamo waves to persist at high ReM in their
helical flow models.

framework of a unified analytical model (Section 4), before con-
cluding in Section 5.

2 MO D EL

We consider dynamo action in a cubic domain of size L3
1, driven

by turbulence forced at wavenumbers kf ≈ 4 k1, where k1 = 2π/L1

is the smallest wavenumber in the domain. The forcing is assumed
to be helical, so that one can in principle have the operation of an
α2 type large-scale dynamo. To begin with, as explained above, we
consider a small value of the magnetic Prandtl number PrM = 0.1.

We solve the compressible hydromagnetic equations:

∂

∂t
A = u × B − ημ0 J, (1)

D

Dt
u = −c2

s ∇ ln ρ + 1

ρ
J × B + Fvisc + f , (2)

D

Dt
ln ρ = −∇ · u, (3)

where A is the magnetic vector potential, u the velocity, B the
magnetic field, η the molecular magnetic diffusivity, μ0 the vac-
uum permeability, J the electric current density, cs the isothermal
sound speed, ρ the density, Fvisc the viscous force, f the helical
forcing term, and D/Dt = ∂/∂t + u · ∇ the advective time deriva-
tive. The viscous force is given as Fvisc = ρ−1∇ · 2νρS, where ν is
the kinematic viscosity, and S is the traceless rate of strain tensor
with components Sij = 1

2 (ui,j + uj,i) − 1
3 δij∇ · u. Commas denote

partial derivatives.
The energy supply for a helically driven dynamo is provided

by the forcing function f = f (x, t), which is random in time and
defined as

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (4)

where x is the position vector. The wavevector k(t) and the random
phase −π < φ(t) ≤ π change at every time step, so f (x, t) is δ-
correlated in time. Therefore, the normalization factor N has to be
proportional to δt−1/2, where δt is the length of the time step. On
dimensional grounds it is chosen to be N = f0cs(|k|cs/δt)1/2, where
f0 is a non-dimensional forcing amplitude. We choose f0 = 0.02,
which results in a maximum Mach number of about 0.3 and an
rms velocity of about 0.085, which is almost the same for all the
runs. At each time step we select randomly one of many possible
wavevectors in a certain range around a given forcing wavenumber
with average value kf. Transverse helical waves are produced via
(Haugen, Brandenburg & Dobler 2004a)

f k = R · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (5)

where σ is a measure of the helicity of the forcing and σ = 1 for
positive maximum helicity of the forcing function and

f (nohel)
k = (k × ê) /

√
k2 − (k · ê)2 (6)

is a non-helical forcing function, where ê is an arbitrary unit vector
not aligned with k; note that | f k|2 = 1 and

f k · (ik × f k)∗ = 2σk/(1 + σ 2), (7)

so the relative helicity of the forcing function in real space is
2σ/(1 + σ 2).
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2932 K. Subramanian and A. Brandenburg

Table 1. Summary of runs discussed in this paper.

Run ReM PrM σ λ̃ N

A01 1 0.1 1 − 0.004 1283

B01 3 0.1 1 0.014 1283

C01 16 0.1 1 0.029 1283

D01 33 0.1 1 0.033 2563

E01 65 0.1 1 0.036 2563

F01 160 0.1 1 0.038 2563

F02 160 0.2 1 0.038 2563

F05 160 0.5 1 0.041 2563

F07 160 0.7 1 0.045 2563

F1 160 1 1 0.051 2563

G01 340 0.1 1 0.040 10243

G02 360 0.2 1 0.037 10243

G05 330 0.5 1 0.050 5123

G1 330 1 1 0.069 2563

F01b 160 0.1 0.7 0.032 2563

F01c 160 0.1 0.5 0.023 2563

F01d 160 0.1 0.3 0.010 2563

F01e 160 0.1 0.2 0.005 5123

F01f 160 0.1 0.1 0.003 5123

f005 160 0.05 0 0.001 5123

g005 310 0.05 0 0.015 5123

f01 160 0.1 0 0.003 5123

g01 200 0.1 0 0.006 5123

e02 80 0.2 0 − 0.003 2563

f02 160 0.2 0 0.015 2563

d05 30 0.5 0 − 0.004 1283

e05 80 0.5 0 0.016 1283

d1 40 1 0 0.010 1283

e1 60 1 0 0.019 1283

f1 150 1 0 0.045 1283

Our model is governed by several non-dimensional parameters.
In addition to the scale separation ratio kf/k1, introduced above,
there are the magnetic Reynolds and Prandtl numbers

ReM = urms/ηkf, PrM = ν/η. (8)

These two numbers also define the fluid Reynolds number, Re =
urms/(νkf ) = ReM/PrM. The maximum values that can be attained
are limited by the numerical resolution and become more restrictive
at larger scale separation. The calculations have been performed
using the PENCIL CODE2 at resolutions between 1283 and 10243 mesh
points.

3 SI M U L AT I O N S

In the following, we present runs at different values of ReM, PrM,
and σ ; see Table 1.

3.1 Growth rate

It turns out that for helical driving, and PrM = 0.1, the onset of
dynamo action occurs at small values of ReM; see Fig. 1, where
we show the normalized growth rate, λ/urmskf, of a dynamo as a
function of ReM. We see that, for kf/k1 = 4, the critical value of ReM

is around 2. Furthermore, the increase of λ becomes less steep for

2http://pencil-code.googlecode.com

Figure 1. Normalized growth rate versus ReM for PrM = 0.1 and σ = 1.
For intermediate values of ReM below 100, the growth rate corresponds to
that of a helical large-scale dynamo. The inset shows λ/urmskf versus ReM

in double-logarithmic representation.

λ/urmskf � 0.03, which is a value that was found earlier for fully
helical large-scale dynamos (Brandenburg 2009), who also used
kf/k1 = 4.

