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ABSTRACT

Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models
and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow.
Aims. We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an
anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions
to the Reynolds stress.
Methods. We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geom-
etry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity
was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the
luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the
amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection.
Results. Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp tran-
sition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale
flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization
of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found
to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions.
Conclusions. Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the
early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers, and
thus longer in time, before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation
profiles for models in the solar parameter regime.
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1. Introduction

The solar surface differential rotation is characterized by a fast
equator and a monotonic decrease of angular velocity toward the
poles. The internal rotation of the Sun is such that only weak ra-
dial shear is present in the bulk of the convection zone. Strong
shear is present only in the boundary layers at the bottom in the
tachocline and in the near-surface shear layer (e.g. Thompson
et al. 2003; Miesch & Toomre 2009, and references therein). The
differential rotation is explained by the interaction of anisotropic
turbulence and rotation, which is represented by a non-diffusive
contribution to the Reynolds stress known as Λ effect in mean-
field hydrodynamics (Krause & Rüdiger 1974; Rüdiger 1980,
1989). Furthermore, turbulent latitudinal heat fluxes, or stably
stratified layers below (Brun et al. 2011) or above (Warnecke
et al. 2013) the convection zone are needed to explain why
the Taylor-Proudman balance is broken in the Sun. Mean-field
models with these ingredients or other parameterizations have
been successful in reproducing the solar rotation profile (e.g.
Brandenburg et al. 1992; Kitchatinov & Rüdiger 1995; Rempel
2005; Hotta & Yokoyama 2011), and recently also the tachocline
and the near-surface shear layer (e.g. Kitchatinov & Olemskoy
2011).

Mean-field models rarely produce anti-solar differential
rotation unless a strong meridional circulation is imposed
(Kitchatinov & Rüdiger 2004). This suggestion is supported by
simulations of Dobler et al. (2006), which displayed anti-solar
differential rotation in their fully convective models as a con-
sequence of strong meridional circulation. An arguably similar
pathway was offered by Aurnou et al. (2007), who proposed
that strong mixing by turbulent convection would be the primary
agent for angular momentum equilibration and thus anti-solar
differential rotation. This mixing must then be stronger in the
meridional plane than in the azimuthal direction to produce neg-
ative differential rotation, similar to what is expected to occur in
the near-surface shear layer of the Sun (Kitchatinov & Rüdiger
2005). Differential rotation and meridional circulation are inti-
mately coupled (Kippenhahn 1963), and one implies the other.
Anti-solar differential rotation implies a counter-clockwise cir-
culation in the northern hemisphere, corresponding to poleward
motion at the surface. In the context of the solar near-surface
shear layer, this mechanism is referred to as gyroscopic pump-
ing (Miesch & Hindman 2011).

Both mean-field models and simulations have limitations.
Furthermore, approximations like first-order smoothing are used
to derive turbulent transport coefficients, such as turbulent
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viscosity and the so-called Λ effect. However, their range of va-
lidity in stellar convection zones is questionable and only lim-
ited comparisons between hydrodynamic mean-field models and
direct simulations have been performed (see, however Rieutord
et al. 1994). Direct numerical simulations of convection, on the
other hand, lack small-scale structure and tend to be dominated
by structures that span the entire convection zone.

The rotational influence on the flow can be measured by the
local Coriolis number Co = 2Ωτ, where Ω is the rotation rate
and τ is the turnover time. It is large in the bulk of the solar con-
vection zone, especially if τ is estimated from mixing length the-
ory, which predicts values of Co ranging from 10−3 near the sur-
face to more than 10 in the deep layers (e.g. Ossendrijver 2003;
Brandenburg & Subramanian 2005; Käpylä 2011). This is not
captured by present simulations, which might well be due to in-
sufficient density stratification in most numerical simulations so
far. Whether the deep layers of stellar convection zones are really
like this remains an open question. Observational evidence also
points to anti-solar differential rotation in some slowly rotating
stars (e.g. Strassmeier et al. 2003; Weber et al. 2005) and solar-
like rotation in rapidly rotating dwarfs (e.g. Collier Cameron
2002). However, for the star with the best observational evi-
dence for anti-solar differential rotation, namely the single K gi-
ant star HD 31993 (Strassmeier et al. 2003), the Coriolis number
is around unity and thus close to the expected transition.

Recent numerical studies have explored the transition from
anti-solar to solar-like differential rotation (Brun & Palacios
2009; Chan 2010; Käpylä et al. 2011b,a; Gastine et al. 2013,
2014; Guerrero et al. 2013). Here we concentrate on the effect of
superabiabaticity on the rotational influence and resulting large-
scale flows, and study the bistability of the differential rotation
first reported by Gastine et al. (2014) using Boussinesq convec-
tion. They found that, near the transition from anti-solar to solar-
like differential rotation, both kinds of solutions are possible –
depending on the initial conditions. This is interesting for stellar
applications because most stars rotate rapidly when they are born
and slow down due to magnetic braking. Rapid rotation implies
solar-like differential rotation, which might then persist despite
the angular momentum loss due to stellar winds.

