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ABSTRACT

Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo insta-
bility, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the
strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from
theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical
simulations (DNS) have shown a subsequent increase in the growth rate.
Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo,
and whether both NEMPI and the dynamo instability can operate at the same time.
Methods. We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without
an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients.
Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect
produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or
vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and
large turbulent magnetic diffusivity.
Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar
rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
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1. Introduction

The appearance of surface magnetic fields in the Sun presents
some peculiar characteristics, such as being strongly concen-
trated into discrete spots. The origin and depth of such magnetic
flux concentrations has long been the subject of considerable
speculation. A leading theory by Parker (1955) interprets the
emergence of such spots as the result of magnetically buoyant
flux tubes at a depth of some 20 Mm. This magnetic field must be
the result of a dynamo, but magnetic buoyancy also leads to the
buoyant rise and subsequent loss of those magnetic structures. It
was therefore thought that the dynamo should operate mainly at
or even below the bottom of the convection zone where magnetic
buoyancy could be stabilized by a subadiabatic temperature gra-
dient (Parker 1975). This led eventually to the idea that sunspots
might be a direct consequence of dynamo-generated flux tubes
that rise all the way from the bottom of the convection zone to
the surface (e.g., Caligari et al. 1995). However, Schüssler (1980,
1983) emphasized early on that such fields would easily lose
their systematic east-west orientation while ascending through
the turbulent convection zone. D’Silva & Choudhuri (1993) es-
timated that a magnetic field strength of about 100 kG would be
needed to preserve the overall east–west orientation (Hale et al.
1919) and also to produce the observed tilt angle of active re-
gions known as Joy’s law.

A great deal of effort has gone into determining the condi-
tions under which magnetic flux ropes may or may not be able to
rise buoyantly across the convection zone. Emonet et al. (1998)

determined for the first time the basic minimum twist thresholds
for the survival of twisted magnetic flux ropes during the rise.
Subsequent studies were based on different types of numerical
simulations, which tested the underlying hypotheses and looked
for other effects, such as the robustness against background con-
vective motions (Jouve et al. 2013) and magnetic flux erosion
by reconnection with the background dynamo field (Pinto et al.
2013). These studies, as well as many others (see, e.g., Fan 2008,
2009, and references therein) specifically looked at which flux-
rope configurations are able to reproduce the observed emergent
polarity tilt angles (Joy’s law).

The observed variation in the number of sunspots in time
and latitude is expected to be linked to some kind of large-
scale dynamo, as was modeled by Leighton et al. (1969) and
Steenbeck & Krause (1969) long ago. This led Schüssler (1980)
to propose a so-called flux-tube dynamo approach that would
couple the buoyant rise of thin flux tubes to their regeneration.
However, even today the connection between dynamos and flux
tubes is done by hand (see, e.g., Choudhuri et al. 2007; Miesch
& Dikpati 2014), which means that an ad hoc procedure is in-
voked to link flux tube emergence to a mean-field dynamo. Of
course, such tubes, or at least bipolar regions, should ultimately
emerge from a sufficiently well-resolved and realistic simula-
tion of solar convection. While global convective dynamo sim-
ulations of Nelson et al. (2011, 2013, 2014) show magnetically
buoyant magnetic flux tubes of≈40 kG field strength, they do not
yet address bipolar region formation. Indeed, solar surface sim-
ulations of Cheung et al. (2010) and Rempel & Cheung (2014)
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demonstrate that bipolar spots do form once a magnetic flux tube
of 10 kG field strength is injected at the bottom of their local do-
main (7.5 Mm below the surface). On the other hand, the deep
solar simulations of Stein & Nordlund (2012) develop a bipolar
active region with just 1 kG magnetic field injected at the bottom
of their domain. While these simulations taken together outline
what might occur in the Sun, they do not necessarily support the
description of spots as a direct result of thin flux tubes piercing
the surface (e.g. Caligari et al. 1995).

A completely different suggestion is that sunspots develop
locally at the solar surface, and that their east-west orienta-
tion would reflect the local orientation of the mean magnetic
field close to the surface. The tilt angle would then be deter-
mined by latitudinal shear producing the observed orientation of
the meridional component of the magnetic field (Brandenburg
2005a). One of the possible mechanisms of local spot formation
is the negative effective magnetic pressure instability (NEMPI;
see Kleeorin et al. 1989, 1990, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007). Another potential mech-
anism of flux concentration is related to a thermo-magnetic in-
stability in turbulence with radiative boundaries caused by the
suppression of turbulent heat flux through the large-scale mag-
netic field (Kitchatinov & Mazur 2000). The second instability
has so far only been found in mean-field simulations (MFS),
but not in direct numerical simulations (DNS) nor in large-eddy
simulations (LES). By contrast, NEMPI has recently been found
in DNS (Brandenburg et al. 2011) and LES (Brandenburg et al.
2014) of strongly stratified fully developed turbulence.