3.2 Wavenumber-dependent growth rate

One of the features that we want to examine is whether the magnetic
field grows as an eigenfunction in the kinematic stage, when both
large- and small-scale dynamo action is possible. For this we look
at the time evolution of magnetic energy spectra, EM(k, t). It is
convenient to represent the time evolution in the form

EM(k, t) = EM0(k) e2λ(k)t . (9)

Since EM0(k) depends on the initial magnetic field strength, Bini, it
is convenient to write it as

EM0(k) = 1
2 B2

iniEM(k), (10)

where EM(k) is the normalized spectrum with
∫ EM(k) dk = 1. Note

that we have here allowed for a k-dependent growth rate, λ(k). This
enables us to assess quantitatively to what extent the growth rate
depends on k. The resulting λ(k) is shown in the bottom panel of
Fig. 2 for PrM = 0.1 and PrM = 1, respectively. We see that, to very
good accuracy, the growth rate is the same for different wavenum-
bers, confirming that the spectra grow as one eigenfunction, even
when both large-scale and small-scale dynamos are possible, due to
helical forcing.

3.3 Magnetic spectra in the polarization basis

For the α2 dynamo, which arises in helical turbulence, due to mag-
netic helicity conservation, one expects the helicity of small-scale
and large-scale fields to have different signs at early times. Thus,
one would be able to see a clearer signature of the large-scale field, if
one looks separately for positively and negatively polarized helical
fields, defined as

E±
M(k, t) = 1

2

[
EM(k, t) ± 1

2 kHM(k, t)
]
. (11)

Again, we fit the resulting spectra to an exponential growth, analo-
gous to equation (9), and plot the normalized magnetic energy spec-
tra E±

M(k). They are shown in the top panels of Fig. 3 for PrM = 0.1,
and Fig. 4 for PrM = 1. We see that there is indeed excess power
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Large-scale dynamos in the kinematic stage 2933

Figure 2. Spectrum of magnetic energy during the kinematic phase for
PrM = 0.1 (Run F01; blue, dashed lines, Bini ≈ 4 × 10−31) and PrM = 1
(Run F1; red, solid lines, Bini ≈ 2 × 10−35) using σ = 1 in both cases. The
corresponding growth rates as a function of k are given in the bottom panel.

Figure 3. Spectrum of positively and negatively polarized contributions
during the kinematic phase for Run F01 with σ = 1, PrM = 0.1, and ReM ≈
160. The growth rate is given separately for the spectra of magnetic energy
of positively (solid line) and negatively (dotted line) polarized contributions.

in E−
M0 at small k corresponding to the large-scale field generated

in such helical turbulence. For Run F1 with PrM = 1, there is also
a short range with Kazantsev k3/2 scaling. On the other hand, for
PrM = 0.1 the scaling is significantly flatter, as can be seen from
Fig. 5, where we show the result for Run G01 with ReM ≈ 330.
Since PrM = 0.1, we have here Re = 3300. Note that there is a
small uprise of λ(k) at k = k1, which may however be a conse-

Figure 4. Same as Fig. 3, but for Run F1 with σ = 1, PrM = 1, ReM ≈ 160,
and PrM = 1. The short straight line gives the k3/2 Kazantsev slope for
orientation.

Figure 5. Same as Fig. 3, but for Run G01 with σ = 1, PrM = 0.1, and
ReM ≈ 330.

quence of the time interval 
t being too short (here, λ
t = 10,
while in all other cases it is at least 30).

We can see from Figs 3–5 that the magnetic energy spectra rise
with k, and peak at wavenumbers much larger than the forcing
wavenumber kf, and closer to the resistive scale. Therefore, even
though there is clear evidence for excess power corresponding to
the large-scale field, the rms field is likely to be dominated by small
scales, perhaps close to the resistive scale. We will return to this
aspect of the kinematic dynamo below.

MNRAS 445, 2930–2940 (2014)
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2934 K. Subramanian and A. Brandenburg

3.4 Expectation from α2 dynamos

It is useful to compare the wavenumber of where excess power
would occur in an α2 dynamo. In such a model, the mean magnetic
field B is governed by the equation

∂B
∂t

= ∇ × (αB) + ηT∇2 B, (12)

where α characterizes the strength of the α effect and ηT = η + ηt

is the sum of microphysical and turbulent magnetic diffusivi-
ties. Solutions proportional to exp(ik · x + λt) give the growth
rate as λ = |αk| − ηTk2. Its maximum value is attained when
dλ/dk = 0, giving the peak at kpeak = |α|/2ηT. Based on results
of the second-order correlation approximation applied to the high-
conductivity limit (Krause & Rädler 1980), one has α ≈ τ 〈ω · u〉/3
and ηt ≈ τ 〈u2〉/3, where ω = ∇ × u is the vorticity of the small-
scale turbulent flow u and τ is the correlation time. For maxi-
mally helical flows, we expect |α| ≈ urms/3 and ηt ≈ urms/3kf, so
kpeak ≈ kf/2 (Brandenburg, Dobler & Subramanian 2002; Sur et al.
2008). Thus, the theoretically expected scale separation is only a
factor of 2. This explains that it is in general difficult to identify
excess power at the wavenumber kf/2 of the α2 dynamo compared
with the wavenumber kf of the turbulence.

Furthermore, the growth rate of the α2 dynamo is given
by substituting kpeak into the above expression for λ. We get
λ = λpeak = |α|2/4ηT ∼ urmskf/12 ≈ 0.08urmskf. This can be com-
pared with the growth rate obtained in the DNS of λ ∼ 0.038urmskf

for PrM = 0.1, ReM = 160 case to λ ∼ 0.051urmskf for PrM = 1
case. The smaller value obtained in the DNS perhaps indicates that
the field grows less efficiently.

3.5 Growth of planar averages

Another way to isolate the large-scale mean field is to consider
horizontal averages of the total magnetic field. We define mean
fields as one of three possible planar averages, and determine their
rms fields, denoted by

B
X = 〈〈B〉2

yz〉1/2
x ,

B
Y = 〈〈B〉2

xz〉1/2
y ,

B
Z = 〈〈B〉2

xy〉1/2
z . (13)

Here, the subscripts behind angle brackets denote the direction over
which the average is taken and the capital letter superscript on
B indicates the direction in which the mean field varies. These
averages allow one to isolate the rms values of the eigenfunctions
of the α2 dynamo. The average relevant for our considerations is
the one that produces the largest rms value. Which of the three
averages it is, is a matter of chance, because the system is statistically
isotropic.