In this paper we set out to study the transition of solar-like
rotation profiles into the anti-solar regime, extending the work
of Gastine et al. (2014) into models of compressible convection.
Using the spherical wedge model employed in various previous
papers, the essential parts summarized in Sect. 2, we investi-
gate the effect of changing the rotational influence by modifying
the radiative conductivity that has an effect on the convective
velocities. We perform two types of simulations, presented in
Sect. 3. Firstly, we run models from scratch, i.e. without an ini-
tially prescribed rotation profile, and locate the solar to anti-solar
transition in terms of Coriolis number. Secondly, we investigate
the dependence of the solutions on initial conditions by running
models from solar and anti-solar states, with otherwise identical
parameters.

2. The Model

Our hydrodynamic model is essentially the same as the one used
in Käpylä et al. (2011a). The same model has also been used
to model convection-driven dynamos (Käpylä et al. 2012, 2013;
Cole et al. 2014). The computational domain is a wedge in spher-
ical polar coordinates, where (r, θ, φ) are radius, colatitude, and
longitude. The radial, latitudinal, and longitudinal extents of the
wedge are r0 ≤ r ≤ r1, θ0 ≤ θ ≤ π − θ0, and 0 ≤ φ ≤ φ0,
respectively, where r0 = 0.72 R� and r1 = 0.97 R� denote the

positions of the bottom and top of the computational domain,
and R� = 7 × 108 m is the radius of the Sun. Here we consider
θ0 = π/12 and φ0 = π/2, so we cover a quarter of the azimuthal
extent between ±75◦ latitude. The dependence on the latitudinal
extent of the wedge was studied by Käpylä et al. (2011b), who
found that the results are robust as long as the opening angle of
the wedge is more than 90 degrees. We solve the compressible
hydrodynamic equations,

D ln ρ
Dt

= −∇ · u, (1)

Du
Dt
= g − 2Ω0 × u +

1
ρ

(∇ · 2νρS − ∇p) , (2)

T
Ds
Dt
= −1
ρ
∇ ·

(
Frad + FSGS

)
+ 2νS2, (3)

where D/Dt = ∂/∂t + u · ∇ is the advective time derivative, ρ is
the density, ν is the constant kinematic viscosity,

Frad = −K∇T and FSGS = −χSGSρT∇s (4)

are radiative and subgrid-scale (hereafter SGS) heat fluxes,
where K is the radiative heat conductivity and χSGS is the tur-
bulent heat conductivity, which represents the unresolved con-
vective transport of heat (Käpylä et al. 2013) and was referred
to as χt in Käpylä et al. (2011a, 2012). Furthermore, s is the
specific entropy, T is the temperature, and p is the pressure.
The fluid obeys the ideal gas law with p = (γ − 1)ρe, where
γ = cP/cV = 5/3 is the ratio of specific heats at constant pres-
sure and volume, respectively, and e = cVT is the specific inter-
nal energy. The rate of strain tensor S is given by

Si j =
1
2 (ui; j + u j;i) − 1

3δi j∇ · u, (5)

where the semicolons denote covariant differentiation (Mitra
et al. 2009).

The gravitational acceleration is given by g = −GM�r/r3,
where G = 6.67× 10−11 m3 kg−1 s−2 is the gravitational constant,
and M� = 2.0 × 1030 kg is the mass of the Sun. We neglect self-
gravity of the matter in the convection zone. Furthermore, the
rotation vectorΩ0 is given by Ω0 = (cos θ,− sin θ, 0)Ω0.

2.1. Initial and boundary conditions

Here we make an effort to connect the model more closely with
the parameters of the Sun. Due to the fully compressible formu-
lation of our model, we are faced with a prohibitive time step
limitation if we were to use the solar luminosity. As explained
in detail in Käpylä et al. (2013), we circumvent this by using a
roughly 106 times higher luminosity in the model in comparison
to the Sun. As the convective energy flux scales as Fconv ∼ ρu3,
the convective velocity u is roughly 100 times greater in the sim-
ulations than in the Sun. To obtain the same rotational influence
on the flow as in the Sun, we must therefore increase Ω by the
same factor. In general, this can be written as

usim = L1/3
ratiou� and Ωsim = L1/3

ratioΩ�, (6)

where Lratio = L0/L�, with L0 and L� ≈ 3.84 × 1026 W be-
ing the luminosities of the model and the Sun, respectively, and
Ω� ≈ 2.7 × 10−6 s−1 is the mean solar rotation rate, correspond-
ing to 430 nHz. In what follows we scale our results back to
solar units so that, say for the velocity, we quote usim/L

1/3
ratio. The

scaling used here is based on dimensional arguments. It is sup-
ported by mixing length theory (Vitense 1953) and simulations
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(Brandenburg et al. 2005; Miesch et al. 2012), and should be
applicable as long as the energy transport is not yet affected by
rotation (see e.g. Yadav et al. 2013). Furthermore, we assume
that the density and the temperature at the base of the convec-
tion zone at r = 0.72 R� have the solar values ρ0 = 200 kg m−3

and T0 = 2.23 × 106 K.
The initial state is isentropic and the hydrostatic temperature

gradient is given by

∂T
∂r
= − GM�/r2

cV(γ − 1)(nad + 1)
, (7)

where nad = 1.5 is the polytropic index for an adiabatic strat-
ification. We fix the value of ∂T/∂r on the lower boundary.
The density profile follows from hydrostatic equilibrium. To
speed up the thermal relaxation, the initial condition is cho-
sen not to be in thermodynamic equilibrium, but closer to the
final convecting state. We choose the heat conduction profile
such that radiative diffusion is responsible for supplying the en-
ergy flux in the system and progressively less so further out by
choosing a radiative conductivity, K(r) = K0[n(r) + 1], with
n(r) = δn(r/r0)−15 + nad − δn replacing the polytropic index,

