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1 Physics Department, Gustaf Hällströmin katu 2a, P.O. Box 64, FI-00014 University of Helsinki, Finland; elizabeth.cole@helsinki.fi
2 NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden

3 Department of Information and Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland
4 Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden

Received 2013 September 26; accepted 2013 November 25; published 2013 December 16

ABSTRACT

We report the discovery of an azimuthal dynamo wave of a low-order (m = 1) mode in direct numerical simulations
(DNS) of turbulent convection in spherical shells. Such waves are predicted by mean-field dynamo theory and
have been obtained previously in mean-field models. An azimuthal dynamo wave has been proposed as a possible
explanation for the persistent drifts of spots observed on several rapidly rotating stars, as revealed through photometry
and Doppler imaging. However, this has been judged unlikely because evidence for such waves from DNS has been
lacking. Here we present DNS of large-scale magnetic fields showing a retrograde m = 1 mode. Its pattern speed is
nearly independent of latitude and does not reflect the speed of the differential rotation at any depth. The extrema
of magnetic m = 1 structures coincide reasonably well with the maxima of m = 2 structures of the temperature.
These results provide direct support for the observed drifts being due to an azimuthal dynamo wave.
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1. INTRODUCTION

The solar large-scale magnetic field is mostly axisymmetric
and exhibits a dynamo wave propagating from mid-latitudes
toward the equator. The solar cycle is often explained in
terms of αΩ dynamo models based on mean-field theory
where the poloidal field is regenerated via cyclonic turbulence
(α-effect) and the toroidal field through differential rotation
(Ω-effect), see, e.g., Ossendrijver (2003). For faster rotation, the
α-effect becomes strongly anisotropic (Rüdiger 1978) while its
magnitude is less strongly suppressed than turbulent diffusivity
(Käpylä et al. 2009). At the same time, differential rotation
is also quenched (e.g., Kitchatinov & Rüdiger 1999), which
enables non-axisymmetric modes to dominate. Thus, in more
rapidly rotating stars, the large-scale magnetic field is expected
to become more non-axisymmetric (Rädler et al. 1990; Moss
et al. 1995).

Recent numerical simulations have reached a level of so-
phistication where they have been able to produce oscillatory
large-scale magnetic fields (e.g., Ghizaru et al. 2010; Käpylä
et al. 2010; Brown et al. 2011; Nelson et al. 2013) and in
some cases equatorward migration as in the Sun (Käpylä et al.
2012, 2013; Warnecke et al. 2013; Augustson et al. 2013). Fur-
thermore, as the rotation rate is increased, non-axisymmetric
large-scale fields are obtained (Goudard & Dormy 2008;
Gastine et al. 2012; Käpylä et al. 2013), as expected from mean-
field dynamo theory.

Observational results from photometry, spectroscopy and
spectropolarimetry show a similar trend for rapid rotators
with high levels of magnetic activity, manifested through ex-
tended high-latitude starspots that have a predominantly non-
axisymmetric longitudinal distribution (e.g., Berdyugina &
Tuominen 1998; Kochukhov et al. 2013). The most often de-
duced configuration consists of two active longitudes with al-
ternating levels of activity. This is referred to as the flip-flop
phenomenon after the original work of Jetsu et al. (1993) in the
context of phase jumps seen on the single giant star FK Com.

With the accumulation of observational data, it has become evi-
dent that the flip-flopping does not occur periodically (see, e.g.,
Korhonen et al. 2007; Hackman et al. 2013). Moreover, in al-
most all cases the phase behavior of the active longitude system
shows disrupted linear trends in the rotational frame of refer-
ence, i.e., the system is usually not rotating with the same speed
as the stellar surface. One of the most prominent examples of
this is the primary component of the RS CVn binary system
II Peg, where a drift pattern persistent over a 10 yr epoch has
been reported (Hackman et al. 2012; Lindborg et al. 2013).
Such drifts are traditionally not explained by the presence of
an azimuthal dynamo wave, but by surface differential rotation
causing the spots to move with different speeds as their lati-
tude changes, analogously to the Sun. In some cases, such as
FK Com, the changing angular velocity can clearly be related
to changes in spot latitudes (see, e.g., Korhonen et al. 2007).
This picture, however, seems less evident in II Peg, in which no
major changes in spot latitudes can be observed. However, the
magnetic structures move in the prograde direction with respect
to a rotating frame (Lindborg et al. 2013).