As demonstrated in earlier work (Brandenburg et al. 2013,
2014), NEMPI can lead to the formation of equipartition-
strength magnetic spots, which are reminiscent of sunspots.
Even bipolar spots can form in the presence of a horizontal mag-
netic field near the surface (see Warnecke et al. 2013). For this
idea to be viable, NEMPI and the dynamo instability would need
to operate in reasonable proximity to each other, so that the dy-
namo can supply the magnetic field that would be concentrated
into spots, as was recently demonstrated by Mitra et al. (2014).
In studying this process in detail, we have a chance of detecting
new joint effects resulting from the two instabilities, which is one
of the goals of the present paper. However, these two instabili-
ties may also compete against each other, as was already noted
by Losada et al. (2013). The large-scale dynamo effect relies
on the combined presence of rotation and stratification, while
NEMPI requires stratification and large enough scale separation.
On the other hand, even a moderate amount of rotation sup-
presses NEMPI. In fact, Losada et al. (2012) found significant
suppression of NEMPI when the Coriolis number Co = 2Ωτ is
larger than about 0.03. Here, Ω is the angular velocity and τ the
turnover time of the turbulence, which is related to the rms ve-
locity urms and the wavenumber kf of the energy-carrying eddies
via τ = (urmskf)−1. For the solar convection zone, the Coriolis
number,

Co = 2Ω/urmskf , (1)

varies from 2 × 10−3 (at the surface using τ = 5 min) to 5 (at
the bottom of the convection zone using τ = 10 days). The value
Co = 0.03 corresponds to a turnover time as short as two hours,
which is the case at a depth of ≈10 Mm.

The strength of stratification, on the other hand, is quantified
by the nondimensional parameter

Gr = g/c2
s kf ≡ (kfHρ)−1, (2)

where Hρ = c2
s/g is the density scale height, cs is the sound

speed, and g is the gravitational acceleration. In the cases

considered by Losada et al. (2012, 2013), the stratification pa-
rameter was Gr = 0.03, which is rather small compared with
the estimated solar value of Gr = 0.16 (see the conclusions of
Losada et al. 2013). One can expect that larger values of Gr
would result in correspondingly larger values of the maximum
permissible value of Co, for which NEMPI is still excited, but
this has not yet been investigated in detail.

The goal of the present paper is to study rotating stratified
hydromagnetic turbulence in a parameter regime that we expect
to be at the verge between NEMPI and dynamo instabilities. We
do this by performing DNS and MFS. In MFS, the study of com-
bined NEMPI and dynamo instability requires suitable parame-
terizations of the negative effective magnetic pressure and α ef-
fects using suitable turbulent transport coefficients.

2. DNS study

We begin by reproducing some of the DNS results of Losada
et al. (2013), who found the suppression of the growth rate of
NEMPI with increasing values of Co and a subsequent enhance-
ment at larger values, which they interpreted as being the re-
sult of dynamo action in the presence of an externally applied
magnetic field. We also use DNS to determine independently
the expected efficiency of the dynamo by estimating the α effect
from kinetic helicity measurements and by computing both α ef-
fect and turbulent diffusivity directly using the test-field method
(TFM).

2.1. Basic equations

In DNS of an isothermally stratified layer (Losada et al. 2013),
we solve the equations for the velocity U, the magnetic vector
potential A, and the density ρ in the presence of rotation Ω,

DU
Dt
=

1
ρ

J × B − 2Ω × U − νQ + F + f , (3)

∂A
∂t
= U × B − ηJ , (4)

∂ρ

∂t
= −∇ · ρU, (5)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative,Ω = Ω ẑ
is the angular velocity,

F = g − c2
s∇ ln ρ (6)

determines the hydrostatic force balance, ν is the kinematic vis-
cosity, η is the magnetic diffusivity due to Spitzer conductivity
of the plasma,

− Q = ∇2U + ∇∇ · U/3 + 2S∇ ln ρ, (7)

−J = ∇2 A − ∇∇ · A, (8)

are the modified vorticity and the current density, respectively,
where the vacuum permeability μ0 has been set to unity,

B = B0 + ∇ × A (9)

is the total magnetic field, B0 = (0, B0, 0) is the imposed uniform
field, and

Si j =
1
2 (∂ jUi + ∂iU j) − 1

3δi j∇ · U (10)

is the traceless rate-of-strain tensor. The forcing function f con-
sists of random, white-in-time, plane, nonpolarized waves with
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a certain average wavenumber kf . The turbulent rms velocity is
approximately independent of z with urms = 〈u2〉1/2 ≈ 0.1 cs.
The gravitational acceleration g = (0, 0,−g) is chosen such that
k1Hρ = 1, so the density contrast between bottom and top is
exp(2π) ≈ 535 in a domain −π ≤ k1z ≤ π. Here, Hρ = c2

s/g is the
density scale height and k1 = 2π/L is the smallest wavenumber
that fits into the cubic domain of size L3. We adopt Cartesian
coordinates (x, y, z), with periodic boundary conditions in the
x and y directions and stress-free, perfectly conducting bound-
aries at top and bottom (z = ±Lz/2). In most of the calcula-
tions, we use a scale separation ratio kf/k1 of 30, so Gr = 0.03 is
still the same as in earlier calculations. We use a fluid Reynolds
number Re ≡ urms/νkf of 36, and a magnetic Prandtl number
PrM = ν/η of 0.5. The magnetic Reynolds number is therefore
ReM = PrMRe = 18. These values are a compromise between
having both kf and Re large enough for NEMPI to develop at an
affordable numerical resolution. The value of B0 is specified in
units of Beq0 =

√
ρ0 urms, where ρ0 = 〈ρ〉 is the volume-averaged

density, which is constant in time. The local equipartition field
strength is Beq(z) =

√
ρ urms. In our units, k1 = cs = μ0 = ρ0 = 1.