In Fig. 6, we show the ratios of the strength of the three mean

fields, B
X

, B
Y

, and B
Z

defined above, to the total rms field as
a function of ReM, for the case PrM = 0.1 and σ = 1. We see
a fairly strong mean field for ReM ≈ 1, but as we increase ReM,
the fractional contribution of the large-scale field during the kine-
matic phase decreases proportional to Re−1/2

M ; see Fig. 6. For large
values of ReM, the scaling becomes even steeper. In other words,
the magnetic energy of the mean field decreases inversely propor-
tional to ReM. Similar scalings for the energy of the mean magnetic
field were sometimes expected to occur in the non-linear stage

Figure 6. Root-mean-squared value of the mean field relative to that of
the total field versus ReM for PrM = 0.1 and σ = 1 during the kinematic
stage. The filled circles denote the averaged DNS results as an average over

the contributions from B
X

, B
Y

, and B
Z

. The straight lines correspond to
0.63 Re−1/2

M and 1.8 Re−3/4
M for lower and larger values of ReM, respectively.

(Vainshtein & Cattaneo 1992), but here it is a property of the dy-
namo in the linear regime.

We recall that for the present case of a homogeneous α2 dynamo
with periodic boundary conditions the saturation energy is indeed
independent of ReM, although the time-scale on which such a state
is reached increases with time proportional to ReM (Brandenburg
2001; Candelaresi & Brandenburg 2013). We will return to the
question of the decreasing strength of the mean magnetic field dur-
ing the linear stage in Section 4, where we will examine the solutions
of the Kazantsev model, generalized to include a helical velocity
field (Rogachevskii & Kleeorin 1999; Subramanian 1999; Bran-
denburg & Subramanian 2000; Boldyrev et al. 2005; Malyshkin &
Boldyrev 2007, 2010).

3.6 Dependence on fluid Reynolds number

It is well known that for large PrM (�1), the growth rate of the
small-scale dynamo scales with Re (asymptotically like Re1/2; see
Schekochihin et al. 2004) and is independent of ReM. This is because
for PrM � 1, the growth rate scales with the eddy turnover rate at
the viscous scale, which increases with Re. On the other hand,
in the case of small PrM � 1, the growth rate scales as the eddy
turnover rate at the resistive scale, and hence as Re1/2

M (Malyshkin
& Boldyrev 2010). We may now ask what happens for fully helical
flows with σ = 1. This is shown in Fig. 7(a), where we show the
dependence of λ on Re for ReM ≈ 330 (Runs G01–G1). Instead,
we see actually a weak decline with increasing Re. Furthermore,
the fractional strength of the mean field stays fixed; see Fig. 7(b).

3.7 Fractional helicity

As shown above, the onset of large-scale dynamo action occurs
at rather small values of ReM, but it does require the presence of
helicity in the flow. Therefore, the onset of large-scale dynamo
action is mainly determined by the amount of helicity, which is
quantified by the dynamo number. For an α2 dynamo, the relevant
dynamo number is Cα = α/ηT0k1, but in DNS this quantity is well
approximated by the quantity (Blackman & Brandenburg 2002;
Candelaresi & Brandenburg 2013)

CDNS
α = εfkf/k1, (14)

MNRAS 445, 2930–2940 (2014)
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Figure 7. (a) Normalized growth rate versus Re for ReM ≈ 330 and σ = 1
and (b) root-mean-squared value of the mean field relative to that of the total
field during the kinematic stage. Similar to Fig. 6, the filled circles denote

the averaged DNS results as an average over the contributions from B
X

,

B
Y

, and B
Z

. The horizontal line is shown for reference.

Figure 8. Normalized growth rate versus σ (upper panel, εf indicated on
the data points) and εf (lower panel), for PrM = 0.1 and ReM ≈ 160. The
dotted line indicates the tangent and thereby the approximate position of the
bifurcation line if the bifurcation was a perfect one.

where kf/k1 is the scale separation ratio, εf = 〈ω · u〉/kfu
2
rms is the

fractional helicity, ω = ∇ × u is the vorticity, and urms the rms
velocity of the turbulence.

In Fig. 8, we show λ versus σ and εf. Note that εf ≈ 2σ/(1 + σ 2)
is obeyed to a good approximation (Candelaresi & Brandenburg
2013). We see that there is an imperfect bifurcation at εf ≈ 0.3. For
large-scale dynamo action to be possible, one needs Cα > 1 which
requires εf > k1/kf = 0.25. The value εf ≈ 0.3 obtained here is
slightly above this theoretical minimum. If one wanted to capture
the large-scale dynamo for even smaller εf, then one requires a
smaller k1/kf, which implies either a larger box size or a smaller
forcing scale.

Figure 9. Normalized growth rate versus PrM for σ = 1, ReM ≈ 160 (Runs
F01–F1; solid black line with filled symbols) or ≈330 (Runs G01–G1;
dashed red line with open symbols) and varying values of Re = ReM/PrM.
The dotted line indicates the growth rate for a predominantly large-scale
dynamo.

3.8 Transition to small-scale dynamos

Contrary to earlier findings for non-helical turbulence driven at the
scale of the domain (kf ≈ 1.5 as opposed to the value 4 used here),
the small-scale dynamo is excited even for PrM = 0.1. This can
be seen from the fact that λ > 0 even when εf = 0; see Fig. 8.
Schekochihin et al. (2005) were unable to find small-scale dynamo
solutions for PrM = 0.1 and later Iskakov et al. (2007) found nega-
tive growth rates at PrM = 0.1, but positive values for PrM = 0.05.
This non-monotonic behaviour was associated with the existence of
a bottleneck in the kinetic energy spectrum, i.e. a shallower spec-
trum near the viscous sub-range, where the small-scale dynamo op-
erates. In the non-linear regime, however, no such non-monotonic
behaviour is seen (Brandenburg 2011).

