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Intense bipolar structures from stratified helical dynamos
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ABSTRACT
We perform direct numerical simulations of the equations of magnetohydrodynamics with
external random forcing and in the presence of gravity. The domain is divided into two parts:
a lower layer where the forcing is helical and an upper layer where the helicity of the forcing
is zero with a smooth transition in between. At early times, a large-scale helical dynamo
develops in the bottom layer. At later times the dynamo saturates, but the vertical magnetic
field continues to develop and rises to form dynamic bipolar structures at the top, which later
disappear and reappear. Some of the structures look similar to δ spots observed in the Sun.
This is the first example of magnetic flux concentrations, owing to strong density stratification,
from self-consistent dynamo simulations that generate bipolar, super-equipartition strength,
magnetic structures whose energy density can exceeds the turbulent kinetic energy by even a
factor of 10.
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1 IN T RO D U C T I O N

The most striking and also the most observed magnetic features
of the Sun are the sunspots and active regions. The number of
sunspots, the strength of the magnetic field in sunspots, and the
magnetic field calculated at the surface of the Sun are often taken
as proxies of the solar magnetic field deep inside. There is general
agreement that the evolution of the solar magnetic field is governed
by the solar dynamo which operates in the convection zone of
the Sun. This brings us to the question, how is the magnetic field
generated by the solar dynamo related to the magnetic field observed
at the surface of the Sun? At present, this question does not have a
clear answer.

The conventional picture (see e.g. Choudhuri 2008, for a review)
is that the solar dynamo generates a strong toroidal magnetic field
in the form of flux tubes at the bottom of the convection zone,
also called the tachocline. This strong magnetic field is buoyant
and hence rises up to eventually penetrate through the surface lay-
ers of the Sun to create bipolar regions at the surface. During its
rise through the convection zone, the magnetic flux tube is twisted
by the Coriolis force to give rise to a preferential tilt of the bipo-
lar regions with respect to the equator – which is also known as
Joy’s law.

� E-mail: dhruba.mitra@gmail.com

The traditional picture is prone to criticism on several counts.
(a) Recent numerical simulations of rotating spherical magneto-
convection (Ghizaru, Charbonneau & Smolarkiewicz 2010; Käpylä,
Mantere & Brandenburg 2012b; Augustson et al. 2013) have shown
that a solar-like dynamo can operate in the bulk of the convection
zone, even without a tachocline. (b) Is it possible for a magnetic
flux tube to rise coherently through the turbulent convection zone
and still remain anchored to the tachocline? Numerical simulations
of Guerrero & Käpylä (2011), admittedly at moderate magnetic
Reynolds numbers, have found no evidence that this is possible.
Recent simulations by Nelson & Miesch (2014) and Fan & Fang
(2014) do find flux loops rising from mid-depths of the convec-
tion zone, but in contrast to the traditional picture, they are not
anchored at the bottom of the convection zone.1 (c) As the flux
tube rises, the magnetic field weakens, so even the traditional pic-
ture must invoke a re-amplification process near the surface. For
example, Parker (1979) postulated downdrafts ‘to operate beneath
the sunspot to account for the gathering of flux to form a sunspot’.
Furthermore, current flux emergence simulations that include a pho-
tosphere (see e.g. Cheung, Rempel & Schüssler 2010; Kitiashvili
et al. 2010; Stein & Nordlund 2012; Rempel & Cheung 2014) do
show such re-amplification, but the mechanism responsible for the
re-amplification process remains unknown. (d) A natural corollary

1 Fan & Fang (2014) only show extended patches of toroidal field, so the
connection with sunspot formation remains open.
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of the rising flux tube picture is that the active regions will emerge
with preferential orientation at the surface of the Sun, whereas re-
cent observational analysis (Stenflo & Kosovichev 2012) shows
that active regions actually emerge with random orientations but
get preferentially oriented as time progresses. Note nevertheless
that Longcope & Choudhuri (2002) have attempted to explain this
discrepancy within the framework of the conventional scenario by
arguing that departures from a preferred orientation are due to tur-
bulent convection and are restored past the emergence.