However, time is specified as the turbulent-diffusive time t ηt0k2
1,

where ηt0 = urms/3kf is the estimated turbulent diffusivity. We
also use DNS to compute these values more accurately with the
TFM. The simulations are performed with the Pencil code1,
which uses sixth-order explicit finite differences in space and a
third-order accurate time-stepping method. We use a numerical
resolution of 2563 mesh points, which was found to be sufficient
for the parameter regime specified above.

2.2. At the verge between NEMPI and dynamo

The work of Losada et al. (2013) suggested that for Gr = 0.03
and Co ≥ 0.03, NEMPI becomes strongly suppressed, and that
for still larger values, the growth rate increases again. This was
tentatively associated with dynamo action, but it was not in-
vestigated in further detail. We now consider such a case with
Co = 0.09. This is a value that resulted in a rather low growth
rate for NEMPI, while the estimated growth rate would be still
subcritical for dynamo action. Following the work of Losada
et al. (2013), we impose here a horizontal magnetic field in the
y direction with a strength of 0.05Beq0, which was previously
found to be in the optimal range for NEMPI to develop (Kemel
et al. 2012a).

To bring out the structures more clearly, it was found to be
advantageous to present mean magnetic fields by averaging over
the y direction and over a certain time interval Δt. We denote
such averages by an overbar, e.g., By. Once a dynamo develops,
we expect a Beltrami-type magnetic field with Bx phase shifted
relative to By by π/2 (Brandenburg 2001). These are force-free
fields with ∇ × B = kB such as B ∝ (sin kz, cos kz, 0), for
example.

Figure 1 shows visualizations of Bx and By together with
the effective magnetic pressure,Peff (defined below), at different
times for a value of Co that is around the point where we ex-
pect onset of dynamo action. As in earlier work without rotation
(Kemel et al. 2013), By varies between 0 to 2B0. Furthermore,
Bx varies in the range ±2B0. In Fig. 2, the x extent of the domain
is twice as big: −2π < k1x < 2π. In Fig. 3 we show the result
for Co = 0.22, where a Beltrami-type field with a π/2 phase
shift between Bx and By is well developed. For smaller values
of Co, there are structures (e.g., for t/τ = 1.8 at x/Hρ ≈ 1.5

1 http://pencil-code.googlecode.com

and for t/τ = 2.4 at x/Hρ ≈ 1.5 and −2) that are reminiscent of
those associated with NEMPI. This can be seen by comparing
our Fig. 1 with Fig. 4 of Kemel et al. (2013) or Fig. 3 of Losada
et al. (2013). When the domain is twice as wide, the number of
structures simply doubles. A similar phenomenon was also seen
in the simulations of Kemel et al. (2012b). For larger values of
Co, NEMPI is suppressed and the α2 dynamo, which generates
mean magnetic field of a Beltrami-type structure, becomes more
strongly excited.

The effective magnetic pressure shown in Figs. 1–3 is esti-
mated by computing the xx component of the total stress from
the fluctuating velocity and magnetic fields as

ΔΠ
f
xx = ρ (u2

x − u2
0x) + 1

2 (b2 − b2
0) − (b2

x − b2
0x), (11)

where the subscript 0 refers to the case with B0 = 0. We then
calculate (Brandenburg et al. 2012a)

qp = −2ΔΠ
f
xx/B

2. (12)

Here, qp(β) is a function of β = B/Beq(z). We then calculate
Peff =

1
2 (1 − qp)β2, which is the effective magnetic pressure di-

vided by B2
eq. We note that Peff shows a systematic z dependence

and is negative in the upper part. Variations in the x direction
are comparatively weak and therefore do not show a clear corre-
spondence with the horizontal variations of By.

As in earlier work (Brandenburg et al. 2011), we character-
ize the strength of resulting structures by an amplitude Bk of a
suitably low wavenumber Fourier mode (k/k1 = 1 or 2), which
is based on the magnetic field in the upper part of the domain,
2 ≤ z/Hρ ≤ π. In Fig. 4 we compare the evolution of Bk/Beq0
for runs with different values of Co. For comparison, we also
reproduce the first few runs of Losada et al. (2013) for Co =
0.006−0.13, where we used k/k1 = 1 in all cases. It turns out that
for the new cases with Co = 0.09 and 0.22, the growth of Bk/Beq0
is not as strong as for the cases with smaller Co. Furthermore, as
is also evident from Figs. 1 and 2, the structures are now charac-
terized by k/k1 = 2, while for Co = 0.22 they are still character-
ized by k/k1 = 1. The growth for all three cases (Co = 0.09, both
for normal and wider domains, as well as Co = 0.22) is similar.
However, given that the typical NEMPI structures are not clearly
seen for Co = 0.22, it is possible that the growth of structures
is simply overwhelmed by the much stronger growth due to the
dynamo, which is not reflected in the growth of Bk/Beq0, whose
growth is still mainly indicative of NEMPI. In this sense, there
is some evidence of the occurrence of NEMPI in both cases.