K0 = (L/4π)cV(γ − 1)(nad + 1)ρ0

√
GMR, (8)

being a reference conductivity, andL being the non-dimensional
luminosity, given below. Now n = nad at the bottom of the con-
vection zone and approaches nad − δn at the surface. This means
that K = (n + 1)K0 decreases toward the surface like r−15 such
that the value of δn regulates the flux that is carried by convec-
tion (Brandenburg et al. 2005). Initial, final, and hydrostatic pro-
files of the temperature and density as well as the profiles of
PrSGS = ν/χSGS and Pr = ν/χ, where χ = K/ρcP, are shown in
Fig. 1. We introduce weak small-scale Gaussian noise velocity
perturbations in the initial state.

Our simulations are defined by the energy flux imposed at the
bottom boundary, Fb = −(K∂T/∂r)|r=r0 as well as the values of
Ω0, ν, and χSGS = χSGS(rm = 0.845 R�). Furthermore, the radial
profile of χSGS is piecewise constant above r > 0.75 R� with
χSGS = χSGS at 0.75R� < r < 0.95 R�, and χSGS = 1.35χSGS
above r = 0.95 R�. Below r = 0.75 R�, χSGS tends smoothly to
zero; see Fig. 1 of Käpylä et al. (2011a). We fix the value of χSGS
such that it corresponds to 5 × 108 m2 s−1 in physical units at
r = r1.

The radial and latitudinal boundaries are assumed to be im-
penetrable and stress free, i.e.,

ur = 0,
∂uθ
∂r
=

uθ
r
,
∂uφ
∂r
=

uφ
r

(r = r0, r1), (9)

∂ur

∂θ
= uθ = 0,

∂uφ
∂θ
= uφ cot θ (θ = θ0, π − θ0). (10)

Density and specific entropy have vanishing first derivatives on
the latitudinal boundaries, thus suppressing heat fluxes through
them.

On the outer radial boundary we apply a black body
condition

σT 4 = −K∇rT − χSGSρT∇r s, (11)

where σ is the Stefan-Boltzmann constant. We use a modified
value for σ that takes into account that both surface temperature
and energy flux through the domain are larger than in the Sun.
We chooseσ such that the flux at the surface,σT 4, carries the to-
tal luminosity through the boundary in the initial non-convecting
state.

2.2. Dimensionless parameters

The non-dimensional input parameters of our models are the lu-
minosity parameter

L = L0

ρ0(GM�)3/2R1/2
�
, (12)

the normalized pressure scale height at the surface,

ξ =
(γ − 1)cVT1

GM�/R�
, (13)

with T1 being the temperature at the surface, the Taylor number

Ta = (2Ω0Δr2/ν)2, (14)

where Δr = r1 − r0 = 0.25 R�, as well as the fluid and SGS
Prandtl numbers

Pr =
ν

χm
, PrSGS =

ν

χSGS
, (15)

where χm = K(rm)/cPρm is the thermal diffusivity and ρm is
the density, both evaluated at r = rm = 0.845 R�. We vary
Pr and keep PrSGS = 0.25 fixed. Finally, the non-dimensional
viscosity is

ν̃ =
ν√

GM�R�
· (16)

In addition to ξ, we quote the initial density contrast, Γ(0)
ρ ≡

ρ(r0)/ρ(r1). In the current moderately stratified simulations the
density contrast changes by less than 10 per cent during the run,
see the middle panel of Fig. 1.

All other parameters are used as diagnostics and are not input
parameters. These include the fluid Reynolds number

Re =
urms

νkf
, (17)

where kf = 2π/Δr ≈ 25 R−1� is an estimate of the wavenumber of
the largest eddies. The Coriolis number is defined as

Co =
2Ω0

urmskf
, (18)

where urms =

√
(3/2)〈u2

r + u2
θ〉rθφt is the rms velocity and the

subscripts indicate averaging over r, θ, φ, and a time interval
during which the run is thermally relaxed. For urms we omit
the contribution from the azimuthal velocity, because it is domi-
nated by the differential rotation (Käpylä et al. 2011b). To have
a reasonable estimate of the rms velocity similar to that un-
der isotropic conditions, we compensate for the omission of u2

φ

by the 3/2 factor. The Taylor number can also be written as
Ta = Co2Re2(kfR�)4. Furthermore, we define the Rayleigh num-
ber as

Ra=
GM�(Δr)4

νχSGSR2�

(
− 1

cP

dshs

dr

)
rm

, (19)

where shs is the entropy in the hydrostatic, non-convecting state.
We compute the hydrostatic stratification by evolving a one-
dimensional model (no convection) with the values and profiles
of K and χSGS given above. We also quote the convective Rossby
number (Gilman 1977)

Roc =

(
Ra

PrSGSTa

)1/2

· (20)
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Fig. 1. Left and middle panels: temperature T in units of 106 K and density ρ in units of kg m−3, respectively, for the thermally relaxed state (black
solid line), initial condition (red dotted), and hydrostatic solutions (blue dashed). Rightmost panel: Prandtl numbers related to radiative diffusion
Pr = ν/χ where χ = K/ρcP (black solid line), and the turbulent heat conductivity PrSGS = ν/χSGS (blue dashed) as functions of radius. Data is
taken from Run D.