In the last decade, an alternative scenario has emerged. In this sce-
nario, first suggested by Brandenburg (2005), the turbulent dynamo
generates magnetic field in the bulk of the convection zone. In the
near-surface shear layer, that has been observed in helioseismology
(Schou et al. 1998), the dynamo-generated magnetic field propa-
gates equatorwards, satisfying the Parker–Yoshimura rule (Parker
1955; Yoshimura 1975). The observed preferential orientation of
the active regions, the Joy law, can be understood as an effect of the
shear (Brandenburg 2005). In this scenario, which admittedly is yet
to be supported by direct numerical simulations, although mean-
field calculations do provide support (Pipin & Kosovichev 2011),
the active regions must form from a dynamo-generated large-scale
magnetic field by the process of magnetic flux concentration oper-
ating at or near the surface of the Sun. This process may be the same
re-amplification process necessary in the conventional scenario.

There have been two different, mutually complimentary, ap-
proaches to understand this process. On the one hand lies the
numerical simulations by Kitiashvili et al. (2010), Cheung et al.
(2010), Stein & Nordlund (2012), and Rempel & Cheung (2014),
who solve radiative magneto-convection in a Cartesian domain un-
der a simplified setup (non-rotating, no large-scale shear). All these
simulations develop a bipolar magnetic structure at the top sur-
face, but in all the cases the velocity and the magnetic field at the
bottom boundary need to be carefully imposed. Furthermore, in
these simulations, with the exception of Kitiashvili et al. (2010),
the mechanism responsible for formation of magnetic structures
has not been elucidated. Another related example are the magneto-
convection simulations of Tao et al. (1998), where an imposed verti-
cal field segregates into magnetized and unmagnetized regions. The
authors ascribe this to the effect of flux expulsion, but the actual
mechanism might well be another one. On the other hand lies a
volume of work (Kleeorin, Rogachevskii & Ruzmaikin 1989, 1990;
Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin 2007;
Brandenburg, Kleeorin & Rogachevskii 2010; Brandenburg et al.
2011, 2012; Kemel et al. 2012a,b; Käpylä et al. 2012a; Branden-
burg, Kleeorin & Rogachevskii 2013; Warnecke et al. 2013), which
have investigated the possibility that the negative effective magnetic
pressure instability (NEMPI) is a mechanism of flux concentration
and formation of active regions. In all of them, a small (compared
to equipartition) background magnetic field has been imposed in
a statistically stationary turbulent magneto-fluid in the presence of
gravity; a large-scale instability (namely NEMPI) develops which
forms magnetic structures.

The essence of this mechanism is related to a negative contribu-
tion of turbulence to the effective magnetic pressure (the sum of
non-turbulent and turbulent contributions). This is caused by a sup-
pression of total (kinetic plus magnetic) turbulent pressure by the
large-scale magnetic field. For large magnetic and fluid Reynolds
numbers these turbulent contributions are large enough so that the
effective magnetic pressure becomes negative. This results in the
excitation of a large-scale instability, i.e. NEMPI. The instability is
efficient if the background magnetic field is within a specific range,
which depends on the relative orientation between gravity and the

imposed field. The maximum flux concentration achievable depends
on the non-linear saturation of NEMPI; unipolar spot-like struc-
tures (Brandenburg et al. 2011, 2013) and bipolar active region-like
structures (Warnecke et al. 2013) have been obtained under different
circumstances. We emphasize that turbulence plays a crucial role
in the formation of those unipolar and bipolar magnetic structures.
This may seem somewhat counterintuitive because in many other
cases turbulence increases mixing by enhancing diffusion. How-
ever, there is no contradiction because there are many examples of
pattern formation in reaction–diffusion systems that have been long
studied and well understood; see e.g. Cross & Hohenberg (1993)
for a review.