2.3. Kinetic helicity

To estimate the α effect and study its relation to kinetic helicity
we begin by considering a fixed value of Gr equal to that used by
Losada et al. (2013) and vary Co. For small values of Co, their
data agreed with the MFS of Losada et al. (2012). For faster ro-
tation, one eventually crosses the dynamo threshold. This is also
the point at which the growth rate begins to increase again, al-
though it now belongs to a different instability than for small val-
ues of Co. The underlying mechanism is the α2-dynamo, which
is characterized by the dynamo number

Cα = α/ηTk1, (13)

where α is the typical value of the α effect (here assumed spa-
tially constant), ηT = ηt + η is the sum of turbulent and micro-
physical magnetic diffusivities, and k1 is the lowest wavenum-
ber of the magnetic field that can be fitted into the domain. For

A112, page 3 of 11

http://pencil-code.googlecode.com


A&A 568, A112 (2014)

Fig. 1. Visualization of Bx/B0 and By/B0 together with effective magnetic pressure for different times. Here Ω = 0.15, Co = 0.09, Gr = 0.033, and
kf/k1 = 30.

isotropic turbulence, α and ηt are respectively proportional to the
negative kinetic helicity and the mean squared velocity (Moffatt
1978; Krause & Rädler 1980; Rädler et al. 2003; Kleeorin &
Rogachevskii 2003)

α ≈ α0 ≡ − 1
3τω · u, ηt ≈ ηt0 ≡ 1

3τu
2, (14)

where τ = (urmskf )−1, so that (Blackman & Brandenburg 2002;
Candelaresi & Brandenburg 2013)

Cα = −εkεfkf/k1. (15)

Here, εk is a free parameter characterizing possible dependencies
on the forcing wavenumber, and εf is a measure for the relative
kinetic helicity. Simulations of Brandenburg et al. (2012b) and
Losada et al. (2013) showed that

εf ≡ ω · u/kfu
2
rms ≈ εf0 Gr Co (Gr Co <∼ 0.1), (16)

where εf0 is yet another nondimensional parameter on the or-
der of unity that may depend weakly on the scale separation
ratio, kf/k1, and is slightly different with and without imposed
field. In the absence of an imposed field, Brandenburg et al.
(2012b) found εf0 ≈ 2 using kf/k1 = 5. However, both an
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Fig. 2. Like Fig. 1, but for a wider domain.

imposed field and a larger value of kf/k1 lead to a slightly in-
creased value of εf0. Our results are summarized in Fig. 5 for
cases with and without imposed magnetic fields. Error bars are
estimated as the largest departure of any one third of the full time
series. The relevant points of Losada et al. (2013) give εf0 ≈ 2.8.
For Gr Co >∼ 0.5, the results of Brandenburg et al. (2012b) show
a maximum with a subsequent decline of εf with increasing val-
ues of Co. However, although it is possible that the position of
this maximum may be different for other values of Gr, it is un-
likely to be relevant to our present study where we focus on
smaller values of Cα near dynamo onset. Thus, in conclusion,
Eq. (16) seems to be a useful approximation that has now been
verified over a range of different values of kf/k1.

2.4. Test-field results

Our estimate for Cα is based on the reference values α0 and ηt0
that are defined in Eq. (14) and represent approximations ob-
tained from earlier simulations of helically forced turbulence
(Sur et al. 2008). In the present study, helicity is self-consistently
generated from the interaction between rotation and stratifica-
tion. As an independent way of computing α and ηt, we now
use the test-field method (TFM). It consists of solving aux-
iliary equations describing the evolution of magnetic fluctua-
tions, bpq, resulting from a set of several prescribed mean or test

fields, Bpq. We solve for the corresponding vector potential apq

with bpq = ∇ × apq,

∂apq

∂t
= u × Bpq + U × bpq + (u × bpq)′ + η∇2 apq, (17)

where (u× bpq)′ = u× bpq −u × bpq is the fluctuating part of the
electromotive force and

Bic = x̂i cos kz, Bis = x̂i sin kz, i = 1, 2, (18)

are the four test fields, which can show a cosine or sine variation
with z, while x̂1 = (1, 0, 0) and x̂2 = (0, 1, 0) are unit vectors in
the two horizontal coordinate directions. The resulting bpq are
used to compute the electromotive force, Epq = u × bpq, which
is then expressed in terms of Bpq and J pq = ∇ × Bpq as

Epq
i = αi jB

pq
j − ηi jJ

pq
j . (19)

By doing this for all four test field vectors, the x and y com-
ponents of each of them gives eight equations for the eight un-
knowns, α11, α12, ..., η22 (for details see Brandenburg 2005b).

With the TFM, we obtain the kernels αi j and ηi j, from which
we compute

α = 1
2 (α11 + α22), ηt =

1
2 (η11 + η22), (20)

γ = 1
2 (α21 − α12), δ = 1

2 (η21 − η12). (21)
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Fig. 3. Like Fig. 1, but for Ω = 0.35, so Co = 0.22.

We normalize α and ηt by their respective values obtained for
large magnetic Reynolds numbers defined in Eq. (14), and de-
note them by a tilde, i.e., α̃ = α/α0 and η̃t = ηt/ηt0. We use
the latter normalization also for δ, i.e., δ̃ = δ/ηt0, but expect its
value to vanish in the limit of zero angular velocity. No standard
turbulent pumping velocity is expected (Krause & Rädler 1980;
Moffatt 1978), because the rms turbulent velocity is independent
of height. However, this is not quite true. To show this, we nor-
malize γ by urms and present γ̃ = γ/urms. In our normalization,
the molecular value is given by η/η0 = 3/ReM.

We consider test fields that are constant in time and vary
sinusoidally in the z direction. We choose certain values of k
between k1 and 60kf = (2k1) and also vary the value of Co

between 0 and about 1.06 while keeping Gr = 0.033 fixed. In
all cases where the scale separation ratio is held fixed, we used
kf/k1 ≈ 30, which is larger than what has been used in earlier
studies (Brandenburg et al. 2008b), where kf/k1 was typically 5.