The idea that spots reflect the motion of the gas seems quite
straightforward, but there are various reasons why the pattern
speed associated with spots can be different from that of the gas.
Sunspots exhibit a prograde motion, which is often associated
with sunspots being anchored at some other depth where they
match the local speed of the gas (e.g., Pulkkinen & Tuominen
1998). However, in the Sun, magnetic tracers usually move
faster than the gas (Gizon et al. 2003), which can be explained
as a property of hexagon-like convection cells in the presence of
rotation (Busse 2004, 2007), but it might also be related to the
near-surface shear layer in the Sun (Green & Kosovichev 2006;
Brandenburg 2007). However, these are local considerations, so
we should still expect the pattern speed to reflect the equatorial
acceleration near the equator. By contrast, in linear dynamo
theory, a nonaxisymmetric dynamo mode always rotates like
a rigid body (Rädler 1986). Depending on model details and
the sign of the α effect, both prograde and retrograde rotation
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of the pattern is possible. Rädler (1986) discuss the so-called
westward drift of Earth’s magnetic field in the context of
the geodynamo. Rigidly rotating patterns also occur in the
nonlinear regime (Rädler et al. 1990). Thus, we should expect
that dynamo patterns would not bear any information about
latitudinal differential rotation.

Here we report on simulations of rapidly rotating turbulent
convection that exhibit large-scale non-axisymmetric magnetic
fields with azimuthal dynamo waves. We show that the pattern
speed of non-axisymmetric structures is essentially constant, as
expected from mean-field theory.

2. THE MODEL

Our model is similar to that of Käpylä et al. (2012, 2013).
We model a shell in spherical polar coordinates, where (r, θ, φ)
denote radius, colatitude, and longitude. Here we model a shell
r0 � r � R, θ0 � θ � π − θ0, and 0 � φ � φ0, where
r0 = 0.7 R, θ0 = π/12, φ0 = 2π and R is the radius of the star.
We solve the compressible hydromagnetic equations,

∂ A
∂t

= u × B − μ0η J, (1)

D ln ρ

Dt
= −∇ · u, (2)

Du
Dt

= g − 2�0 × u +
1

ρ
( J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds

Dt
= 1

ρ
[−∇ · (Frad + FSGS) + μ0η J2] + 2νS2, (4)

where A is the magnetic vector potential, u is the velocity,
B = ∇× A is the magnetic field, J = μ−1

0 ∇× B is the current
density, μ0 is the vacuum permeability, D/Dt = ∂/∂t + u ·∇ is
the advective time derivative, ρ is the density, g = −GM
r/r3

is the gravitational acceleration, where G is Newton’s constant,
M
 is the mass of the star, �0 = (cos θ,− sin θ, 0)Ω0 is the
rotation vector, ν is the kinematic viscosity, η is the magnetic
diffusivity, both assumed to be constant, Frad = −K∇T and
FSGS = −χSGSρT ∇s are the radiative and subgrid scale (SGS)
heat fluxes, where K is the radiative heat conductivity and
χSGS is the turbulent heat conductivity, which represents the
unresolved convective transport of heat, s is the specific entropy,
T is the temperature, and p = (γ − 1)ρe is the pressure,
where γ = cP/cV = 5/3 is the ratio of specific heats at
constant pressure and volume, respectively, and e = cVT is
the specific internal energy. The rate-of-strain tensor S is given
by Sij = (1/2)(ui;j +uj ;i)−(1/3)δij∇·u, where the semicolons
denote covariant differentiation (Mitra et al. 2009).

