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ABSTRACT

Context. Studies of solar and stellar convection often employ simple polytropic setups using the diffusion approximation instead of
solving the proper radiative transfer equation. This allows one to control separately the polytropic index of the hydrostatic reference
solution, the temperature contrast between top and bottom, and the Rayleigh and Péclet numbers.
Aims. Here we extend such studies by including radiative transfer in the gray approximation using a Kramers-like opacity with freely
adjustable coefficients. We study the properties of such models and compare them with results from the diffusion approximation.
Methods. We use the Pencil code, which is a high-order finite difference code where radiation is treated using the method of long
characteristics. The source function is given by the Planck function. The opacity is written as κ = κ0ρaT b, where a = 1 in most cases,
b is varied from −3.5 to +5, and κ0 is varied by four orders of magnitude. We adopt a perfect monatomic gas. We consider sets of
one-dimensional models and perform a comparison with the diffusion approximation in one- and two-dimensional models.
Results. Except for the case where b = 5, we find one-dimensional hydrostatic equilibria with a nearly polytropic stratification and a
polytropic index close to n = (3 − b)/(1+ a), covering both convectively stable (n > 3/2) and unstable (n < 3/2) cases. For b = 3 and
a = −1, the value of n is undefined a priori and the actual value of n depends then on the depth of the domain. For large values of κ0,
the thermal adjustment time becomes long, the Péclet and Rayleigh numbers become large, and the temperature contrast increases
and is thus no longer an independent input parameter, unless the Stefan-Boltzmann constant is considered adjustable.
Conclusions. Proper radiative transfer with Kramers-like opacities provides a useful tool for studying stratified layers with a radiative
surface in ways that are more physical than what is possible with polytropic models using the diffusion approximation.
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1. Introduction

Convection in stars and accretion disks is a consequence of ra-
diative cooling at the surface. Pioneering work by Nordlund
(1982, 1985) has shown that realistic simulations of solar gran-
ulation can be performed with not too much extra effort and the
required computing resources are comparable to the mandatory
costs for solving the hydrodynamics part. Yet, many studies of
hydrodynamic and hydromagnetic convection today ignore the
effects of proper radiative transfer, sometimes even at the ex-
pense of using compute-intensive implicit solvers to cope with a
computationally stiff problem in the upper layers where the ra-
diative conductivity becomes large (e.g., Cattaneo et al. 1991;
Gastine & Dintrans 2008). Therefore, the main reason for ignor-
ing radiation cannot be just the extra effort, but it is more likely
a reduced flexibility in that one is confined to a single physi-
cal realization of a system and the difficulty in varying param-
eters that are in principle fixed by the physics. With only a few
exceptions (e.g., Edwards 1990), radiation hydrodynamics sim-
ulations of stratified convection also employ realistic opacities
combined with a realistic equation of state. In the case of the
Sun this means that one can only simulate for the duration of a
few days solar time (Stein & Nordlund 1989, 1998, 2012).

� Appendices are available in electronic form at
http://www.aanda.org

There are other types of realistic simulations that are able
to cover longer time scales by simulating only deeper layers,
so they ignore radiation. However, these simulations still need
to pose an upper boundary condition, where the gas is cooled
(Miesch et al. 2000). This leads to a granulation-like pattern at
a depth where the flow topology is known to consist of indi-
vidual downdrafts rather than a connected network of intergran-
ular lanes. This compromises the realism of such simulations.
Other types of simulations give up the ambition for realism alto-
gether and try to model a “toy Sun” in which the broad range of
time and length scales is compressed to a much narrower range
(Käpylä et al. 2013). This can be useful if one wants to under-
stand the physics of the solar dynamo, where we are not even
sure about the possible importance of the surface (Brandenburg
2005), or the physics of sunspots, where so far only models of
a toy Sun have produced spontaneous magnetic flux concentra-
tions similar to those of sunspots (Brandenburg et al. 2013). It is
therefore important to know how to manipulate the parameters
to accommodate the relevant physics, given certain numerical
constraints such as the number of mesh points available.