In Fig. 6 we show the dependence of the coefficients on the
normalized wavenumber of the test field, k/kf . The three coeffi-
cients α̃, η̃t, and δ̃ show the same behavior of the form of

σ̃ = σ̃0/
(
1 + �2σk2

)
(22)

for σ̃ = α̃, η̃t, or δ̃, while for γ̃ we use

γ̃ = γ̃0 + γ̃2�
2
γk

2/
(
1 + �2γk

2
)
, (23)
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Fig. 4. Comparison of the evolution of Bk/Beq0 for runs with different
values of Co. In the first panel k/k1 = 1, while in the second panel
k/k1 = 2 for the two runs with Co = 0.09 (label W refers to the wider
box in the x direction), and k/k1 = 1 for the run with Co = 0.22.

Fig. 5. Dependence of εf on Gr Co obtained in DNS with imposed field
(open symbols, red) and without (closed symbols, blue), for kf/k1 =
30. The black symbols connected by a dotted line correspond to the
values of Brandenburg et al. (2012b) for kf/k1 = 5. The horizontal lines
correspond to the dynamo threshold for the two values of kf/k1.

where γ̃0 = 0.01, γ̃2 = 0.06, and �γ = 2.5. These results have
been obtained for Co = 0.59 and B0y/Beq0 = 0.05. Again, error
bars are estimated as the largest departure of any one third of the
full time series.

Most of the coefficients are only weakly dependent on the
value of Co, except γ and δ. The former varies approximately as

γ̃ = γ̃0 + γ̃
2
ΩCo2, (24)

where γ̃0 = 0.85 and γ̃2
Ω
= 2.6. Here and in the following, we

keep k/kf = 1/30. For the same value of k/kf , the functional
form for δ shows a linear increase with Co, i.e., δ̃ = δ̃0Co where
δ̃0 = 0.036. Figure 7 shows that α̃ is nearly independent of the
Coriolis number. This result is in agreement with that obtained

Fig. 6. TFM coefficients versus scale separation ratio, k/kf , for Co =
0.59, ReM = 18, B0y/Beq0 = 0.05, g̃ = 1, and ηk1/cs = 2 × 10−4.

Fig. 7. TFM coefficients versus Coriolis number, Co, for k/k1 = 1,
ReM = 18, B0y/Beq0 = 0.05, g̃ = 1, and ηk1/cs = 2 × 10−4.

by Kleeorin & Rogachevskii (2003), where a theory of α ver-
sus Coriolis number was developed for large fluid and mag-
netic Reynolds numbers. It turns out that the new values of α
and ηt that have been obtained now with the TFM are somewhat
different from previous TFM studies that originally estimated
(α̃ ≈ 0.8 and η̃t ≈ 1.15). The TFM results now suggest εk = 0.6
in Eq. (15). The reason for the departure from unity cannot just
be the fact that helicity is now self-consistently generated, be-
cause this was also the case in the earlier work of Brandenburg
et al. (2012b). The only plausible reason is the large value of
kf/k1 that is now much larger than before (30 compared to 5 in
most previous studies), which explains the reason for our choice
of the subscript in εk.

The origin of weak pumping found in Figs. 6 and 7 is unclear.
For a weak mean magnetic field, pumping of the magnetic field
can cause not only inhomogeneous distributions of the velocity
fluctuations (Krause & Rädler 1980; Moffatt 1978) or magnetic
fluctuations (Rädler et al. 2003), but also nonuniform distribu-
tion of the fluid density in the presence either of small-scale dy-
namo or turbulent convection (Rogachevskii & Kleeorin 2006).
In our simulations there is no small-scale dynamo effect, because
ReM is too low. There is also no turbulent convection possible in
our setup. The pumping effect is also not connected with nonlin-
ear effects; see Fig. 2 in Rogachevskii & Kleeorin (2004).

A112, page 7 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423499&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423499&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423499&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423499&pdf_id=7


A&A 568, A112 (2014)

3. MFS study

We now want to see whether the suppression of NEMPI and the
subsequent increase in the resulting growth rate can be repro-
duced in MFS. In addition to a parameterization for the negative
effective magnetic pressure in the momentum equation, we add
one for the electromotive force. The important terms here are the
α effect and the turbulent magnetic diffusivity, whose combined
effect is captured by the quantity Cα, which is defined in Eq. (13)
and related to DNS parameters in Eq. (15). In contrast to DNS,
the advantage of MFS is that they can more easily be extended
to astrophysically interesting conditions of large Reynolds num-
bers and more complex geometries.

3.1. The model

Our MFS model is in many ways the same as that of Jabbari et al.
(2013), where parameterizations for negative effective magnetic
pressure and electromotive force where, for the first time, con-
sidered in combination with each other. Their calculations were
performed in spherical shells without Coriolis force, while here
we apply instead Cartesian geometry and do include the Coriolis
force. The evolution equations for mean velocity U, mean vector
potential A, and mean density ρ, are thus

DU
Dt
=

1
ρ

⎛⎜⎜⎜⎜⎜⎝J × B + ∇qpB2

2

⎞⎟⎟⎟⎟⎟⎠ − 2Ω × U − νTQ + F, (25)

∂A
∂t
= U × B + αB − ηT J , (26)

Dρ
Dt
= −ρ∇ · U,

where D/Dt = ∂/∂t + U · ∇ is the advective derivative,

F = g − c2
s∇ ln ρ (27)

is the mean-field hydrostatic force balance, ηT = ηt + η and
νT = νt+ν are the sums of turbulent and microphysical values of
magnetic diffusivity and kinematic viscosities, respectively, α is
the aforementioned coefficient in the α effect, J = ∇ × B is the
mean current density,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (28)

is a term appearing in the viscous force, where S is the trace-
less rate of strain tensor of the mean flow with components
Si j =