A shortcoming, that is common between the NEMPI papers and
the radiative magneto-convection papers quoted above, is that the
magnetic field is imposed externally, either over the whole volume
or at the lower boundary. It is then necessary to investigate how the
magnetic flux from dynamo-generated magnetic fields can be con-
centrated to form active regions. Furthermore, it has been observed
that NEMPI is suppressed in the presence of rotation (Losada et al.
2012, 2013), which is an essential ingredient, together with gravity,
to the generation of a large-scale magnetic field by dynamo action.

Hence, it is crucial to study the interaction between NEMPI
and large-scale dynamo instabilities. It turns out that there exists a
range of parameters over which it is possible for NEMPI to create
magnetic flux concentrations from a dynamo-generated magnetic
field; evidence in support of this picture has been obtained from
both mean-field models (Jabbari et al. 2013) and direct numerical
simulations (Jabbari et al. 2014). Particularly interesting cases of
flux concentration from dynamo-generated fields, which have not
been studied so far, are those where dynamo and NEMPI do not
operate at the same physical location, but in different parts of the
domain. For example, the dynamo may operate in the deeper layers
of a stratified domain but not in the upper layers, whereas in the
upper layers NEMPI can operate to produce flux concentrations. In
this paper, we study this problem by direct numerical simulations.

2 TH E MO D EL

2.1 Governing equations

We solve the equations of isothermal magnetohydrodynamics for
the velocity U , the magnetic vector potential A, and the density ρ,

ρDt U = J × B − c2
s ∇ρ + ∇ · (2νρS) + ρ( f + g), (1)

∂t A = U × B + η∇2 A, (2)

∂t ρ = −∇ · ρU, (3)

where the operator Dt ≡ ∂t + U · ∇ denotes the convective deriva-
tive, B = ∇ × A is the magnetic field, J = ∇ × B/μ0 the cur-
rent density, Sij = 1

2 (Ui,j + Uj,i) − 1
3 δij∇ · U is the traceless rate

of strain tensor (the commas denote partial differentiation), ν the
kinematic viscosity, η the magnetic diffusivity, and cs the isother-
mal sound speed. In addition, we assume the ideal gas law to
hold. Our domain is a Cartesian box of size Lx × Ly × Lz with
Lx = Ly = Lz = 2π. Periodic boundary conditions on all dynami-
cal variables are assumed in the horizontal (xy) plane. The velocity
satisfies stress-free, non-penetrating boundary condition at the top
and bottom boundaries. The volume-averaged density is therefore
constant in time and equal to its initial value. At the bottom, per-
fectly conducting boundary conditions are imposed on the magnetic

MNRAS 445, 761–769 (2014)

 at R
oyal L

ibrary/C
openhagen U

niversity L
ibrary on O

ctober 4, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Bipolar structure from dynamos 763

field, which is constrained to have only a vertical component at the
top boundary (normal field boundary condition). The gravitational
acceleration g = (0, 0, −g) is chosen such that k1Hρ = 1, which
leads to a density contrast in the vertical direction between bot-
tom and top of exp(2π) ≈ 535. Here, Hρ ≡ c2

s /g is the density
scaleheight.

2.2 Forced turbulence

Turbulence is sustained in the medium by injecting energy through
the function f given by (Brandenburg 2001)

f (x, t) = Re{N f̃ (k, t) exp[ik · x + iφ]}, (4)

where x is the position vector. On dimensional grounds, we choose
N = f0

√
c3

s |k|, where f0 is a non-dimensional forcing amplitude.
At each timestep, we select randomly the phase −π < φ ≤ π and
the wavevector k from many possible wavevectors in a certain range
around a given forcing wavenumber, kf. Hence f (t) is a stochastic
process that is white-in-time and is integrated by using the Euler–
Marayuma scheme (Higham 2001). The Fourier amplitudes,

f̃ (k) = R · f̃ (k)(nohel) with Rij = δij − iσεijkk̂√
1 + σ 2

, (5)

where σ characterizes the fractional helicity of f , and

f̃ (k)(nohel) = (k × ê) /

√
k2 − (k · ê)2, (6)

is a non-helical forcing function, and ê is an arbitrary unit vector not
aligned with k and k̂ is the unit vector along k; note that | f̃ |2 = 1.
By virtue of the helical nature of f , a dynamo develops in the
domain (Brandenburg 2001). As we want to separate the domain
over which dynamo operates from the domain over which it is
possible for magnetic flux concentrations to happen, we choose the
fractional helicity of the force σ to go to zero at the top layers of
our domain, i.e. for z > z0, viz.,