As we increase ReM, the small-scale dynamo becomes more
strongly supercritical and the critical value of PrM decreases from
0.4 to 0.3 as we increase ReM from 160 to 330; see Fig. 9. Of
course, for the fully helical case of this figure, even for PrM = 0.1,
the dynamo is really a combination of both the large-scale and small-
scale dynamos, as we discussed in relation to Fig. 8. In addition,
Fig. 9 suggests that the behaviour of the dynamo changes from a
mainly large-scale dynamo at small PrM to one that becomes even
more strongly controlled by small-scale dynamo action at larger
PrM.

3.9 Rcrit
m for the small-scale dynamo at low PrM

Early DNS of small-scale dynamos have focused on homogeneous
turbulence in a periodic domain where random forcing was ap-
plied at the scale of domain, so the forcing wavenumber was typ-
ically between 1 and 2 (Haugen et al. 2004a; Schekochihin et al.
2004). In that case, the critical value of ReM increased beyond
400 (Schekochihin et al. 2005), but decreased again for smaller
values of PrM (Iskakov et al. 2007), which was argued to be a con-
sequence of the bottleneck effect in the kinetic energy spectrum
near wavenumber where the small-scale dynamo grows fastest. In
non-linear simulations, on the other hand, the bottleneck effect is
suppressed and non-linear small-scale dynamo action is sustained
at PrM = 0.1 for ReM � 160.

Our new work now suggests that this might have been an artefact
of an artificially small forcing wavenumber. Our new DNS with
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Figure 10. Critical magnetic Reynolds number as a function of magnetic
Prandtl number for kf = 4 and σ = 0 obtained by interpolating the growth
rates of Runs f005–f1 in Table 1.

a forcing wavenumber kf = 4 k1 suggest that small-scale dynamo
action is excited at the usual values of ReM even when PrM =
0.1; see Fig. 10. The reason for this lies probably in the fact that
the bottleneck effect is now weaker and that it is connected with
particular issues related to the way turbulence is driven. We note that
the increase of Rcrit

m with decreasing PrM (Fig. 10) is qualitatively
similar to that obtained from the Kazantsev model by Malyshkin &
Boldyrev (2010); see the h = 0 curve in their fig. 2.

4 IN T E R P R E TAT I O N IN T E R M S O F T H E
K A Z A N T S E V M O D E L W I T H H E L I C I T Y

In order to interpret and further enhance the results from the DNS,
it is instructive to look at the Kazantsev model with helicity (Vain-
shtein & Kitchatinov 1986; Subramanian 1999; Brandenburg &
Subramanian 2000, 2005a; Boldyrev et al. 2005; Malyshkin &
Boldyrev 2007, 2010). In this model, the velocity is assumed to be a
statistically isotropic, homogeneous random field, and δ-correlated
in time. The two-point spatial correlation function of the veloc-
ity field can be written as 〈vi(x, t)vj ( y, s)〉 = Tij (r)δ(t − s), where
r = |r| with r = x − y and

Tij (r) =
(
δij − rirj

r2

)
TN + rirj

r2
TL + εijkrk F . (15)

Here, 〈 · 〉 denotes averaging over an ensemble of the stochastic
velocity field v, and we have written the correlation function in
a form appropriate for a statistically isotropic and homogeneous
tensor (cf. section 34 of Landau & Lifshitz 1987). In equation (15),
TL(r), TN(r), and F(r) are, respectively, the longitudinal, transverse,
and helical parts of the correlation function for the velocity field.
For an incompressible velocity field, TN = (1/2r)[d(r2TL)/dr]. The
magnetic field B is also assumed to be a statistically isotropic,
homogeneous random field. Its equal-time, two-point correlation,
Mij(r, t), is given by

Mij =
(
δij − rirj

r2

)
MN + rirj

r2
ML + εijkrk C, (16)

where ML(r, t) and MN(r, t) are the longitudinal and transverse cor-
relation functions of the field, and C(r, t) represents the contribution
from current helicity to the two-point correlation. Since ∇ · B = 0,
MN(r, t) = (1/2r)[∂(r2ML)/∂r]. Using the induction equation, the
evolution equations for ML(r, t) and C(r, t) are given by (Vainshtein

& Kitchatinov 1986; Subramanian 1999; Brandenburg & Subrama-
nian 2000, 2005a)

∂ML

∂t
= 2

r4

∂

∂r

[
r4ηT

∂ML

∂r

]
+ 2GML + 4αC, (17)

∂H

∂t
= −2ηTC + αML, C = −

(
H ′′ + 4H ′

r

)
, (18)

where primes denote r derivatives and ηT(r) = η + ηt(r) is the sum
of the microscopic diffusivity η and an effective scale-dependent
turbulent magnetic diffusivity ηt(r) = TL(0) − TL(r). The term G =
−2(T ′′

L + 4T ′
L/r) characterizes the rapid generation of magnetic

fields by velocity shear and α(r) = −2[F(0) − F(r)] represents the
effect of kinetic helicity on the magnetic field. It is related to the
usual α effect in mean-field electrodynamics (Moffatt 1978), but it
is scale dependent as in Moffatt (1983) and Brandenburg, Rädler &
Schrinner (2008).