1
2 (Ui, j+U j,i)− 1

3δi j∇ ·U, and finally∇(qpB2/2) determines
the turbulent contribution to the mean Lorentz force. Here, qp de-
pends on the local field strength and is approximated by (Kemel
et al. 2012a)

qp(β) =
qp0

1 + β2/β2
p
=
β2
�

β2
p + β2

, (29)

where qp0, βp, and β� = βpq1/2
p0 are constants, β = |B|/Beq is

the normalized mean magnetic field, and Beq =
√
ρ urms is the

equipartition field strength. For ReM <∼ 60, Brandenburg et al.
(2012a) found β� ≈ 0.33 and βp ≈ 1.05/ReM. We use as our ref-
erence model the parameters for ReM = 18, also used by Losada
et al. (2013), which yields

βp = 0.058, β� = 0.33 (reference model). (30)

In some cases we also compare with β� = 0.44, which was found
to match more closely the measured dependence of the effec-
tive magnetic pressure on β by Losada et al. (2013). For vertical
magnetic fields, MFS for a range of model parameters have been
given by Brandenburg et al. (2014). In the MFS, we use (Sur
et al. 2008)

ηt ≈ ηt0 ≡ urms/3kf (31)

to replace kf = urms/3ηt, so

Gr = 3ηt/urmsHρ (32)

and (Losada et al. 2013)

Co = 2Ω/urmskf = 6Ωηt/u
2
rms. (33)

We now consider separately cases where we vary either Co
or Gr. In addition, we also vary the scale separation ratio kf/k1,
which is essentially a measure of the inverse turbulent diffusiv-
ity, i.e.,

kf/k1 = urms/3ηtk1 (34)

(see Eq. (31)).

3.2. Fixed value of Gr

The work of Losada et al. (2012) has shown that the growth rate
of NEMPI, λ, decreases with increasing values of the rotation
rate. They found it advantageous to express λ in terms of the
quantity

λ∗0 = β�urms/Hρ. (35)

As discussed above, the normalized growth rate λ/λ∗0 shows first
a decline with increasing values of Co, but then an increase for
Co > 0.13, which was argued to be a result of the dynamo effect
(Losada et al. 2013). This curve has a minimum at Co ≈ 0.13.
As rotation is increased further, the combined action of stratifi-
cation and rotation leads to increased kinetic helicity and thus
eventually to the onset of mean-field α2 dynamo action.

Owing to the effects of turbulent diffusion, the actual value of
the growth rate of NEMPI is always expected to be less than λ∗0.
Kemel et al. (2013) proposed an empirical formula replacing λ
by λ + ηtk2, where k is the wavenumber. This would lead to

λ/λ∗0 ∝ 1 − Gr∗/Gr, (36)

with a coefficient Gr∗ = η̃t/3β�Ma. However, as we will see
below, this expression is not found to be consistent with our nu-
merical data.

The onset of the dynamo instability is governed by the dy-
namo number

Cα = εf0 Gr Co kf/k1. (37)

For a cubic domain, large-scale dynamo action occurs for
Cα > 1, which was confirmed by Losada et al. (2013), who found
the typical Beltrami fields for two supercritical cases. They used
the parameters Gr = 0.033 and values of Co up to 0.6. Here
we present MFS in two- and three-dimensional domains for the
same values of Gr and a similar range of Co values. In Fig. 8,
we compare the DNS of Losada et al. (2013) with our reference
model defined through Eq. (30) and referred to as MFS(i) as well
as with the case β� = 0.44, referred to as MFS(ii).
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Fig. 8. Nondimensional growth rate of NEMPI versus Co for MFS(i)
with β� = 0.33 and MFS(ii) with β� = 0.44, as well as DNS for Gr =
0.033 and β0 = 0.05.

3.3. Larger stratification, smaller scale separation

The expected theoretical maximum growth rate of NEMPI is
given by Eq. (35). At zero rotation, we thus expect λ/λ∗0 ≈ 1.
To check this, we performed two-dimensional MFS in a squared
domain of size (2π)2. The result is shown in Fig. 9 for the model
parameters given in Eq. (30). When Gr is small, we find that
λ/λ∗0 ≈ 0.3, which is below the expected value. As we in-
crease Gr, λ/λ∗0 decreases until NEMPI can no longer be de-
tected for Gr >∼ 1.2.

It is conceivable that this decrease may have been caused
by the following two factors. First, the growth rate is expected
to increase with Gr, but for fixed scale separation, the resulting
density contrast becomes huge. Finite resolution might there-
fore have caused inaccuracies. Second, although the growth rate
should not depend on B0 (Kemel et al. 2012a), we need to make
sure that the mode is fully contained within the domain. In other
words, we are interested in the largest growth rate as we vary the
value of B0. Again, to limit computational expense, we tried only
a small number of runs, keeping the size of the domain the same.
This may have caused additional uncertainties. However, it turns
out that our results are independent of whether Gr is changed by
changing g or ηt (=νt). This suggests that our results for large
values of g shown in Fig. 9 may in fact be accurate. To illustrate
this more clearly, we rewrite

Gr =
3ηt

urmsHρ
=

3η̃t

k1

cs

urms

g

c2
s
= 3η̃tg̃/Ma, (38)

where we have defined

η̃t = ηtk1/cs, g̃ = g/c
2
s k1 ≡ (k1Hρ)−1. (39)

Figure 9 shows that λ/λ∗0 is indeed independent of the individ-
ual values of η̃t and g̃ as long as Gr is the same. For small values
of g̃ and large diffusivity (η̃t = 10−2), the velocity evolves in
an oscillatory fashion with a rapid growth and a gradual subse-
quent decline. In Fig. 9, the isolated data point at λ/λ∗0 ≈ 0.44
reflects the speed of growth during the periodic rise phase, but it
is unclear whether or not it is related to NEMPI.