In the present paper we include radiation, which introduces
the Stefan-Boltzmann constant, σSB, as a new characteristic
quantity into the problem. It characterizes the strength of sur-
face cooling, or, conversely, the temperature needed to radiate
the flux that is transported through the rest of the domain. Earlier
simulations that ignored radiation have specified the surface
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temperature in an ad hoc manner so as to achieve a certain tem-
perature contrast across the domain. An example are the simu-
lations of Brandenburg et al. (1996), who specified a parame-
ter ξ as the ratio of pressure scale height at the surface, which
is proportional to the temperature at the top, and the thickness
of the convectively unstable layer. Alternatively, one can use a
radiative surface boundary condition. It involves σSB and cou-
ples therefore the surface temperature Ttop to the lower part of
the system, so Ttop is then no longer a free parameter, unless
one chooses an effective value of σSB so as to achieve the de-
sired temperature contrast. This was done in recent simulations
by Käpylä et al. (2012), who kept the aforementioned parame-
ter ξ as the basic control parameter, which then determines the
effective value of σSB in their simulations.

The goal of the present work is to explore the physics of
models that introduce radiation without being confined to just
one realization. We do this by using a Kramers-like opacity law,
but with freely adjustable parameters. It turns out that it is possi-
ble in some cases to imitate polytropic models with any desired
polytropic index and Rayleigh number. This then eliminates any
restrictions to a single setup, allowing one to perform parame-
ter surveys, just like with earlier polytropic models. To compare
radiative transfer models with those in the diffusion approxima-
tion, we consider two-dimensional convection simulations. An
ultimate application of this work is to study the formation of sur-
face magnetic flux concentrations through the negative effective
magnetic pressure instability (Brandenburg et al. 2013), which
has been shown to produce bipolar region (Warnecke et al. 2013;
Mitra et al. 2014), and to investigate the relation to the mag-
netic cooling instability of Kitchatinov & Mazur (2000), which
could favor sunspot formation in the presence of radiative cool-
ing. This will be discussed again at the end of the paper.

We would like to point out that, in view of more general
applications, we cannot assume the effective temperature to be
given or fixed. Thus, unlike the case usually considered in the
theory of stellar atmospheres, the dependence of temperature on
optical depth is not known a priori. Therefore, it is more conve-
nient to fix instead the temperature at the bottom of the domain
and obtain the effective temperature, and thus the flux, as a result
of the calculation.

We begin by presenting first the governing equations and
then describe the basic setup of our model. Next we compare
a set of one-dimensional simulations with the associated poly-
tropic indices that correspond to Schwarzschild stable or unsta-
ble solutions. Finally, we explore the effect of including radiative
transfer instead of using the diffusion approximation combined
with a radiative boundary condition by comparing one- and two-
dimensional simulations.

2. The model

2.1. Governing equations

We solve the hydrodynamics equations for logarithmic density
ln ρ, velocity u, and specific entropy s, in the form

D ln ρ
Dt

= −∇ · u, (1)

ρ
Du
Dt
= −∇p + ρg + ∇ · (2ρνS), (2)

ρT
Ds
Dt
= −∇ · Frad + 2ρνS2, (3)

where p is the gas pressure, g is the gravitational acceleration,
ν is the viscosity, S = 1

2 [∇u + (∇u)T ] − 1
3 I∇ · u is the traceless

rate-of-strain tensor, I is the unit tensor, T is the temperature,
and Frad is the radiative flux. For the equation of state, we as-
sume a perfect gas with p = (R/μ)Tρ, where R is the univer-
sal gas constant and μ is the mean molecular weight. The pres-
sure is related to s via p = ργ exp(s/cv), where the adiabatic
index γ = cp/cv is the ratio of specific heats at constant pressure
and constant volume, respectively, and cp − cv = R/μ. To ob-
tain the radiative flux, we adopt the gray approximation, ignore
scattering, and assume that the source function S (not to be con-
fused with the rate-of-strain tensor S) is given by the frequency-
integrated Planck function, so S = (σSB/π)T 4, where σSB is the
Stefan-Boltzmann constant. The divergence of the radiative flux
is then given by

∇ · Frad = −κρ
∮

4π
(I − S ) dΩ, (4)

where κ is the opacity per unit mass (assumed independent of
frequency) and I(x, t, n̂) is the frequency-integrated specific in-
tensity corresponding to the energy that is carried by radiation
per unit area, per unit time, in the direction n̂, through a solid
angle dΩ. We obtain I(x, t, n̂) by solving the radiative transfer
equation,

n̂ · ∇I = −κρ (I − S ), (5)

along a set of rays in different directions n̂ using the method of
long characteristics.