We define mean quantities as averages over the φ-coordinate and
denote them by overbars. We also often average the data in time
over the period of the simulations where thermal energy and dif-
ferential rotation have reached statistically saturated states.

The simulations are performed with the Pencil Code1,
which uses a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. Results

Our simulations are summarized in Table 1. We perform three
sets of runs. In the first set, we run the model from the initial
conditions described in Sect. 2.1 (Runs A–E). Here, Runs A–
C turn out to have anti-solar differential rotation, while Runs D
and E have solar-like differential rotation. Secondly, we study
the bistability of the rotation profile by taking either a solar-
like (Runs D0–D4) or an anti-solar (Runs B0–B10b) solution as
initial conditions. Apart from δn, we keep all other parameters
fixed. We also estimate Λ effect coefficients from the simulation
results.

3.1. Effect of varying radiative flux

We change the radiative conductivity by varying the parame-
ter δn, which regulates the amount of flux that convection has
to transport, thus influencing the convective velocities and the
Coriolis number. The different contributions to the total energy
flux from Runs A and E are shown in Fig. 2. The definitions
of the fluxes can be found in Käpylä et al. (2013). We give the
fractions of convective and radiative contributions to the total
energy flux at the middle of the convection zone in Table 1.
For δn = 2.5 (Run A) the convective flux can exceed the total
flux, so the radiative flux transports less than 10 per cent of the
luminosity in the upper part of the convection zone. In Run E
with δn = 1.75 the fractions of radiative diffusion and convec-
tion are 37 and 53 per cent, respectively. In the extreme case of
δn = 1 (Runs B10 and B10b), convection transports only about
20 per cent of the flux. These cases are comparable to the setups
used in earlier works (Käpylä et al. 2010b, 2011b).

1 http://pencil-code.google.com/

Fig. 2. Time-averaged energy fluxes from Runs A (top) and E (bottom):
radiative (thin solid line), convective (dashed), kinetic energy (dash-
dotted), SGS (triple-dash-dotted), and viscous (long-dashed) flux. The
thick solid line denotes the total flux, whereas the red horizontal dotted
lines show the zero and unity line. The red vertical dotted line at r = rm

shows the midpoint of the convection zone.

The rms-velocities based on the fluctuating velocity for
Runs A, C, and E are shown in Fig. 3. The changes between
Runs A and C are rather subtle, the main effect being the de-
crease in the overall magnitude of urms. The main difference
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Table 1. Summary of the runs.

Run Ra Pr δn Roc Re Co Δ
(θ)
Ω

Δ
(r)
Ω

Ẽkin[10−7] Emer/Ekin Erot/Ekin L̃rad L̃conv Remarks

A 3.93 × 105 40.4 2.50 0.73 35 1.24 −2.47 −0.51 4.20 0.003 0.954 0.09 1.01 AS
B 3.54 × 105 20.3 2.25 0.69 34 1.27 −2.36 −0.50 3.87 0.003 0.954 0.18 0.84 AS
C 3.16 × 105 13.6 2.00 0.65 33 1.33 −2.28 −0.49 3.60 0.003 0.955 0.30 0.66 AS
D 2.92 × 105 11.3 1.85 0.63 29 1.50 0.03 0.04 0.33 0.001 0.466 0.34 0.62 SL
E 2.77 × 105 10.1 1.75 0.61 27 1.60 −0.01 0.09 0.38 0.001 0.593 0.37 0.53 SL, polar jet

D0 2.92 × 105 11.3 1.85 0.63 29 1.50 0.03 0.04 0.33 0.001 0.466 0.34 0.62 SL
D1 3.16 × 105 13.5 2.00 0.65 29 1.50 0.16 0.07 0.37 0.001 0.517 0.28 0.65 SL
D2 3.31 × 105 15.6 2.10 0.67 30 1.44 0.13 0.05 0.37 0.001 0.465 0.24 0.72 SL
D3 3.47 × 105 18.4 2.20 0.68 32 1.37 0.03 0.01 0.28 0.002 0.243 0.21 0.81 SL
D4 3.62 × 105 22.7 2.30 0.70 35 1.27 −2.33 −0.50 3.93 0.003 0.955 0.19 0.87 AS