4.1 Bound states and tunnelling

It is worth recalling some well-known properties of this system; cf.
Brandenburg & Subramanian (2005a) and references therein. In the
absence of F(r), the system describes the fluctuation or small-scale
dynamo. Assuming solutions to be proportional to exp (λt), the evo-
lution equation for ML can be transformed to a Schrödinger-type
equation, with a potential U(r) depending on TL, and an energy
eigenvalue E = −λ. Thus, bound states in the potential U corre-
spond to growing solutions with λ > 0. This potential is positive
with U → 2η/r2 > 0 as r → 0, while U → 2ηT0/r2 > 0 as r → ∞,
when TL(r) → 0. Here, ηT0 = η + TL(0) is the sum of microscopic
and turbulent diffusion at large scales. The possibility of growing
modes with λ > 0 is obtained if one can have a potential well
with U being sufficiently negative in some intermediate range of r.
The growth rate λ is of the order of the fastest eddy turnover rate
for a sufficiently supercritical ReM on this scale. This λ then also
gives an estimate of the maximum depth, U0, of the potential, or
U0 ∼ −λ. The bound state behaviour also implies that the magnetic
correlations die away rapidly for scales larger than the correlation
scale of the stirring. Kazantsev (1968) also showed that, for a single
scale flow (or below the viscous cut-off scale in a large PrM tur-
bulent flow), the magnetic power spectrum scales as EM(k) ∝ k3/2,
until the resistive cut-off scale, kη ∼ kfRe1/2

M , where kf is again the
wavenumber of the energy-carrying eddies. It turns out that the
Kazantsev spectrum is preserved, even for a finite correlation time
of the velocity field, to the lowest order departures from δ-correlated
flow (Bhat & Subramanian 2014). This Kazantsev (1968) result is
generalized in Appendix A to include the effect of kinetic helicity
of the flow. We will need the resulting asymptotic scaling of EM(k)
in our arguments below.

In the presence of helical velocity correlations F(r), a remark-
able change occurs. The quantity α(r → ∞) = −2F(0) ≡ α0 is
what is traditionally called the α effect. Its presence allows corre-
lations to grow on scales larger than that of the turbulent velocity
field, i.e. the large-scale magnetic field (Subramanian 1999). This
can easily be seen from equations (17) and (18), where even for
r → ∞, we have new generating terms due to the α effect in the
form ṀL = · · · + 4α0C and Ḣ = · · · + α0ML. These couple ML

and C and lead to a growth of large-scale correlations. Indeed for
any quasi-stationary states (λ ∼ 0), one finds that the problem of
determining the magnetic field correlations once again becomes the
problem of determining the zero-energy eigenstate in a modified
potential, U − α2/ηT. This potential does not go to zero as r → ∞,
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Table 2. Comparing cases I and II.

Type I SS dynamo dominant
LS dynamo seeded by it

Type II LS dynamo dominant
SS dynamo enslaved to it

but instead tends to a negative definite constant −α2
0/ηT0. So there

are strictly no bound states with zero energy/growth rate, for which
the correlations vanish sufficiently rapidly at infinity; instead the
situation is akin to tunnelling states in quantum mechanics (Subra-
manian 1999; Brandenburg & Subramanian 2000; Boldyrev et al.
2005; Malyshkin & Boldyrev 2007, 2010).

4.2 Unified growth of large- and small-scale fields

In fact, even when λ �= 0, like for the fastest growing modes with
growth rates comparable to eddy turnover rates, equations (17) and
(18) can be solved exactly in the limit r → ∞. The solution is
most transparent for the correlator w(r, t) = 〈B(x, t) · B( y, t)〉 =
ML + 2MN. One finds from fairly straightforward algebra that, for
a mode growing with growth rate λ and scale r � l (much larger
than the turbulent forcing scales),

w(r, t) = eλt exp(−ksr)
A cos kmr + B sin kmr

r
(r � l), (19)

where

ks = (2ηT0λ − α2
0)1/2

2ηT0
, km = α0

2ηT0
. (20)

Note that this solution applies for real ks, or λ > α2
0/2ηT0, that is for

growth rates larger than those of the traditional α2 dynamo whose
maximum growth rate for B2 is also α2

0/2ηT0; see also Malyshkin
& Boldyrev (2007, 2010). This would generically apply if strong
small-scale dynamo action is present, that is, when ReM is large
enough and, in addition, the eddy turnover rate is bigger than the
α2 dynamo growth rate. However, even in this case, we see that
the presence of the large-scale field due to the α effect is evident
in the correlator w(r), as reflected in the presence of the oscillating
cosine and sine terms in equation (19). In fact, km = α0/2ηT0 is
exactly the wavenumber for which the growth rate of the mean
field α2 dynamo is maximum, see Section 3.3. This suggests that
the fluctuation dynamo, which is amplifying the field at a rate λ,
is seeding the simultaneous growth of the large-scale field with a
wavenumber km. In other words, the field in this case is growing as
one eigenfunction such that the large-scale field is enslaved to the
growth of the small-scale field growth. Such a picture is qualitatively
consistent with what is found from our DNS for large ReM. We will
refer to this as Type I, see Table 2.

The presence of a non-zero α0 can also lead to growth of the field,
even when ReM is not large enough to excite the small-scale dynamo.
In this situation the α2 dynamo can be excited, with a continuous
spectrum of eigenmodes with λ ≤ α2

0/2ηT0. The eigenfunction for
large r � l (i.e. for scales much larger than the turbulent forcing
scales) then changes to

w(r, t) = eλt A cos k̄mr + B sin k̄mr

r
(r � l), (21)

where

k̄m = α0 − (α2
0 − 2ληT0)1/2

2ηT0
. (22)

Again the presence of the large-scale field is evident due to the
cosine and sine terms in the correlator w(r). The fastest growing
mode in this case has λ = α2

0/2ηT0 and k̄m ≡ km. Moreover, for
these solutions the small-scale fields on scales r < l are enslaved to
the large-scale dynamo and arise by the velocity field tangling up the
large-scale field. Such a solution is what one obtains in our DNS
at small ReM < Rcrit

m . We refer to this case where the large-scale
dynamo is dominant as Type II, see Table 2.