σ (z − z0) = σmax

2

[
1 − erf

(
z − z0

wf

)]
. (7)

Here, erf is the error function, and wf is a length-scale chosen to be
0.08Lz. We use several different values of z0 and σ max.

2.3 Non-dimensional parameters

We choose our units such that μ0 = 1 and cs = 1. Our simulations
are characterized by the fluid Reynolds number Re ≡ urms/νkf, the
magnetic Prandtl number PrM = ν/η, and the magnetic Reynolds
number ReM ≡ Re PrM. The magnetic field is expressed in units
of B0

eq ≡ √
ρ0 urms. As the value of the turbulent velocity is set by

the local strength of the forcing, which is uniform, the turbulent
velocity is also statistically uniform over depth, and therefore we
choose to define urms as the root-mean-square velocity based on a
volume average in the statistically steady state. On the other hand,
the density varies over several orders of magnitude as a function of
depth and hence we choose ρ0 as the horizontally and temporally
average density at z = 0, which is the middle of the domain. Time is
expressed in eddy turnover times, τ to = (urmskf)−1. We often find it
useful to consider the turbulent-diffusive time-scale, τtd = (η0

t k
2
1)−1,

where η0
t = urms/3kf is the estimated turbulent magnetic diffusivity.

The simulations are performed with the PENCIL CODE,2 which uses
sixth-order explicit finite differences in space and a third-order accu-

2 http://pencil-code.googlecode.com

Table 1. Summary of the runs discussed in the paper. Here,
λ̃ = λ/urmskf is a non-dimensional growth rate.

Run z0 σmax ReM k̃f λ̃ τ to τ td

A 2 1 17 30 0.041 0.33 900
B −1 1 17 30 0.042 0.33 900
B/2 −1 1 17 30 0.036 0.33 900
C −2 1 17 30 0.045 0.33 900
D −2 1 17 60 0.043 0.17 1800
E −2 1 170 30 0.022 0.33 900
O-02 0 0.2 17 30 0.0043 0.33 900
O-1 0 1 17 30 0.043 0.33 900

rate time stepping method. We typically use a numerical resolutions
of 2563 mesh points, although some representative simulations at
higher resolutions are also run.

3 R ESULTS

We have performed a number of runs varying mainly the values of
z0 and σ . We always used PrM = 0.5 and, in most of the cases,
we had ReM = 17 and k̃f ≡ kf/k1 = 30, but in one case we also
used ReM = 170 and in another k̃f = 60. Our runs are summarized
in Table 1. Let us start by describing in detail one representative
simulation among the many we have run; viz., the case of Run B

in Table 1. In this case, the flow is helically forced up to the height
of z0/Hρ = −1 with σ max = 1. Above the plane z = z0 the flow is
indeed forced, but not helically, i.e. with σ = 0. By virtue of helical
forcing from the bottom wall up to the height of z0, a dynamo
develops. In Fig. 1, we show the evolution of the volume-averaged
magnetic energy, EM, defined by

EM = 1

V

∫
V

dr 1
2 B2. (8)

At short times there is a fast exponential growth of EM; the growth
rate, λ, is given in Table 1. The dynamo saturates at about 0.1τ td,
see Fig. 1(a). In Fig. 1(b), we show the variation of horizontally
averaged (over the xy plane) density 〈ρ〉xy, mean squared veloc-
ity 〈U2〉xy , magnetic energy Eh

M ≡ 1
2 〈B2〉xy , and kinetic helicity

H h
K ≡ 〈W × U〉xy as a function of the height z, where W ≡ ∇ × U

is the vorticity. It is clear from Fig. 1(b) that immediately after dy-
namo saturation, both the kinetic helicity and the magnetic field are
largely confined within the domain up to the height z0, but not the
kinetic energy of the turbulence. Furthermore, in the deep parts of
the domain, the horizontally averaged magnetic energy density is
approximately proportional to density and thus to the local equipar-
tition value, Beq(z) ≡ 〈ρU2〉1/2

xy .