B0 3.54 × 105 20.3 2.25 0.69 34 1.27 −2.36 −0.50 3.87 0.003 0.954 0.18 0.84 AS
B1 3.47 × 105 18.5 2.20 0.68 34 1.27 −2.26 −0.50 3.92 0.002 0.956 0.24 0.85 AS
B2 3.31 × 105 15.7 2.10 0.67 33 1.31 −2.27 −0.50 3.87 0.003 0.958 0.27 0.77 AS
B3 3.16 × 105 13.6 2.00 0.65 33 1.34 −2.18 −0.49 3.67 0.003 0.958 0.31 0.71 AS
B4 3.00 × 105 12.0 1.90 0.64 32 1.37 −2.15 −0.49 3.54 0.003 0.958 0.34 0.64 AS
B5 2.85 × 105 10.8 1.80 0.62 31 1.41 −2.06 −0.49 3.38 0.003 0.958 0.38 0.59 AS
B6 2.69 × 105 9.7 1.70 0.60 30 1.45 −1.98 −0.48 3.16 0.003 0.957 0.41 0.54 AS
B7 2.38 × 105 8.2 1.50 0.57 28 1.54 −1.86 −0.47 2.83 0.003 0.958 0.48 0.44 AS
B8 2.22 × 105 7.6 1.40 0.55 27 1.60 −1.76 −0.45 2.63 0.003 0.958 0.51 0.39 AS
B9 2.07 × 105 7.0 1.30 0.53 22 2.01 0.04 0.12 0.25 0.001 0.632 0.54 0.28 SL, polar jets
B10 1.59 × 105 5.8 1.00 0.46 18 2.43 0.06 0.12 0.19 0.001 0.668 0.65 0.17 SL, polar jets
B10b 1.59 × 105 5.8 1.00 0.46 17 2.61 0.33 0.11 0.34 0.000 0.831 0.65 0.17 SL

Notes. All models have PrSGS = 0.25, L = 3.85 × 10−5, Ta = 2.98 ·106, ξ = 0.0325 corresponding to Γ ≈ 12, Ω0/Ω� = 1, and use a grid resolution
128 × 256 × 128. With χSGS(r1) = 5 × 108 m2 s−1, we have χSGS = 3.7 × 108 m2 s−1, and ν = 9.3 × 107 m2 s−1. Ẽkin = 〈 1

2ρu
2〉 is the volume

averaged total kinetic energy, in units of GM�ρ0/R�. Emer =
1
2 〈ρ(u2

r + u2
θ)〉 and Erot =

1
2 〈ρu2

φ〉 are the kinetic energies of the meridional circulation
and differential rotation. L̃rad and L̃conv are the fractions of total flux transported by radiative conduction and resolved convection at r = rm. Runs D
and D0, and Runs B and B0 are the same. Run D1 was continued from a snapshot of Run D, whereas the other models in Set D were continued
from a relaxed state of D1. In Set B, a snapshot of Run B0 was used as an initial condition. In the last column, AS and SL stand for anti-solar and
solar-like differential rotation, respectively.

Fig. 3. Radial dependence of the time averaged fluctuating rms-velocity
where the contributions from the mean flows are omitted for Runs A
(solid black line), C (blue dashed), and E (red dot-dashed). The black
dotted line shows the convective velocity from the mixing length (ML)
model of Stix (2002).

between Runs C and E is the increased contrast of the values
near the boundaries. We also find that all runs show higher ve-
locities than the mixing length (ML) model of Stix (2002) be-
low r = 0.95 R�. The increase in urms near the lower boundary
is due to our impenetrable boundary condition. Near the upper
boundary our values of urms are close to those obtained from ML.
A likely explanation is the weaker density stratification used in
our simulations (Γ ≈ 12) as opposed to what is realized in the

ML model (Γ ≈ 60), leading to higher values near the surface
in the latter. Computing an average velocity using the data in
Fig. 3 and using that to compute a Coriolis number according to
Eq. (18), we find Co ≈ 2.13 for the ML model. This is clearly
above the values our Runs A–E owing to the lower velocities.
However, we note that recent high-resolution simulations of non-
rotating solar convection suggest significantly higher velocities
than anticipated from ML models (Hotta et al. 2014) so the ac-
tual Coriolis number of the Sun might also be much smaller than
our estimate.

3.2. Differential rotation

The decrease in the rms-velocity, since δn is lowered, is also re-
flected in the Coriolis number, which more than doubles between
the extreme cases A and B10. The increasing rotational effect on
the flow affects the rotation profile realized in the runs. The pro-
files of Ω = uφ/r sin θ + Ω0 are shown in Fig. 4 for Runs A–E,
which were run from the initial conditions stated in Sect. 2.1
with δn varying systematically. We characterize the relative ra-
dial and latitudinal differential rotation by the quantities (Käpylä
et al. 2013)

Δ
(r)
Ω
=
Ωeq −Ωbot

Ωeq
, Δ(θ)

Ω
=
Ωeq −Ωpole

Ωeq
, (21)

where Ωeq = Ω(r1, π/2) and Ωbot = Ω(r0, π/2) are the equato-
rial rotation rates at the surface and at the base of the convection
zone, andΩpole =

1
2 [Ω(r1, θ0)+Ω(r1, π− θ0)] is the average rota-

tion rate between the latitudinal boundaries on the outer radius.
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Fig. 4. Time-averaged rotation profiles from Runs A–E showing Ω in nHz.

Fig. 5. Time-averaged meridional circulation from Runs A (left) and D (right). The arrows show the flow um = (ur , uθ), whereas the colour contours
show uθ.

In the Sun, Δ(r)
Ω
> 0 and Δ(θ)

Ω
> 0, which is what is required for a

solution to be classified as “solar-like”.