4.3 ReM dependence of large-scale field strength

The other question is why the large-scale field strength, as mea-
sured by the ratio B/Brms, decreases with ReM? It is also somewhat
surprising that the large-scale field, decreases with ReM even for
moderate ReM < 100, especially for PrM = 0.1 when one does not
naively expect the small-scale dynamo to operate (Iskakov et al.
2007, see also Fig. 10). There are potentially two effects. First, there
could be a decrease of the strength of the eigenfunction, at the scale
r ∼ k−1

m , compared to the forcing scale l ∼ k−1
f . This is obtained for

Type I, where the small-scale dynamo operates, with the large-scale
field enslaved to it. Here, due to the exp (−ksr) term in equation
(19), the strength of the eigenfunction, at the scale r ∼ k−1

m , would
have decreased exponentially by a factor ∼exp (−ks/km) from its
value at smaller scales. As the ratio ks/km increases with increasing
growth rate λ, which itself increases with ReM in our simulations,
one can obtain a smaller mean field compared to the field at the
forcing scale, with increasing ReM.

This effect is however not present when the large-scale dynamo
is dominant, as the exp (−ksr) term is absent in this case (see equa-
tion 21). There is however a second effect which is likely to be
the more dominant one at large ReM during the kinematic stage in
both Types I and II. This is obtained, as we show below, due to the
fact that the magnetic power spectrum generically increases further
from the forcing wavenumber kf to peak at the resistive one kη,
which itself increases with ReM. We discuss this below.

Note that for a purely non-helical small-scale dynamo, the mag-
netic spectrum in the kinematic stage is expected to increase as
EM(k) ∝ ks from the forcing scale kf to the ReM-dependent resistive
scale, say kη. In case of a single scale flow, one has the Kazant-
sev spectrum with, the spectral index s = 3/2. What happens
when helicity is included, and large-scale field generation becomes
possible?

The influence of helicity on the large k behaviour of the magnetic
spectrum, for large ReM, is analysed in some detail in Appendix A.
In particular, we consider the coupled system given by equations
(17) and (18) on scales that are much larger than the resistive scale,
but much smaller than the outer forcing scale l of the random mo-
tions of the turbulence. In this range one can approximate ηt(r) and
α(r) as power laws. We show quite generally that even in case of
helical flows, where large-scale dynamo action is in principle pos-
sible, the magnetic spectrum at the kinematic stage is peaked at
resistive scales.

Surprisingly, for both a single-scale flow, and for Kolmogorov
scaling of the velocity spectra, with maximal kinetic helicity at
the forcing scale, we find that helicity is unimportant for the be-
haviour of the magnetic spectrum at large k. For a helical single scale
flow, the magnetic spectrum still scales as the Kazantsev spectrum,
EM(k) ∝ k3/2 at large k. For Kolmogorov scaling of the velocity spec-
tra, with maximally helical forcing, we show in Appendix A that
the magnetic spectrum is still peaked at resistive scales; and at large
k it is of the form EM(k) ∝ ks with s ≈ 7/6. Thus, for the kinematic
dynamo, even though large-scale fields are being generated due to
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the presence of helicity, the magnetic power spectrum is still peaked
at resistive scales. Our DNS also suggest such the conclusion that
EM(k) ∝ ks, with s > 0, as can be seen from the spectra shown in
Figs 3 and 4. Note also that these conclusions are quite independent
of whether the dynamo is predominantly a large-scale or small-scale
dynamo, and only depends on there being scale separation between
the forcing and resistive scales, as one would obtain for sufficiently
large ReM. We can now ask what this implies for the behaviour of
B/Brms, with ReM?

Now suppose the magnetic power spectrum increases with k as
EM(k) ∝ ks for kf < k < kη and kη ∝ Reβ

M. Integrating the spectrum
over k from kf to kη, we find for the ratio (Brms/Bf )2 ∝ (kη/kf )s+1 ∝
Reβ(s+1)

M , where we have defined the small-scale field at the forc-
ing scale as Bf = (kfM(kf))1/2. Thus, (Brms/Bf ) ∝ Reβ(s+1)/2

M . For
a single-scale flow, we have s = 3/2 and β = 1/2, and then
Brms/Bf ∝ Re5/8

M . On the other hand, for Kolmogorov scaling of
the velocity spectra with s = 7/6 and, say, β = 3/4, we have
(Brms/Bf ) ∝ Re0.81

M scaling. At the same time, we have seen that
B/Bs ∼ exp(−ks/km) for Type I with Bs ∼ Bf. For Type II, where
the large-scale dynamo dominates, one would expect the rms value
of B to be comparable to Bf, as would be the case when there is
a k−1 spectrum (Ruzmaikin & Shukurov 1982) between km and kf.
Combining these arguments, we do expect B/Brms to decrease sig-
nificantly with ReM, although the exact scaling as Re−1/2

M , or the
further scaling as Re−3/4

M , are not yet fully understood.

5 C O N C L U S I O N S

We have shown here that large-scale dynamo action is obtained in
large ReM helical turbulence in the kinematic stage, even when a
strong small-scale dynamo is also possible. Both large and small
scales grow at the same rate, such that the energy spectrum is shape
invariant in the kinematic stage. By splitting the magnetic energy
spectrum into positively and negatively polarized parts, E±

M0, clear
signatures of large-scale fields can be seen at small k as an excess
power in E−

M0(k) (E+
M0(k)) if the kinetic helicity at the forcing scale

is positive (negative). Evidence for the large-scale mean field B is
also clearly seen in suitably defined planar averages. This evidence
for a mean field in helically driven turbulence is as expected for
the standard α2 mean-field dynamo, and thus allows us to prove the
existence of such a mean-field dynamo effect.

The DNS also show that both the amplitude of the large-scale
field and the dynamo growth rate increase with increasing fractional
helicity. This is as expected and helps to determine the onset of
large-scale dynamo action and to distinguish it from that of the
small-scale dynamo. As a by-product of our work, we find that for
kf/k1 = 4, the Rcrit

m for exciting the small-scale dynamo at small
PrM is different from earlier results which were based on smaller
scale separation, kf/k1 = 1–2. For example, the threshold magnetic
Reynolds number for PrM = 0.1 is decreased to a modest value of
Rcrit

m ≈ 160.
The mean field found from the DNS using planar averages, how-

ever, decreases with ReM as Re−1/2
M (or possibly faster) in the kine-

matic stage. Such a decline is obtained both when the small-scale
dynamo is dominant (Type I) and also when the large-scale dynamo
is dominant, but the small-scale dynamo enslaved to it (Type II).
By analysing the Kazantsev model including helicity, this feature
is shown to arise due to the fact that the magnetic spectrum EM0(k)
for large ReM, is peaked at the resistive scale, even when helicity is
present. Such a rise in EM0(k) with k is also seen in the DNS that
we have performed.