3.1 Flux emergence at the top surface

As the simulation progresses, at t/τ td ≈ 0.3, magnetic flux of both
signs emerges on the top surface. At first the flux emerges as small-
scale fluctuations, but within a time of about 0.1τ td, it self-organizes
to a bipolar structure. The two polarities of the bipolar structure
then move away from each other. This is demonstrated in a se-
ries of snapshots shown in Fig. 2. Here, stratified turbulence gives
rise to antidiffusive properties leading to the formation of bipolar
structures. This is the first remarkable result from our simulations.
Similar behaviour has been seen by Stein & Nordlund (2012), al-
though not in self-consistent dynamo simulations but in simulations
where the magnetic field at the bottom boundary was imposed in
the upwellings. Furthermore, the self-organization we observe is
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764 D. Mitra et al.

Figure 1. (a) Evolution of magnetic energy, EM from Run B. (b) Non-
dimensional values of horizontally averaged (averaged over the xy plane)
density (broken line), 〈ρ〉xy/〈ρ(z = 0)〉xy, mean squared velocity (blue

), 〈U2〉xy/c2

s , magnetic energy (∗), Eh
M/(B0

eq)2, and kinetic helicity (red,

�) H h
K/kfu

2
rms as a function of the height z at dynamo saturation, i.e. at

t/τ td = 0.1 from Run B. For clarity, the density, the mean squared velocity,
and the kinetic helicity are scaled by a factor of 1/2, 600 and 10, respectively.

not driven by radiative convection, as in the simulations of Stein &
Nordlund (2012) but by forced isothermal turbulent flows.

3.2 Formation of an intense bipolar structure

Due to periodic boundary conditions in the x and y directions, the
two polarities, while moving away from each other, approach each
other across the far end of the periodic domain, come close to each

other and form a curious bipolar structure, reminiscent of the so-
called δ spots (see review by Fisher et al. 2000). The z component
of the magnetic field is close to three times B0

eq. This is shown in a
series of snapshots in Fig. 3, where we have shifted the coordinate
system relative to the one in Fig. 2 so as to have the bipolar structure
in the middle of the top surface. As we are using periodic boundary
conditions along the horizontal directions, we are free to make such a
shift. To illustrate this, we show in Fig. 4 the magnetic field at the top
of our computational domain in a box that is extended periodically
to three times its original size in both the x and y directions.

3.3 Recurrent spot activity

This spot-like structure survives up to t/τ td ≈ 0.45, after which it
turns into a bipolar band whose evolution is shown in a series of
snapshots in Fig. 5. At about t/τ td ≈ 1.2 the band dissolves and
the field at the top surface is close to zero. And a little while later
the band-like structure reappears at a different position on the top
surface and with time evolves to a spot-like structure similar to the
one shown in Fig. 3; compare the last snapshot shown in Fig. 5 with
that of Fig. 3.