2.1. Initial and Boundary Conditions

As in Käpylä et al. (2012), the initial state is isentropic, we fix
the value of ∂T /∂r on the lower boundary, and choose K to be
proportional to r−15 (Käpylä et al. 2013) such that convection is
responsible for the majority of the energy transport. The density
obeys hydrostatic equilibrium. We use a weak, random Gaussian
noise, small-scale seed magnetic field.

The radial and latitudinal boundaries are assumed to be
impenetrable and stress free, see Equations (8) and (9) of
Käpylä et al. (2013). The magnetic field obeys perfect conductor
conditions on θ = θ0 and π − θ0 and r = r0, and is radial
on r = R, allowing magnetic helicity to escape the domain

without accumulating it at the bottom of the convection zone; see
Equations (10)–(12) of Käpylä et al. (2013). On the latitudinal
boundaries we assume that density and entropy have vanishing
first derivatives. By choosing the value of θ0 small enough,
we hope to minimize the possibility of artifacts, which might
be the case when the flow inside the inner tangent cylinder is
fully included (Käpylä et al. 2012); see also Mitra et al. (2009)
for comparative results varying the value of θ0. On the upper
boundary we apply a black body condition

σT 4 = −K
∂T

∂r
− χSGSρT

∂s

∂r
, (5)

where σ is a modified Stefan–Boltzmann constant (see Käpylä
et al. 2013; Barekat & Brandenburg 2013).

2.2. Dimensionless Parameters

As in Käpylä et al. (2013), we define our simula-
tions by imposing the energy flux at the bottom bound-
ary, Fb = −(K∂T/∂r)|r=r0 and the values of Ω0, ν, η,
and χSGS = χSGS(rm = 0.85 R). The corresponding non-
dimensional input parameters are the luminosity parameter
L = L0/[ρ0(GM)3/2R1/2] where L0 = 4πr2

0 Fb, and the (tur-
bulent) fluid and magnetic Prandtl numbers Pr = ν/χSGS and
Pm = ν/η, and the non-dimensional viscosity ν̃ = ν/

√
GMR.

The density stratification is controlled by the normalized pres-
sure scale height at the surface, ξ = [(γ − 1)cVT1]/(GM/R).

Other useful diagnostic parameters are the fluid and magnetic
Reynolds numbers Re = urms/(νkf ) and Rm = urms/(ηkf),
where kf = 2π/Δr ≈ 21R−1 is an estimate of the wavenumber
of the largest eddies, and Δr = R − r0 = 0.3 R is the
thickness of the layer. The Coriolis number is defined as
Co = 2Ω0τto, where τto = (urmskf)−1 is the turnover time
and urms =

√
(3/2)

〈
u2

r + u2
θ

〉
rθφΔt

is the rms velocity and
the subscripts indicate averaging over r, θ , φ, and a time
interval Δt of several magnetic diffusion times during which
the run is thermally relaxed. We express the magnetic field
in equipartition field strengths, Beq(r) = 〈μ0ρu2〉1/2

θφΔt , where
all three components of u are included. We average over
the φ-coordinate to define mean quantities, denoted by an
overbar. Furthermore, we define magnetic and kinetic energies
as Emag = 〈B2/2μ0〉rθφΔt and Ekin = 〈ρu2/2〉rθφΔt , and denote
the energies of the axisymmetric and m = 1 modes of the
magnetic field as E(0)

mag and E(1)
mag, respectively. The simulations

were performed with the Pencil Code.5

2.3. Relation to Stellar Parameters

We calibrate our model with solar parameters. However, due
to the compressible formulation of our model, using the real
solar luminosity would lead to prohibitively large Rayleigh
numbers making the numerical solutions infeasible. Thus we
increase the luminosity in our model to bring the dynamical and
acoustic timescales closer to each other (Käpylä et al. 2013).
The luminosity in our models is roughly 106 times greater than
in the Sun. This means that the convective velocity is roughly
100 times greater than in the Sun and we need to increase Ω0
by the same factor to achieve the same rotational influence
(i.e., the same value of Co) as in the Sun. We denote this
solar-calibrated value by Ω̃�. In our simulations the rotation
rate is 2.7–6.7 times faster than this, see Table 1. For further