This raises the question, does kinematic dynamo theory have
any relevance? The answer is yes, because it allows us to iden-
tify mechanisms that may have a connection with the non-linear
regime where the large-scale dynamo becomes dominant and the
small-scale power is lost (mode cleaning). First, non-linear simula-
tions of the small-scale dynamo at large ReM, which have a large
enough inertial range show that the non-linear evolution can lead to
a significant increase in the magnetic integral scale (Haugen et al.
2004a; Cho & Ryu 2009; Bhat & Subramanian 2013; Eyink et al.
2013). Thus, the effect of the Lorentz force is to bring the power
from the resistive scale to scales just smaller than the forcing scale.
Also, simulations of the α2 dynamo in periodic domains, show that
the magnetic field becomes ordered on the largest available scales,
independently of ReM, provided small-scale magnetic helicity can
be dissipated (Brandenburg 2001, 2009; Candelaresi & Branden-
burg 2013). Therefore, the combined action of the Lorentz force to
transfer power from resistive scales to larger scales, and small-scale
helicity loss from the system, could result in an efficient genera-
tion of the large-scale field, even in the presence of the fluctuation
dynamo.

For the transfer of power from resistive scales to larger scales
to happen, the spectrum must change shape during saturation such
that large spatial scales (small k) can still be amplified while small
scales (large k) saturate. Recall that all scales grow at the same
rate during the kinematic stage. In terms of the potential picture of
the Kazantsev model with helicity (Sections 1 and 4), the potential
well at the small scale l needs to become shallower due to non-
linear effects to allow for only the marginally bound state to exist,
while still having sufficient depth at the large scale L, to allow the
‘tunnelling free-particle’ states to grow. Such local saturation in a
related real-space double well potential problem has been found in
the context of a spirally forced non-axisymmetric galactic dynamo
(Chamandy, Subramanian & Shukurov 2013a,b). There the potential
wells are near the galactic centre and the corotation radius of the
spiral, so the eigenfunction grows fastest in the central regions,
with its tail seeding the growth of the non-axisymmetric magnetic
spiral field around corotation. Saturation of the dynamo near the
galactic centre still allows for the field to grow around corotation and
become significant. Whether such a situation can also be obtained
for a double well potential in ‘scale’ or wavenumber space remains
to be determined. It would be of interest to verify this in a non-
linear version of the Kazantsev model, where helicity loss can also
be built in, and perhaps even more importantly, in high-resolution
DNS which can resolve both the small-scale dynamo and have
enough scale separation to simultaneously capture the large scales.
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A P P E N D I X A : T H E I N F L U E N C E O F H E L I C I T Y
O N S M A L L SC A L E S

The purpose of this appendix is to analyse the behaviour of the
coupled system given by equations (17) and (18), on scales that
are much larger than the resistive scale, but much smaller than the

outer forcing scale l of the random motions or the turbulence. In
this range, one can approximate ηt(r) and α(r) as power laws. We
take quite generally

ηt(r) = ηT0

( r

l

)q

and α(r) = α0

( r

l

)p

. (A1)

For a single scale flow, we adopt p = q = 2. For a Kolmogorov
spectrum E(k) ∝ k−5/3, we can use Richardson scaling for the scale-
dependent turbulent diffusion and take q = 4/3 (Vainshtein 1982).
Suppose further that the flow is driven by a fully helical forc-
ing. Then Brandenburg & Subramanian (2005b) found that the
kinetic helicity spectrum also scales as HK(k) ∝ k−5/3. Therefore,
α(r = 1/k) ∝ τ (k)(kHK(k)) ∝ r4/3, where τ (k) ∝ k−2/3 is a scale-
dependent correlation time. Thus, for a Kolmogorov energy spec-
trum, assuming also a fully helical velocity forcing, one could adopt
q = 4/3, p = 4/3. We will discuss both cases below.

Let us define a dimensionless coordinate z = r/l, adopt the power-
law forms given in equation (A1), and look at eigenmode solutions
to equations (17) and (18) of the form ML = exp(λt)M̃L(r) and
C = exp(λt)C̃(r). We get

λ̄M̃L(z) =
(

η

ηT0
+ zq

)
M̃

′′
L +

(
4η

ηT0
+ (4 + q)zq

)
M̃

′
L

z

+ q(3 + q)zq−2M̃L + 4ᾱ0z
pC̃(z), (A2)

λ̄C̃(z) =
(

η

ηT0
+ zq

)
C̃

′′ +
(

4η

ηT0
+ (4 + 2q)zq

)
C̃

′

z

+ q(3 + q)zq−2C̃ − ᾱ0z
pM̃

′′
L

− 2ᾱ0(p + 2)zp−1M̃
′
L − ᾱ0p(p + 3)zp−2M̃L. (A3)

Here, we have defined a dimensionless growth rate λ̄ = l2λ/(2ηT0).
In the limit zq � η/ηT0, or z � zη = (η/ηT0)1/q, one can neglect
the resistive terms in equations (A2) and (A3). (Here zη is the di-
mensionless resistive scale.) Note that without the mutual coupling
due to the α effect, these equations would be scale free in the sense
that a transformation of z → cz leaves equations (A2) and (A3)
invariant. The question arises if there still exist scale-free solutions
in the presence of an α effect. As power laws are scale free, we
examine if equations (A2) and (A3) can have power-law solutions
of the form say M̃L = M0z

−μ, C̃ = C0z
−ν . Substituting this form

for M̃L and C̃ gives

λ̄M0 = [μ(μ + 1) − μ(4 + q) + q(3 + q)] M0z
q−2

+ 4ᾱ0C0z
p+μ−ν, (A4)

λ̄C0 = [ν(ν + 1) − ν(4 + 2q) + q(3 + q)] C0z
q−2

− ᾱ0M0z
p−2+ν−μ [μ(μ + 1) − μ(4 + p) + p(3 + p)] .