3.4 How generic are the observed magnetic structures?

To summarize, in this simulation, Run B, the normal magnetic field
at the top surface shows three principal qualitative features: (a) flux
emergence, (b) formation of bipolar structures (spots and bands),
and (c) a recurrent but not exactly periodic appearance of the bipolar
structures. How typical are these qualitative behaviours with respect
to variation of various parameters of our simulation? This question
is addressed in the following manner: (a) we run a simulation, Run
O-02, with the same parameters of Run B but with a different frac-
tional helicity, σ = 0.2. For this run, the helical dynamo instability
is excited at a slower rate and the magnetic flux emergence at the
top surface happens at a later time, nevertheless the same qualita-
tive feature of bipolar magnetic structures are observed. (b) Keeping
the value of fractional helicity, σ max = 1, to be constant, we vary
the height of the dynamo region, z0/Hρ from −1 (Run B) to −2
(Run C), 0 (Run O-1), and 2 (Run A). The flux emergence happens
at different times; for higher z0 the flux emergence is faster. Other
than this quantitative change, there is no qualitative change to our
results. (c) We run a simulation Run E with the same parameters
as Run C, but with bigger resolution (3843) and higher Reynolds
number and obtain the same qualitative behaviour. In another simu-
lation, Run D, we keep all the parameters the same as Run E, except
for the forcing wavenumber, k̃f = 60, and obtain the same qualita-
tive behaviour. (d) Finally, we note that gravity plays a crucial role.
In simulations without gravity (g = 0) or even g/c2

s k1 = 1/2 (Run
B/2), no sharp magnetic structures are seen. Instead the magnetic
field at the top has the same length-scales as the dynamo-generated

Figure 2. Vertical magnetic field at the top surface at different times (from t/τ td = 0.30 to 0.33) from Run B. The magnetic field is normalized by B0
eq.
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Bipolar structure from dynamos 765

Figure 3. Same as Fig. 2, but at later times (from t/τ td = 0.35 to 0.38) and the frame is re-centred, as illustrated in Fig. 4 below.

Figure 4. Vertical magnetic field at the top surface at t/τ td = 0.34 from
Run B. The domain has been extended periodically along both the x and y
directions. The solid lines draw the box used in Fig. 2 and the dashed lines
draw the box used in Fig. 3. The magnetic field is normalized by B0

eq.

magnetic field at the bottom part of the domain, as demonstrated
in Fig. 6. It is also clear from our results that the bipolar magnetic
structures are strongly influenced by the periodicity of our domain.
Is it possible to obtain similar structures, but at different length-
scales (relative to the box size) and in a larger domain? By running
a simulation with double the box size (Lx = Ly = Lz = 4π), we
have found that the characteristic length-scales of the bipolar struc-
tures scaled by the box-size remains the same. This is because in
our periodic geometry, the scale of the large-scale dynamo is always
the largest possible one that fits into the domain. In future work, it
is therefore important to relax this constraint arising from periodic
boundary conditions using, for example, spherical geometry.

3.5 Sharp bipolar structures

A particularly interesting aspect of these simulations is the forma-
tion of bipolar magnetic structures with sharp edges, examples of
which are Fig. 3 or Fig. 5. To document the characteristic length-
scale appearing in magnetic structures, we plot in Fig. 7 the angle-
averaged Fourier spectrum of Bz at the top surface at different times
corresponding to the snapshots in Fig. 5. The plot demonstrates that,
to represent the sharp structures, e.g. in the last snapshot in Fig. 5,
Fourier modes up to kx/k1 = 10 and ky/k1 = 10 are necessary. This
also underscores the necessity of having a large-scale separation

(kf/k1 = 30) to see these magnetic structures. Furthermore, we find
that at large k, the spectra can be approximated by a k−2 power law.

To take a closer look at the bipolar structure, we show in Fig. 8 the
spot-like structure from Run A plotted together with the magnetic
field lines in a three-dimensional representation. The magnetic field
lines of opposite orientation approach each other with height and
merge into a single sharp spot-like structure. This magnetic structure
leaves a clear signature on the velocity field as we demonstrate in
Fig. 9 by plotting the contours of the vertical component of W
overlaid with the horizontal components of velocity as arrows from
Run A.

3.6 Can NEMPI describe our numerical results?

Let us now try to understand the flux emergence and the formation
of bipolar structure. This falls in the general class of pattern forma-
tion in turbulent systems. A theoretical technique to describe this
general class of problems is the mean-field theory where we average
over the turbulent state to derive a set of mean-field equations. The
problem of pattern formation then becomes a problem of studying
the instabilities using the mean-field equations. A well-known ex-
ample, pioneered by Krause, Rädler & Steenbeck (1971) and Krause
& Rädler (1980) is that of dynamo theory where the mean-field the-
ory is applied to the induction equation (see e.g. Brandenburg &
Subramanian 2005, for a review). A recent example of an applica-
tion of this method to understand magneto-rotational instability in
the presence of small-scale turbulence is by Väisälä et al. (2014).