5 http://pencil-code.googlecode.com/
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Figure 1. Azimuthal magnetic field Bφ , normalized by the equipartition value Beq, near the surface of the star at r = 0.98R from Run B for six times separated by
480τto.

(A color version of this figure is available in the online journal.)

Table 1
Summary of the Runs

Run PrSGS ν̃ Rat Re Rm Co Ω̃/Ω̃� Ẽmag Ẽ(0) Ẽ(1) M P

A 3.5 4.1 × 10−5 1.7 × 106 26 26 5.0 2.7 0.312 0.166 0.047 0.834 −0.333
B 3.0 3.5 × 10−5 2.2 × 106 28 28 8.1 4.0 0.618 0.109 0.071 0.891 0.318
C 3.0 3.5 × 10−5 2.6 × 106 24 24 15.5 6.7 0.937 0.056 0.091 0.944 0.347

Notes. Grid size is 128 × 256 × 512, Pm = 1, ξ = 0.02, L = 3.8 × 10−5, and σ̃ = σR2T 4
0 /L0 = 1.4 × 103, where T0 = T (r0). Furthermore, Ẽmag = Emag/Ekin,

Ẽ(0) = E(0)/Emag and Ẽ(1) = E(1)/Emag. M and P characterize axial and equatorial symmetries; see Section 3.1.

explanation of our choice of parameters and the definition of
the turbulent Rayleigh number Rat from the thermally relaxed
state, see Käpylä et al. (2013).

3. RESULTS

We discuss three simulations that can be interpreted as
representing the Sun at younger ages when it was rotating more
rapidly. Runs A, B, and C are respectively like Runs B3m, B4m,
and B5m of Käpylä et al. (2012) where φ0 = π/2, but are now
performed with a full 2π azimuthal extent and 20–40 per cent
higher viscosity and magnetic diffusivity. Run B is equivalent
to Run E4 of Käpylä et al. (2013) and was only run for 5500τto.
We run the simulations from the initial conditions discussed in
Section 2.1.

3.1. Nonaxisymmetric Magnetic Fields

We find that in the early stages of the simulations an
axisymmetric oscillatory large-scale magnetic field grows first.
This large-scale component shows equatorward migration for
the two highest rotation rates (Käpylä et al. 2012, 2013). In
the later stages, the dynamo mode changes into a stable non-
axisymmetric one, where the oscillations of the axisymmetric
part cease (see Figure 17 of Käpylä et al. 2013).

Figure 1 shows a sequence of snapshots of Bφ from Run
B near the surface at six times separated by 480τto. Strong
magnetic fields occur as extended belts of toroidal field near
the equatorial region. These resemble the wreaths reported
by Brown et al. (2010) and Nelson et al. (2013), but instead
of predominantly axisymmetric structures, we now observe
sign changes in longitude. Strong magnetic fields are also
generated at higher latitudes. These structures appear to have
a predominantly nonaxisymmetric distribution with a large

negative radial magnetic field on one side with a positive
counterpart on the other.

We Fourier filter the simulation data to extract the lowest
order m = 0, 1 contributions to the magnetic field. We find
that the energy of the nonaxisymmetric m = 1 mode is of the
same order of magnitude as the axisymmetric one in all runs (see
Table 1), but observe a growth of the m = 1 mode with respect to
m = 0 as rotation increases; see the increase of E(1)

mag combined
with a decrease of E(0)

mag in Figure 18 of Käpylä et al. (2013) for
Run B. The lowest order modes constitute only roughly a fifth
of the total magnetic field energy, the rest being in still higher
(m > 1) modes.