2.2. Opacity

For our work it is essential that we can control the value and
functional form of the opacity. We therefore choose a Kramers-
like opacity given by

κ = κ0ρ
aT b, (6)

where a and b are free parameters that characterize the relevant
radiative processes. It is useful to consider the radiative conduc-
tivity K(ρ, T ), which is given by

K(ρ, T ) =
16σSBT 3

3κρ
=

16σSBT 3−b

3κ0ρa+1
· (7)

We note that, in a plane-parallel polytropic atmosphere, T (z)
varies linearly with height z and in the stationary state, K(ρ, T )
is constant in the optically thick part. This implies that ρ is pro-
portional to T n, where

n =
3 − b
1 + a

(8)

is the polytropic index (not to be confused with the direction
of a ray n̂). This relation was also used by Edwards (1990),
but the author regarded those solutions as “a little contrived”.
This is perhaps the case if such solutions are applied throughout
the entire domain. It should also be noted that Edwards (1990)
included thermal conduction along with radiative transfer. This
meant that one had to pose a boundary condition for the tem-
perature at the top also, which will not be necessary in our case,
where, unless stated otherwise, no thermal conductivity is in-
cluded. Indeed, as we shall show, with a Kramers-like opacity,
nearly polytropic solutions are a natural outcome in the lower
optically thick part of the domain, while in the upper optically
thin part of the domain the stratification tends to become approx-
imately isothermal.
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For a perfect gas, the specific entropy gradient is related to
the gradients of the other thermodynamic variables via

∇s = cv∇ ln p − cp∇ ln ρ = (n + 1 − γn)cv∇ ln T, (9)

and vanishes when n = 1/(γ − 1). For a monatomic gas where
γ = 5/3, the stratification is Schwarzschild-stable for n > 3/2.

2.3. Boundary conditions

We consider a slab with boundary conditions in the z direction
at zbot and ztop, where we assume the gas to be stress-free, i.e.,

∂ux/∂z = ∂uy/∂z = uz = 0 on z = zbot, ztop. (10)

We assume zero incoming intensity at the top, and compute the
incoming intensity at the bottom from a quadratic Taylor ex-
pansion of the source function, which implies that the diffusion
approximation is obeyed; see Appendix A of Heinemann et al.
(2006) for details. To ensure steady conditions, we fix tempera-
ture at the bottom,

T = Tbot on z = zbot, (11)

while the temperature at the top is allowed to evolve freely. There
is no boundary condition on the density, but since no mass is
flowing in or out, the volume-averaged density is automatically
constant. Since most of the mass resides near the bottom, the
density there will not change drastically and will be close to its
initial value at the bottom.

2.4. The radiation module

We use for all simulations the Pencil code1, which solves the
hydrodynamic differential equations with a high-order finite-
difference scheme. The radiation module was implemented by
Heinemann et al. (2006). It solves the transfer equation in the
form

dI/dτ = I − S , (12)

where dτ = κρ dl is the differential of the optical depth along a
given ray and l is a coordinate along this ray.

The code is parallelized by splitting the calculation into parts
that are local and non-local with respect to each processor. There
are two local parts that are compute-intensive and one that is
non-local and fast, so it does not require any computation. Since
S is assumed independent of I (scattering is ignored), we can
write the solution of Eq. (12) as an integral for I(τ), which is
thus split into two parts,

I(τ) =
∫ τ0

0
eτ
′−τS (τ′)dτ′︸����������������︷︷����������������︸
Iextr

+

∫ τ

τ0

eτ
′−τS (τ′)dτ′︸���������������︷︷���������������︸

Iintr

, (13)

where the subscripts “extr” and “intr” indicate respectively an
extrinsic, non-local contribution and an intrinsic, local one. An
analogous calculation is done for calculating τ along the geo-

metric coordinate as τ(l) =
∫ l0

0
κρ dl′ +

∫ l

l0
κρ dl′, where l0 is the

geometric end point on the previous processor. In the first step,
we calculate Iintr(τ), which can be evaluated immediately on all
processors in parallel, while the first integral is written in the

1 http://pencil-code.googlecode.com/

Table 1. Units used in this paper and conversion into cgs units.