For the present problem, we need to average the momentum
equation over the statistics of turbulence. As a result of such an
averaging, a new term (describing the turbulent contributions) will
be added to the large-scale magnetic pressure term (Kleeorin et al.
1990; Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin
2007). It has been shown that the effective magnetic pressure that
is the sum of non-turbulent and turbulent (new term) contributions,
can be negative in the presence of a background magnetic field
which, in this problem, will be provided by the dynamo.

From symmetry arguments, such a term can be constructed us-
ing the background magnetic field and gravity. In the two extreme
cases: one in which the gravity and the background magnetic field
are perpendicular to each other (Brandenburg et al. 2012; Käpylä
et al. 2012a), and the second in which gravity and the background
magnetic field are parallel to each other (Brandenburg et al. 2014;
Losada et al. 2014), the analysis of the instability simplifies. Un-
fortunately, the problem is more complicated in the present case
where all the three components of magnetic field are present. In
that case, a systematic determination of the new transport coeffi-
cients in the effective magnetic pressure, using direct numerical
simulations (DNS), has not yet been performed. Nevertheless there
are two signatures of NEMPI that we look for. First, we know the
effective magnetic pressure is negative only when the background
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766 D. Mitra et al.

Figure 5. Evolution of the vertical magnetic field at the top surface. Snapshots at different times (from t/τ td = 0.45 to t/τ td = 1.67) are plotted.

Figure 6. Contour plot of Bz/B
0
eq from Run B/2 at two different heights.

magnetic field is neither too large nor too small, within 0.1–1 when
normalized by the equipartition magnetic field (Brandenburg et al.
2012). We find that this condition is satisfied near the top surface
when the first flux emergence occurs, as shown in Fig. 10(a), but
not at later stages as shown in Fig. 10(b). What is then the mech-
anism behind the disappearance and reappearance of the magnetic
flux at the top surface? A clue to this puzzle is the fact that within
mean-field theory the dynamo operating in the lower layers of the
computational domain can be interpreted as an α2 dynamo, where
α ∝ −τto 〈w · u〉xy , where w = W − W and u = U − U are fluc-
tuations. An α2 dynamo for which α varies within the domain can
give rise to dynamo waves (Baryshnikova & Shukurov 1987; Stefani
& Gerbeth 2005; Mitra et al. 2010), and indeed such dynamo waves
are seen in our simulations as shown in the space–time diagram in
Fig. 11.

The second signature of NEMPI is its ability to generate large-
scale flows; since NEMPI creates regions of negative effective mag-
netic pressure, it is often accompanied by a converging flow at
the surface and a downward flow on and immediately below the

Figure 7. Angle integrated power spectrum of Bz at the top surface of our
computational box from Run B in log–log scale. The three black lines show
the early times t/τ td = 0.45 (∗), 0.83 (no symbol), and 1.09 (
), while the
three red lines show the later times t/τ td = 1.22 (�), 1.33 (�), 1.67(×). The
dashed lines has slope equal to −2.

location of flux concentration.3 In our simulations, due to the pres-
ence of strong turbulent fluctuations, we have not been able to detect

3 In general converging flows are typically observed in simulations of strat-
ified convection. Such flows can be quite effective in concentrating vertical
magnetic flux. The crucial input coming from the concept of NEMPI is
that the converging flows themselves are generated by NEMPI due to the
presence of weak background magnetic field.
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Figure 8. Magnetic field structure for Run A at time t/τ td ≈ 1.2. The z

component of the magnetic field, Bz is plotted at z/Hρ = 3. The height
up to which dynamo operates, z0/Hρ = 2, is also shown as a frame. Here
magnetic field, Bz is not normalized, but in units of

√〈ρ(z = 0)〉xycs. In
the same units B0

eq ≈ 0.1.