We quantify the non-axisymmetry of the magnetic field with
the quantities (see Rädler et al. 1990)

M = 1 − E(0)
mag

Emag
, M (1) = 1 − E(0)

mag

E
(0)
mag + E

(1)
mag

. (6)

The random noise used as our initial condition yields M ≈
M (1) ≈ 1. A turbulent m = 0 dynamo yields small values of
M (1) = 0, but, owing to contributions from random noise to
high m modes, M = O(1), while for a turbulent m = 1 mode
we have again M ≈ M (1) ≈ 1. We show the time evolution of M
and M (1) in Figures 2(a) and (b). We find that M is close to unity
in the saturated stages of our runs. In earlier stages where the
axisymmetric dynamo mode is more prominent, the minimum
values of M are between 0.6 and 0.7, whereas M (1) can be as
low as 0.1. The ratio of the nonaxisymmetric to axisymmetric
field components is not completely constant over time even
in the saturated state, with variations of roughly 10 percent
in comparison to the average values. Furthermore, the larger
the rotation rate, the closer the solution is to a purely non-
axisymmetric solution. We quantify the equatorial symmetry of
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Figure 2. Parameters M (left), M (1) (middle), and P (right) according to Equations (6) and (7) from Runs A (black solid), B (red dashed), and C (blue dot-dashed).
The data for Run A does not start from zero due to a lack of diagnostics output from the early part of the run.

(A color version of this figure is available in the online journal.)

the magnetic field by the parity (Brandenburg et al. 1989)

P = E(S) − E(A)

E(S) + E(A)
, (7)

where E(S) and E(A) correspond to volume averaged energies
of the symmetric and antisymmetric parts of the magnetic field.
The extrema P = 1 and P = −1 correspond to complete
symmetry and complete anti-symmetry with respect to the
equator. A random initial field produces P = 0. As is apparent
from Figure 2(c), there is mixed equatorial symmetry at all times
in all of the runs. The lowest rotation case, Run A, persistently
and preferentially shows an antisymmetric configuration, while
Runs B and C with increased rotation evolve toward a symmetric
configuration. This is a trend that is also seen in nonlinear,
nonaxisymmetric mean-field (Rädler et al. 1990; Moss et al.
1995) and convection (Ishihara & Kida 2002) models.

3.2. Pattern Speed of the m = 1 Structure

Visual inspection of Figure 1 already reveals that the large-
scale non-axisymmetric structure is propagating in the retro-
grade direction in the frame rotating with the star. To analyze
this drift quantitatively, we begin by using the Fourier-filtered
data at the surface of the star at r/R = 1. We then track the
magnetic and temperature structures by following the extrema
of Br and T of the filtered (sinusoidal) signal. We measure the
azimuth ϕ of the resulting m = 1 structure, and compute the
pattern speed as Ωpat = dϕ/dt . The resulting tracks of the mag-
netic extrema and corresponding temperature maxima from Run
B are plotted in Figure 3 at different latitudes, together with the
phase of the differential rotation measured from the flow. The
signal in the magnetic field is well visible in both hemispheres,
while that in temperature is more clear in the southern hemi-
sphere. For this reason, we perform the analysis only for the
southern hemisphere.

From Figure 3 it is evident that the nonaxisymmetric structure
is moving in the retrograde direction with nearly constant speed.
The pattern speed is considerably slower than the one expected
from advection by differential rotation at any latitude. The
m = 1 structure completes an orbit in roughly 2400τto, whereas

Figure 3. Phase of the m = 1 mode of Br (filled and open circles) and the m = 2
mode of T (blue crosses) at the surface as a function of time from Run B at four
latitudes. Red lines denote the phase based on pure advection due to differential
rotation.