For high values of δn, i.e. for low radiative flux (Runs A–C),
the rotation profile is anti-solar with a negative radial gradient
of Ω at all latitudes. The difference ΔΩ between the equator and
latitudes ±75◦ is larger than 1.5Ω� in both cases. In Run D the
rotation profile flips to solar-like. Thus, the transition from the
anti-solar to solar-like regime occurs when 1.85 < δn < 2.0,
corresponding to 1.33 < Co < 1.50 in this set of runs. This is
compatible with the results of Gastine et al. (2014), who found
the transition at a local Rossby number of around Rol ≈ 1 where
Rol ≈ 2/Co. As noted by Gastine et al. (2014), the transition is
abrupt and occurs in a narrow parameter range. In Runs D and E,
with the highest Coriolis numbers, the rotation profile is clearly
solar-like. However, there are some interesting features in Run E:
a strong polar jet appears on the northern hemisphere, and a de-
crease inΩ is seen near the equator. Such polar vortices have fre-
quently been found in similar simulations, see, e.g., Käpylä et al.
(2010b, 2011b,a), and were also found in rapidly rotating con-
vection in relatively thin shells (e.g. Elliott et al. 2000; Gastine
& Wicht 2012). In the current setup this tendency is weaker, but

we still occasionally observe polar jets (Runs E, B9, and B10;
see also the left panel of Fig. 9.

We note that Run A is expected to be closest to the Sun with
the highest convective energy flux. Furthermore, our choice of
PrSGS = 0.25 leads to a fairly large contribution of SGS-flux
within the convection zone, which in the Sun is transported by
convection. These results imply that the convective velocities in
the Sun would be even higher, leading to lower Co and con-
ditions that are more suitable for anti-solar differential rotation.
There are, however, hints that the velocities in simulations might
be significantly higher than those in the Sun (cf. Hanasoge et al.
2012; Miesch et al. 2012).

3.3. Meridional circulation

Figure 5 shows the meridional circulation from representative
Runs A and D. In the relatively slowly rotating anti-solar Run A,
the flow is concentrated in a single anti-clockwise cell mostly
outside the tangent cylinder with a peak amplitude of 90 m s−1,
which is clearly higher than what is observed in the Sun (e.g.
Zhao & Kosovichev 2004). In Run D the circulation pattern

A43, page 6 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423412&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423412&pdf_id=5


P. J. Käpylä et al.: Bistable stellar differential rotation

Fig. 6. Radial (left panel) and latitudinal (right panel) differential rotation, defined by Eqs. (21), from Runs A–E (diamonds), and Set D (blue
dotted line with asterisks) and B (red dashed line with triangles).

extends to higher latitudes and consists of several cells at low
latitudes. The cell at high latitudes is likely an artefact of the
closed θ-boundary. A similar transition from multiple to single
cells has been observed before in different settings (e.g. Käpylä
et al. 2011a; Matt et al. 2011; Gastine et al. 2013). The flow
amplitude near the surface in Run D is of the order of 30 m s−1,
which is still somewhat higher than the 20 m s−1 obtained from
helioseismology (Zhao & Kosovichev 2004).

A single-cell poleward circulation with solar-like rotation
has been reported from simulations in spherical shells with the
ASH code by imposing a latitudinal entropy variation on the
bottom boundary (Miesch 2007; Miesch et al. 2011). In our
spherical-wedge simulations, such a circulation pattern in com-
bination with a solar-like differential rotation profile has so far
occurred only as a transitory phenomenon in runs that have not
yet fully relaxed, and they typically end up in the anti-solar
regime. Recent helioseismic studies suggest that the solar merid-
ional circulation pattern consists of several cells in radius and
possibly also in latitude (Zhao et al. 2013; Schad et al. 2013;
Kholikov et al. 2014), which is also realized in our more rapidly
rotating cases but is at odds with mean-field models of solar ro-
tation (e.g. Rempel 2005; Kitchatinov & Rüdiger 2005).

3.4. Flow bistability

We confirm recent results of Gastine et al. (2014) that near the
transition from solar-like to anti-solar differential rotation, two
stable solutions for the large-scale flow exist for the same pa-
rameter values, only depending on the initial conditions.

Our results for Δ(r)
Ω

and Δ(θ)
Ω

are shown in Fig. 6 for three
sets of models (cf. Table 1). Firstly, we run models from the
initial conditions described in Sect. 2.1. Furthermore, we run
two additional sets where we take a snapshot from an anti-solar
and a solar-like solution as initial conditions. In the last two
sets we vary the Rayleigh and Prandtl numbers by changing
δn and hence the radiative conductivity K(r), while keeping the
other control parameters at fixed values. We find that for these
choices of parameters and initial conditions, it is more difficult
to switch from anti-solar to solar-like differential rotation than
vice versa. This is seen by comparing the δn required for solar-
like solutions in the different sets of runs: in Set D where we
approach from the rapid rotation regime, the switch occurs be-
tween 0.68 < Roc < 0.70 (1.27 < Co < 1.37). In the opposite

Fig. 7. Time-averaged rotation profiles from Runs C and D1.

case of Set B, where we approach from the anti-solar branch, the
switch occurs between 0.53 < Roc < 0.55 (2.43 < Co < 2.01).
In the case of Runs A–E that were run from scratch, we found
0.63 < Roc < 0.65 (1.33 < Co < 1.50). Thus, in terms of the
Coriolis number the bistability region extends farther into the
anti-solar regime than the solar-like one. Physically, this might
be related to the fact that in this case the strength of the differ-
ential rotation is much larger (see the two panels of Fig. 6). We
have considered a single value of the Taylor number in our study.
We note that according to Gastine et al. (2014), the size of the
bistable region is wider with higher Ta.