Figure 9. Contours of the vertical component of vorticity and the horizontal
component of velocity (as arrows) from Run A at the plane z/Hρ = 3; the
magnetic structure at the same plane at the same time, shown in Fig. 8, can
be clearly identified.

any such coherent flow, although some evidence in support of such
a flow has been found in the Fourier filtered velocity field as shown
in Fig. 12. Interestingly, similar downflows are also seen in recent
simulations by Rempel & Cheung (2014), who inject a 10 kG flux
tube at the bottom of a solar convection simulation and let it rise
to the surface. Although the emergence process itself is associated
with upflows, their results show downflows at the late stages of the
flux concentration process. In such simulations that attempt to be
realistic, it is not possible to attribute the observed downflows to
one single mechanism. By contrast, in our simple setup it is likely
that NEMPI is indeed the mechanism responsible for generating the
downward flow.

Figure 10. (a) Log-linear plot of horizontally averaged magnetic energy
Eh

M(z) normalized by the equipartition value of magnetic energy at height
z, Beq(z) ≡ 〈ρU2〉xy, as a function of the height z at different times
t/τ td = 0.28(∗), 0.30(
), 0.32(�), and 0.34(∗). The two dashed lines shows
that range of values over which NEMPI can operate effectively. (b) The
same plot, but this time corresponding to the snapshots plotted in Fig. 5;
t/τ td = 0.86(∗), 1.(
), 1.2(�), and 1.33(�).

4 C O N C L U S I O N

To conclude, in this paper, we have shown that it is possible to gen-
erate intense structures of vertical magnetic field at the top surface
of DNS of a density-stratified turbulent dynamo. Furthermore, a
rich dynamic behaviour of the magnetic field is observed: bipolar
spot-like structures appear, then morph into bipolar band-like struc-
tures which disappear and reappear at a different place and at a later
stage evolve into spot-like structures. Such structures are similar to
δ spots (see e.g. Fisher et al. 2000) and tend to show anticlockwise
rotation, which is consistent with the fact that the kinetic helicity in
our simulations is positive.

The characteristic length and time-scales of the magnetic field
formed at the top surface are much smaller than the characteristic
length-scale (and time-scale) of the dynamo-generated magnetic
field. The necessary conditions are strong stratification, presence of
turbulence, and large-scale separation, which is at least 30 in the
DNS we present here. Clearly, there is a mechanism at work here
that can concentrate a weak large-scale magnetic field to strong
magnetic field of smaller scale. Could this mechanism be NEMPI?
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Figure 11. (a) Space–time diagram of Bh
x /Beq showing dynamo waves

propagating vertically outward. (b) Bh
x (z)/Beq(z) (∗) and Bh

x (z)/Beq(z) (
)
as a function of time at z/Hρ = 3.

At present, we cannot provide a definitive answer to this question,
although we do show that the necessary conditions for NEMPI to
operate are satisfied during the first emergence of flux at the top
surface.

How relevant are our result in understanding the formation of
active regions and sunspots? Unlike the works by e.g. Stein &
Nordlund (2012) or Rempel & Cheung (2014), our simulations do
not include radiative hydrodynamic convection; turbulence is gener-
ated by external forcing. This should not necessarily be considered
a shortcoming of our simulations as the aim of our work has been
to present the simplest model that can show formation of bipolar
structures from a large-scale dynamo. This is the first time bipolar
structures are found to appear in simulations where the magnetic
field is not imposed – as is the case in Stein & Nordlund (2012),
Warnecke et al. (2013), or Rempel & Cheung (2014) – but it is self-
consistently generated from a dynamo in strongly stratified forced
turbulence.

The most remarkable feature of these simulations is that a mini-
malistic setup consisting solely of stratification and helically forced
turbulence can generate such diverse spatiotemporal behaviour.
Could a mean-field model consisting of both dynamo equations and
equations describing NEMPI capture such behaviour? This question
will be the subject of future investigations.
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