(A color version of this figure is available in the online journal.)
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Figure 4. Top: time-averaged differential rotation ΔΩ/Ω0 = uφ/Ω0r sin θ − 1
from different depths and from the non-axisymmetric structure (black dashed
horizontal line, enlarged in inset) during the saturated state. Middle: angular
velocity as a function of depth at select latitudes. Bottom: phase speed of the
pattern, Ωpat = dϕ/dt from Runs A, B, and C.

(A color version of this figure is available in the online journal.)

pure advection due to differential rotation is typically 5–10 times
faster. From the analysis of the magnetic field and temperature
at the surface, it is evident that the nonaxisymmetric structure
rotates without being affected by differential rotation.

3.3. Relation to Local Rotation Rate

Next we analyze the situation more thoroughly by computing
the rotation profile of the nonaxisymmetric mode m = 1 from all
the runs as functions of latitude and depth, and compare it to the
differential rotation profiles, see Figure 4. While the gas shows
more differential rotation near the surface, the m = 1 pattern
is essentially rigidly rotating; see Figure 4(a). In Figure 4(b)
we show the radial dependence of gas and pattern speeds. The
pattern speed is retrograde by 0.09%, showing a very small
positive radial gradient near the equator in the deeper part. In all
of these cases we find that the magnetic structure is propagating

in the retrograde direction, see Figure 4(c). The normalized
pattern speed ΔΩpat = Ωpat/Ω0 is monotonically decreasing as
a function of rotation rate. Our analysis, therefore, shows that the
almost rigid pattern speed Ωpat does not match the differential
rotation of the star at any depth or latitude.

We find a corresponding signal in the temperature at high
latitudes; see Figure 3. However, the maxima of B2 correspond
to the temperature maxima rather than the minima. Temperature
fluctuations ΔT /T of the m = 2 mode are 2–5 percent. These
fluctuations are largely independent of the normalized radial
component of the magnetic field, Br/Beq. This differs from the
results of Run C1 from Käpylä et al. (2013) where fluctuations
were between 15–20 percent.

4. CONCLUSIONS

We have studied azimuthal dynamo waves in three-
dimensional simulations of convection-driven dynamos. The
wave moves rigidly and is generally slower than the differ-
entially rotating gas. The drift cannot be accounted for by the
differential rotation at any depth in the simulations. In the pa-
rameter regime investigated, only non-cyclic solutions with ret-
rograde patterns were found, and their speed decreases with
increasing rotation. In all of the cases investigated, the non-
axisymmetric pattern makes one orbit in the co-rotating frame
in a few thousand convective turnover times, 5–10 times slower
than expected if differential rotation of the fluid was the cause.
This is compatible with the behavior of nonaxisymmetric dy-
namo modes discussed in Section 1; see Rädler (1986).

In active rapid rotators, the reported pattern speeds are of
the same order (in absolute terms) as reported in this study,
see Lindborg et al. (2013). The deduced amounts of differential
rotation for these objects (see, e.g., Henry et al. 1995; Marsden
et al. 2005; Siwak et al. 2010), however, are much weaker than
those obtained in Runs A–C. As a result, in real objects the
pattern speeds of non-axisymmetric structures are only slightly
smaller than or comparable to what is expected from advection
by differential rotation. Also, both prograde and retrograde drifts
have been observed (see, e.g., Berdyugina & Tuominen 1998),
and commonly the patterns are disrupted (see, e.g., Hackman
et al. 2013), the longest reported drift so far being of the order
of a decade (Berdyugina & Tuominen 1998). The latitude-
independent drift of the spot structure in II Peg reported by
Lindborg et al. (2013), however, is not consistent with latitude-
dependent differential rotation and is more consistent with the
results presented here. In real objects, however, the dynamo
seems to operate in a regime where the azimuthal dynamo wave
and differential rotation have similar pattern speeds and these
two mechanisms compete with each other. Preliminary studies
suggest that such behavior could be obtained at larger rotation
speeds, and will be discussed in a future publication.
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