Figure 7 shows the rotation profiles from Runs C and D1
that have the same control parameters but different histories:
Run C was run from the initial conditions described in Sect. 2.1,
whereas in Run D1 we used the final thermally relaxed state
of Run D (=D0) as initial condition. The resulting evolution of
Δ

(r)
Ω

and Δ(θ)
Ω

is shown in Fig. 8, where we also show the cor-
responding results for Run B3 with the same input parameters
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Fig. 8. Radial and latitudinal differential rotation as functions of time
from Runs D1 and B3 with the same parameters.

as Run D1 after restarting from Run B (=B0). Our simulations
were typically run for roughly 100 years solar time. By com-
parison, the viscous and SGS diffusion times, τν = (Δr)2/ν
and τSGS = τνPrSGS, in our simulations are 10.5 and 2.6 years,
respectively.

Rapidly rotating toroidal jets at high latitudes appear in many
numerical simulations of global scale convection (e.g. Miesch
et al. 2000; Käpylä et al. 2011a,b). In the Sun the latitudinal gra-
dient ofΩ is known to be monotonic in each hemisphere. Models
based on solar differential rotation have also been adopted in
stellar studies where low latitude bands or polar vortices are ig-
nored. Non-magnetic mean-field models also tend to produce
this type of solution. However, the gas giants in the solar system
have alternating bands of slower and faster rotation, although in
that case it is not clear whether the convective layer is deep (e.g.
Busse 1976; Heimpel & Aurnou 2007) or shallow (Kaspi et al.
2013). There are also theoretical and observational studies sug-
gesting similar profiles for fully convective M-dwarfs and brown
dwarfs (e.g. Balbus & Weiss 2010; Crossfield et al. 2014).

In Fig. 9 we show the rotation profiles obtained in Runs B10
and B10b with the same control parameters. Run B10 was run
from a snapshot of Run B0 exhibiting anti-solar differential ro-
tation. This run now exhibits polar jets. However, it has been
suggested that these jets can be unstable (Wicht et al. 2002). To
investigate this possibility further, we take a snapshot from B10
as initial for Run B10b and apply a relaxation term at high lati-
tudes for the azimuthally averaged uφ that yields a monotonic lat-
itudinal gradient of Ω. The relaxation timescale is roughly four
days and the term is switched on for two weeks in solar time in
the beginning of the simulation. We find that the resulting profile
with a more solar-like monotonic behaviour is also stable at least
for 50 years, which corresponds to roughly five viscous diffusion
times.

3.5. Λ effect and turbulent viscosity

The changes in the differential rotation should somehow be
reflected in similar changes in the underlying mechanism

Fig. 9. Time-averaged rotation profiles from Runs B10 and B10b.

responsible for driving it, which is the Λ effect (Rüdiger 1980,
1989). The Λ effect corresponds to a rank three tensor that
parameterizes the non-diffusive contributions to the Reynolds
stress, in addition to the diffusive contributions that result from
turbulent viscosity. The Reynolds stress is given by Qi j = u′iu

′
j,

where u′ = u − u is the fluctuating velocity. The relevant off-
diagonal components can be written as

Qrφ = ΛV sin θΩ − νtr sin θ
∂Ω

∂r
, (22)

Qθφ = ΛH cos θΩ − νt sin θ
∂Ω

∂θ
, (23)

where ΛV and ΛH are the vertical and horizontal components of
the Λ effect and νt is the turbulent viscosity. Obviously, we can-
not extract both effects self-consistently from a single Reynolds
stress component. Instead, we use a simple mixing length for-
mula to estimate the turbulent viscosity

νt =
1
3 urmsαMLTHp, (24)

where urms = urms(r, θ) varies across the meridional plane,
αMLT = 1.7 is taken for the mixing length parameter, and Hp =

−(∂ ln p/∂r)−1 is the pressure scale height. Similar methods have
been applied in earlier studies of isotropically forced turbulence
(Snellman et al. 2009) and convection (Pulkkinen et al. 1993;
Käpylä et al. 2010a) in Cartesian geometry, where anisotropy
is self-consistently produced by rotation and/or stratification. In
Fig. 10 we present the results for Runs A and D, which are rep-
resentative of anti-solar and solar-like rotation regimes.

In both cases, the Reynolds stress responsible for radial
transport of angular momentum, Qrφ, is negative at high lati-
tudes. Somewhat surprisingly, Qrφ is very small near the equator
in the relatively slowly rotating Run A, but consistent with early
results of Rieutord et al. (1994). In Run D1, in the solar-like
regime, a positive contribution to the stress appears at low lati-
tudes. The latter is consistent with Cartesian simulations where
the corresponding stress changes sign at low latitudes in the
rapid rotation regime (Käpylä et al. 2004). The horizontal stress,
Qθφ, leads to angular momentum transport that is directed to-
ward the equator in both runs, except at high latitudes in Run A
where the transport is toward the poles.
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Fig. 10. From left to right: time-averaged Reynolds stresses Qrφ and Qθφ normalized by νtΩ�, the turbulent viscosity divided by the molecular
viscosity νt/ν, ΛV and ΛH normalized by νt, and the anisotropy parameters AV and AH. Top row: Run A; bottom row: Run D1. In the fifth column
we only use data some degrees away from the equator so as to avoid the singularity associated with the division by cos θ. The contours in the lower
row are oversaturated near the θ-boundaries in order to highlight the features at lower latitudes.