In the inset, we plot λ/urmskf versus g̃ itself. This shows that
the growth rate (in units of the inverse turnover time) increases
with increasing g̃ when η̃t is small. However, the growth rate
decreases with increasing η̃t. When η̃t is larger (corresponding to
smaller scale separation), the growth rate of NEMPI is reduced
for the same value of g̃ and it decreases with g̃ when g̃ >∼ 2.

Fig. 9. Normalized growth rate of NEMPI versus stratification parame-
ter Gr that varies with changing gravity, g, for Co = 0 with constant η̃t

(η̃t = 10−3 black filled symbols and η̃t = 10−2 blue open symbols), or
with changing ηt = νt for constant g̃ = 2 (red open symbols). The dash-
dotted line shows the approximate fit given by Eq. (40). The inset shows
the growth rate normalized by the turnover time as a function of g̃.

The decrease of λ/λ∗0 with increasing values of Gr can be
approximated by the formula

λ/λ∗0 ≈ 0.3
/[

1 + 2Gr + (4Gr)2
]
, (40)

which is shown in Fig. 9 as a dash-dotted line. This expression
is qualitatively different from the earlier, more heuristic expres-
sion proposed by Kemel et al. (2013) where the dimensional
growth rate was simply modified by an ad hoc diffusion term
of the form ηtk2. In that case, contrary to our MFS, the normal-
ized growth rate would actually increase with increasing values
of Gr (see Eq. (36)).

3.4. Co dependence at larger stratification

We consider the normalized growth rate of the combined NEMPI
and dynamo instabilities as a function of Co for different val-
ues of Gr. As is clear from Fig. 9, using a fixed value of g and
varying ηt gives us the possibility to increase Gr to larger values
of up to 1. In the following we use this procedure to compare
the behavior of the growth rate versus Co for three values of
Gr, 0.12, 0.21, and 1 (see Fig. 10). It can be seen that the be-
havior of the curves is independent of the values of Gr, but the
points where the minima of the curves occur moves toward big-
ger values of Co as Gr increases. This also happens in the case
when there is only dynamo action without imposed magnetic
field (dashed lines in Fig. 10). One also sees that the increase of
the growth rate with increasing Co is much stronger in the case
of larger Gr (compare the lines for Gr = 0.12 with those for 0.21
and 1). Finally, comparing runs with and without imposed mag-
netic field, but the same value of Gr, the growth rate of NEMPI
is in most cases below that of the coupled system with NEMPI
and dynamo instability.

In Fig. 10 we see that the dependence of λ/λ∗0 on Gr is
opposite for small and large values of Co. When Co <∼ 0.05,
an increase in Gr leads to a decrease in λ/λ∗0 (compare the
Gr = 1 line with that for 0.21 along a cut through Co = 0.05
in Fig. 10), while for Co >∼ 0.2, an increase in Gr leads to an
increase in λ/λ∗0 (compare all three lines in Fig. 10 along a cut
through Co = 0.3). The second case is caused by the increase
of the dynamo number Cα, which is directly proportional to Gr
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Fig. 10. Normalized growth rate of the combined NEMPI and dynamo
instability (solid lines) together with cases with pure dynamo instability
(no imposed field, dashed lines) versus Co for three different values of
Gr; Gr = 0.12 (blue), Gr = 0.21 (red), and Gr = 1.0 (black). In these
simulations g̃ = 4 and η̃t = 10−3 (blue line), g̃ = 3.5, η̃t = 2 × 10−3 (red
line), and g̃ = 3.5, η̃t = 9.5 × 10−3 (black line).

(see Eq. (37)). On the other hand, for small values of Co, only
NEMPI operates, but if Gr in Eq. (38) is increased by increasing
η̃t rather than g̃, the dynamo is suppressed by enhanced turbu-
lent diffusion (see also Fig. 9). This is related to the fact that the
properties of the system depend not just on Gr and Co, but also
on kf/k1 or Cα, which is proportional to all three parameters (see
Eq. (37)).

4. Discussion and conclusions

The present work has brought us one step closer to being able to
determine whether the observable solar activity such as sunspots
and active regions could be the result of surface effects asso-
ciated with strong stratification. A particularly important as-
pect has been the interaction with a dynamo process that must
ultimately be responsible for generating the overall magnetic
field. Recent global convective dynamo simulations of Nelson
et al. (2011, 2013, 2014) have demonstrated that flux tubes with
≈40 kG field strength can be produced in the solar convection
zone. This is almost as strong as the ≈100 kG magnetic flux
tubes anticipated from earlier investigations of rising flux tubes
requiring them to not break up and to preserve their east–west
orientation (D’Silva & Choudhuri 1993). Would we then still
need surface effects such as NEMPI to produce sunspots? The
answer might well be yes, because the flux ropes that have been
isolated in the visualizations of Nelson et al. (2011, 2013, 2014)
appear to have cross sections that are much larger than sunspots
at the solar surface. Further concentration into thinner tubes
would be required if they were to explain sunspots by just let-
ting them pierce the surface.