Quantities Code units cgs units

length [z] Mm 108 cm
velocity [u] km s−1 105 cm s−1

density [ρ] g cm−3 1 g cm−3

temperature [T ] K 1 K
time [t] ks 103 s
gravity [g] km2 s−2 Mm−1 102 cm s−2

opacity [κ] Mm−1 cm3 g−1 10−8 cm2 g−1

diffusivity [χ] Mm km s−1 1013 cm2 s−1

conductivity [K] g cm−3 km3 s−3 Mm K−1 1023 g cm s−3 K−1

Stefan-B [σSB] g cm−3 km3 s−3 K−4 1015 g s−3 K−4

flux [F] g cm−3 km3 s−3 1015 erg cm−2 s−1

form Iextr(τ) = I0 eτ0−τ, where I0 and τ0 are already being com-
puted as part of the Iintr calculation on neighboring processors
and the results included in the last step of the computation.

In the second step, the values of τ0 =
∫ l0

0
κρ dl′ and I0 = I(τ0)

are communicated from the end point of each ray on the previous
processor, which cannot be done in parallel, but this does not
require any computational time. In the final step one computes

Iextr(τ) = I0eτ0−τ (14)

and constructs the final intensity as I(τ) = Iextr(τ) + Iintr(τ).
Instead of solving the radiative transfer equation directly

for the intensity, the contribution to the cooling term Q(τ) =
I(τ) − S (τ) is calculated instead, as was done also by Nordlund
(1982). This avoids round-off errors in the optically thick part.
For further details regarding the implementation we refer to
Heinemann et al. (2006). To avoid interpolation, the rays are
chosen such that they go through mesh points. The angular inte-
gration in Eq. (4) is discretized as

∇ · Frad = −4πκρ
N

D
3

N∑
i=1

[I(x, t, n̂i) − S ], (15)

where i enumerates the N rays with directions n̂i and D/3 is
a correction factor that is relevant when the number of dimen-
sions, D, of the calculation is less than three. It does not affect
the steady state, but it affects the cooling rate both in the op-
tically thick and thin regimes; see Appendix A for details. In
one dimension with D = 1, we have N = 2 rays, which are
n̂1,2 = (0, 0,±1), while for D = 2 we can either have N = 4 with
n̂1,2 = (±1, 0, 0) and n̂3,4 = (0, 0,±1), or N = 8 with the addi-
tional 4 combinations n̂5,...,8 = (±1, 0,±1)/

√
2. In three dimen-

sions, the correction factor is D/3 = 1, so the angular integral is
just 4π times the average of the intensity over all directions.

2.5. Parameters and initial conditions

In the following, we measure length in Mm, speed in km s−1,
density in g cm−3, and temperature in K. This implies that time,
for example, is measured in ks (=1000 s). The advantage of us-
ing this system of units is that it avoids extremely large or small
values of various quantities by using units that are commonly
used in solar physics such as Mm and km/s. A summary of our
units and the conversion of various quantities between cgs and
our units is given in Table 1.

For the gravitational acceleration, we take g = (0, 0,−g) with
g = 274 km2 s−2 Mm−1 being the solar surface value (Stix 2002).
Instead of prescribing Tbot, we prescribe the sound speed cs,
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Table 2. Summary of used a and b.

Set a b n Schwarzschild
A 1 −3.5 3.25 stable
B 1 0 1.5 marginally stable
C 1 1 1 unstable
D 1 5 −1 ultra unstable
E −1 3 0/0 undefined

Notes. Combinations of exponents a and b and the resulting polytropic
index n used in the present study. The characterization with respect to
the Schwarzschild stability criterion is based on γ = 5/3, corresponding
to a marginal polytropic index of n = 1/(γ − 1) = 3/2. Each parame-
ter combination is denoted by a letter A–E, which corresponds later to
different sets of runs.

where c2
s = γRT/μ, and fix cs = cs0 = 30 km s−1 at zbot = 0.

With R = 8.314 × 107 erg K−1 mol−1 and μ = 0.6 g mol−1, this
choice corresponds to Tbot = 38 968 K. We found it instructive
to start with an isothermal solution that is in hydrostatic equi-
librium, but not in thermal equilibrium, so the upper parts will
gradually cool until a static solution is reached. Thus, we use
ρ = ρ0 exp(−z/Hp), where Hp = RT/μg is the pressure scale
height, and ρ0 is a constant that we set to ρ0 = 4 × 10−4 g cm−3.
This value was chosen based on values from a solar model at a
depth of approximately 7 Mm below the surface. However, this
particular choice is quite uncritical and just corresponds to renor-
malizing the opacity. In other words, instead of making a calcu-
lation with a ten times larger value of ρ, we can just use an oth-
erwise equivalent calculation with a ten times larger value of κ.