(A5)

Thus, a scale-free solution can be obtained if the z dependence
drops out in equations (A4) and (A5). To see if this can be obtained,
consider now the two cases which we mentioned above. In the case
of a single-scale flow with p = q = 2, we have q − 2 = 0, and the
first terms on the right-hand side of equations (A4) and (A5) become
z-independent. On the other hand, the exponent of z in the last term
of equation (A4) becomes μ − ν + 2, while that in equation (A5)
becomes ν − μ.
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One can get a nearly scale invariant solution if μ = ν, which
implies that equation (A5) becomes z-independent, while μ − ν

+ 2 = 2 in equation (A4). Then the exponent of z in the last term in
equation (A4) becomes 2 and the z-dependent term in equation (A4)
is ∝ z2 � 1, and thus can be neglected. In this case, the helical part
of the correlation completely decouples from the non-helical part of
the correlation. Equation (A4) then reduces to that obtained for the
standard non-helical small-scale dynamo (Kazantsev 1968; Bhat
& Subramanian 2014), and one recovers the Kazantsev spectrum,
EM(k) ∝ k3/2. Thus, even in the presence of helicity in the velocity
field, if the fastest growing mode is being driven effectively by a
single-scale flow, then helicity is unimportant for the behaviour of
the magnetic spectrum at large k!

The nature of the small-z (or large k) solution can be explicitly
seen by looking at the solution to the resulting quadratic equation
for μ given by equation (A4); cf. Bhat & Subramanian (2014). We
get for μ

μ2 − 5μ + (10 − λ̄) = 0, so μ = 5

2
± iμI, (A6)

where μI = [4(10 − λ̄) − 25]1/2/2 can be shown to be small (once
λ̄ is determined), and importantly, the real part of μ is μR = 5/2.
From equation (A6), in the range zη � z � 1, ML is then given by

ML(z, t) = eγ t̃ M̃0z
−μR cos (μI ln z + φ) , (A7)

where M̃0 and φ are constants. Thus ML varies dominantly as z−5/2,
modulated by the weakly varying cosine factor (both because the
phase of the cosine depends on the weakly varying ln z and because
μI is small). The magnetic power spectrum is related to ML by

EM(k, t) =
∫

dr(kr)3ML(r, t)j1(kr). (A8)

The spherical Bessel function j1(kr) is peaked around k ∼ 1/r, and a
power-law behaviour of ML ∝ z−λR , for zη � z � l, translates into
a power law for the spectrum EM(k) ∝ kλR−1 at large k (but smaller
than the resistive scale, i.e. with kη = l/zη � k � 1/l). As λR = 5/2
for a single-scale flow, this implies that the magnetic spectrum is
of the Kazantsev form with EM(k) ∝ k3/2 in k space, as advertised
above.

Note that, although the α-effect does not affect the magnetic en-
ergy spectrum at large k for a single-scale flow, it is indeed important
in driving the current helicity evolution. From equation (A5), we get
C0 = ᾱ0M0(1 − λ̄/2μ), which can be used to write C(r, t) explic-
itly. (We note in passing that the other potentially scale-invariant
case would have μ − ν + 2 = 0. This however implies ν = μ + 2,
and turns out to violate the realizability condition, which in real
space requires ν ≤ μ + 1, for power-law correlations/spectra.)

Now consider the other case of Kolmogorov scaling with q = 4/3,
p = 4/3. In this case, the first terms on the right-hand side of
equations (A4) and (A5) are proportional to z−2/3. On the other
hand, the exponent of z in the last term of equation (A4) becomes
4/3 + μ − ν, while that in equation (A5) becomes −2/3 + ν − μ.
Multiplying both equations (A4) and (A5) by z2/3, we have

λ̄M0z
2/3 = [μ(μ + 1) − μ(4 + q) + q(3 + q)] M0

+ 4ᾱ0C0z
2+μ−ν (A9)

λ̄C0z
2/3 = [ν(ν + 1) − ν(4 + 2q) + q(3 + q)] C0

− ᾱ0M0z
−(μ−ν) [μ(μ + 1) − μ(4 + p) + p(3 + p)] .

(A10)

Now, for z � 1, the left-hand side of the above equations will be
small and can be neglected. One can then again get a nearly scale
invariant solution if μ = ν, which implies that the right-hand side
of equation (A10) becomes z-independent, while μ − ν + 2 = 2 in
equation (A9). Then the exponent of z in the last term in equation
(A9) again becomes 2 and the z-dependent term in equation (A9) is
∝ z2 � 1, and thus can be neglected. In this case, just as in the case
of a single-scale flow, the helical part of the correlation completely
decouples from the non-helical part of the correlation at small z,
in equation (A9). The condition that the resulting homogeneous
equation for M0 has non-trivial solution implies

μ2 − 13

3
μ + 52

9
= 0. (A11)

The resulting quadratic equation has complex conjugate roots,
μ = μR ± iμI, where now μR = 13/6 and μI = √

39/6, corre-
spond to the solution for ML given in equation (A7). Although
μI is now larger and the cosine factor in equation (A7) varies by
a larger factor, the power-law envelope ML ∝ z−μR ∝ z−13/6 now
corresponds to an approximate spectral dependence EM(k) ∝ k7/6 at
large k.

In summary, even in the case of helical flows, where large-scale
dynamo action is in principle possible, the magnetic spectrum at
the kinematic stage is peaked at resistive scales, with EM(k) ∝ ks at
large k, where s ranges from 3/2 (for single-scale flow) to about
7/6 for Kolmogorov scaling of the velocity spectra.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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