Realistic hydromagnetic simulations of the solar surface are
now beginning to demonstrate that ≈10 kG fields at a depth of
≈10 Mm can produce sunspot-like appearances at the surface
(Rempel & Cheung 2014). However, we have to ask about the
physical process contributing to this phenomenon. A purely de-
scriptive analysis of simulation data cannot replace the need for
a more prognostic approach that tries to reproduce the essen-
tial physics using simpler models. Although Rempel & Cheung
(2014) propose a mechanism involving mean-field terms in the
induction equation, they do not show that their model equa-
tions can actually describe the process of magnetic flux con-
centration. In fact, their description is somewhat reminiscent of

flux expulsion, which was invoked earlier by Tao et al. (1998)
to explain the segregation of magneto-convection into magne-
tized and unmagnetized regions. In this context, NEMPI pro-
vides such an approach that can be used prognostically rather
than diagnostically. However, this approach has problems of its
own, some of which are addressed in the present work. Does
NEMPI stop working when Co >∼ 0.03? How does it interact
with the underlying dynamo? Such a dynamo is believed to con-
trol the overall sunspot number and the concentration of sunspots
to low latitudes.

Our new DNS suggest that, although rotation tends to sup-
press NEMPI, magnetic flux concentrations can still form at
Coriolis numbers of Co ≈ 0.1. This is slightly larger than what
was previously found from MFS both with horizontal and verti-
cal magnetic fields and the same value of Gr. For the solar rota-
tion rate of Ω ≈ 3 × 10−6 s−1, a value of Co ≡ 2Ωτ = 0.1 corre-
sponds to τ = 5 h, which is longer than the earlier MFS values
of 2 h for a horizontal field (Losada et al. 2013) and 30 min for a
vertical field (Brandenburg et al. 2014).

Using the TFM, we have confirmed earlier findings regard-
ing α and ηt, although for our new simulations both coefficients
are somewhat larger, which is presumably due to the larger
scale separation. The ratio between α and ηt determines the dy-
namo number and is now about 40% below previous estimates.
There is no evidence of other important mean-field effects that
could change our conclusion about a cross-over from suppressed
NEMPI to increased dynamo activity. We now confirm quanti-
tatively that the enhanced growth past the initial suppression of
NEMPI is indeed caused by mean-field dynamo action in the
presence of a weak magnetic field. The position of the minimum
in the growth rate coincides with the onset of mean-field dynamo
action that takes the α effect into account.

For weak or no rotation, we find that the normalized NEMPI
growth rate is described by a single parameter Gr, which is
proportional to the product of gravity and turbulent diffusivity,
where the latter is a measure of the inverse scale separation ra-
tio. This normalization takes into account that the growth rate
increases with increasing gravity. The growth rate compensated
in this way shows a decrease with increasing gravity and turbu-
lent diffusivity that is different from an earlier, more heuristic,
expression proposed by Kemel et al. (2013). The reason for this
departure is not quite clear. One possibility is some kind of gravi-
tational quenching, because the suppression is well described by
a quenching factor that becomes important when Gr exceeds a
value of around 0.5. This quenching is probably not important
for stellar convection where the estimated value of Gr is 0.17
(Losada et al. 2013). It might, however, help explain mismatches
with the expected theoretical growth rate that was found to be
proportional to Gr (Kemel et al. 2013) and that was determined
from recent DNS (Brandenburg et al. 2014).

An important question is whether NEMPI will really be
strong enough to produce sunspots with super-equipartition
strength. It has always been clear that NEMPI can only work
for a magnetic field strength that is a small fraction of the lo-
cal equipartition field value. However, super-equipartition fields
are produced if the magnetic field is vertical (Brandenburg et al.
2013). Subsequent work showed quantitatively that NEMPI does
indeed work at subequipartition field strengths, but since mass
flows mainly along magnetic field lines, the reduced pressure
leads to suction which tends to evacuate the upper parts of the
tube (Brandenburg et al. 2014). This is similar to the “hydraulic
effect” envisaged by Parker (1976), who predicted such down-
flows along flux tubes. In a later paper Parker (1978), gives more
realistic estimates, but the source of downward flows remained
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unclear. Meanwhile, the flux emergence simulations of Rempel
& Cheung (2014) show at first upflows in their magnetic spots
(see their Fig. 5), but as the spots mature, a downflow develops
(see their Fig. 7). In their case, because they have convection,
those downflows can also be ascribed to supergranular down-
flows, as was done by Stein & Nordlund (2012). Nevertheless,
in the isothermal simulations of Brandenburg et al. (2013, 2014),
this explanation would not apply. Thus, we now know that the re-
quired downflows can be caused by NEMPI, but we do not know
whether this is also what happens in the Sun.

Coming back to our paper, where NEMPI is coupled to a dy-
namo, the recent work of Mitra et al. (2014) is relevant because it
shows that intense bipolar spots can be generated in an isother-
mal simulation with strongly stratified nonhelically driven tur-
bulence in the upper part and a helical dynamo in the lower
part. The resulting surface structure resembles so-called δ spots
that have previously only been found in the presence of strongly
twisted and kink-unstable flux tubes (Linton et al. 1998). While
the detailed mechanism of this work is not yet understood, it re-
minds us that it is too early to draw strong conclusions about
NEMPI as long as not all its aspects have been explored in suffi-
cient detail.
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