The mixing length estimate of the turbulent viscosity shows
a decrease at high latitudes in comparison to the equatorial re-
gions in Run A. In Run D1 there is a minimum at mid-latitudes.
In both cases the maximum value of νt/ν is of the order of 35,
which is reasonable given that the Reynolds numbers in both
runs are similar. We have here neglected anisotropies that are
caused by gravity and rotation that play the roles of preferred di-
rections in the system. Thus, we do not expect the details of the
turbulent viscosity to be captured accurately. However, the order
of magnitude of νt/ν ≈ Re seems reasonable, so we proceed to
using this estimate to extract the Λ effect.

Solving Eqs. (22) and (23) for ΛV and ΛH yields

ΛV =
Qrφ

sin θ Ω
+ νtr

∂ lnΩ
∂r
, (25)

ΛH =
Qθφ

cos θ Ω
+ νt tan θ

∂ lnΩ
∂θ
· (26)

The profiles of ΛV show some distinct differences between both
runs. It is mostly negative for the anti-solar Run A and mostly
positive for the solar-like Run D1. Interestingly, these differ-
ences would not have been so obvious if we had directly com-
pared the vertical stresses Qrφ of both runs. This highlights the
usefulness of employing Eq. (25), even though this involves
the uncertainty of estimating νt. Likewise, while the horizon-
tal stresses Qθφ for Runs A and D1 show some similarities, the
profiles of ΛH also show differences between both runs, and it
is mostly negative for the anti-solar Runs A and mostly positive
for the solar-like Run D1.

According to mean-field theory (Rüdiger 1980), coeffi-
cients ΛV and ΛH are related to the anisotropy parameters

AV =
Qφφ − Qrr

Qφφ + Qrr
, AH =

Qφφ − Qθθ
Qφφ + Qθθ

, (27)

via ΛV ≈ 2τAV and ΛH ≈ 2τAH, where τ is the correlation time
of the turbulence. Profiles of AV and AH are shown in the last
two columns of Fig. 10. In Run A, both ΛV and AV are mostly
negative, while both are mostly positive for Run D1, in broad
agreement with the radial differential rotation gradient. Also ΛH
and AH are mostly negative in Run A and mostly positive in
Run D1, again in broad agreement with the latitudinal differ-
ential rotation.

According to first-order smoothing results (e.g. Kitchatinov
& Rüdiger 1995, 2005), AV is always negative due to the simpli-
fied turbulence model used. This, however, is not always the case
in simulations (e.g. Käpylä et al. 2004). Indeed, AV is mostly
negative in Run A and attains positive values near the equator
in Run D1, in qualitative accordance to our estimates of ΛV for
each case. Similarly we find that the sign of AH agrees mostly
with that of ΛH. It is remarkable that the results for the Λ ef-
fect are consistent with those of the anisotropy parameters given
our use of a very simple approximation for νt. Our results for AV
and AH also indicate that the differential rotation has a significant
impact on the properties of turbulence.

For the run with solar-like rotation (Run D), ΛH is concen-
trated near the equator and close to the upper boundary. A similar
concentration near the equator has also been observed in earlier
studies (e.g. Chan 2001; Käpylä et al. 2004) and can be partly
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explained by the banana cells near the equator (Käpylä et al.
2011b).

4. Conclusions

Simulations of mildly turbulent three-dimensional convection in
spherical wedges have allowed us to study aspects of differen-
tial rotation relevant to the Sun. In our most solar-like model,
Run A, we found anti-solar differential rotation. Decreasing the
convective velocities by increasing the radiative conductivity,
thereby also increasing the Coriolis number, we found a thresh-
old after which the rotation changes to a solar-like profile. In
agreement with the recent finding of Gastine et al. (2014) using
Boussinesq convection, our stratified and compressible models
near the threshold between both states confirm the existence of
bistability in that the question of anti-solar or solar-like rota-
tion depends on the initial condition or the history of the run.
We also confirmed earlier findings showing that high-latitude
toroidal jets are possible in runs where solar-like solutions are
observed with the same parameters. This could be significant for
stellar rotation profiles that are naively assumed to have a mono-
tonic latitudinal gradient of angular velocity. These jets may well
be asymmetric and present only at one of the poles (see also
Heimpel & Aurnou 2007; Jones & Kuzanyan 2009).

Another interesting but speculative conjecture is that the
solar differential rotation is also the result of bistability. Our
Runs A and B with energy fluxes closest to what we would ex-
pect from the Sun i.e. where resolved convection transports most
of the total flux, show anti-solar differential rotation. Making the
model more realistic with respect to the Sun requires that we
(i) decrease the SGS-flux, which now contributes more than ten
per cent of the total; (ii) increase the density stratification by
a factor of five; and (iii) increase the Reynolds number. All of
these factors are likely to lead to higher convective velocities
and thus lower Coriolis number, in turn leading to even more
suitable conditions for anti-solar differential rotation. We know,
however, that the Sun rotated much more rapidly in its youth,
which favours a solar-like rotation profile. Furthermore, the re-
sults of Gastine et al. (2014) suggest that the range of parameters
in which bistable solutions are possible increases as the Taylor
number increases. These two facts lend some credence to the
conjecture that the Sun is in a bistable regime. Clearly, further
research into this matter is required.
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