2.6. Simulation strategy

We choose the exponents a and b such that they correspond to
five different values of n. In the case a = −1, b = 3, we have
K(ρ, T ) = const, but the value of n is undefined. Our choice
of parameters is summarized in Table 2. It is convenient to ex-
press κ in the form

κ = κ̃0

(
ρ

ρ0

)a( T
T0

)b

, (16)

where κ̃0 is a rescaled opacity and is related to κ0 by κ̃0 =
κ0ρ

a
0T b

0 ; where T0 = Tbot is used. (By contrast, ρ0 is only ap-
proximately equal to the density at the bottom – except ini-
tially.) With this choice, the units of κ̃0 are independent of a and
b, and always Mm−1 cm3 g−1 (=10−8 cm2 g−1). For each value
of n, we choose 4 different values of κ̃0 = 104, 105, 106, and
107 Mm−1 cm3 g−1. We note that the actual Kramers opacity for
free–free and bound–free transitions with a = 1 and b = −7/2
has κ0 between 6.6 × 1022 and 4.5 × 1024 cm5 g−2 K7/2, re-
spectively (Kippenhahn & Weigert 1990). This corresponds to
κ̃0 = 2.26 × 1011 and κ̃0 = 1.54 × 1013 Mm−1 cm3 g−1, which
are respectively four and six orders of magnitude larger than the
largest value considered in this paper.

3. Results

We perform one-dimensional simulations with a resolution of
512 equally spaced grid points using five sets of values for the
exponents a and b in the expression for the Kramers opacity;
see Eq. (16). Each set of runs is denoted by a letter A–E. In the
first four sets of runs, we keep a = 1 and change the value of
b from −7/2, to 0, 1, and 5. For each of these sets, we perform

Fig. 1. Vertical temperature profile at five different times t = 0, 3, 30,
120, and 1578 ks for Run A6 with κ̃0 = 106 Mm−1 cm3 g−1. Squares,
circles and crosses represent different optical depths τ = 0.1, τ = 1
and τ = 10, respectively. The arrow represents the direction of the time
evolution of the temperature profile.

four runs that differ only in the values of κ̃0. The numeral on the
label of each run refers to a different value of κ̃0. In Set A, we
use a = 1 and b = −7/2. Runs A4, A5, A6 and A7 correspond
to κ̃0 equal to 104, 105, 106 and 107 Mm−1 cm3 g−1, respectively.
All the other designations follow the same scheme. All runs have
been started with the same isothermal initial condition. However,
the size of the domain is changed so as to accommodate the up-
per isothermal part by a good margin. If the domain is too big,
one needs a large number of meshpoints to resolve the resulting
strong stratification, and if it is too small, the solution changes
in the top part, as will be discussed in Sect. 3.9.

After a sufficient amount of running time, a unique equilib-
rium state is reached and the resulting profiles of temperature,
density and entropy have a nearly polytropic stratification in the
lower part of the domain and a nearly isothermal stratification in
the upper part of the domain. An exception are the runs of Set E
where the polytropic index is undefined (n = 0/0). This will be
discussed in more detail in Sect. 3.8. We summarize the impor-
tant quantities obtained from all runs in Table 3. These quantities
are calculated in the equilibrium state. All runs show a similar
evolution of density, temperature and entropy. In the next sec-
tions we describe the resulting profiles in more detail.

3.1. Approach toward the final state

As mentioned above, we find it convenient to obtain equilibrium
solutions by starting from an isothermal state. The upper lay-
ers begin to cool fastest, and eventually an equilibrium state
is reached. We plot the evolution of the temperature pro-
file of Run A6 in Fig. 1 as an exemplary case with κ̃0 =
106 Mm−1 cm3 g−1. Already after a short time of t = 3 ks (1 h),
the temperature has decreased by more than half its initial value
at the top and follows a polytropic solution in most of the do-
main, where the temperature gradient has a similar value than
in the equilibrium state. At t = 30 ks (8 h), close to the top
boundary, an isothermal part is seen to emerge. However, it takes
more than t = 1500 ks (17 days) until the equilibrium solution is
reached with a prominent isothermal part of T ≈ 7000 K. The
locations of three different optical depths, τ = 0.1, 1 and 10, are
shown in Fig. 1. Here,

τ(z) =
∫ ztop

z
κ(z′)ρ(z′) dz′ (17)
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Table 3. Summary of the runs.

Run a b n κ̃0 ztop zτ= 1 ρτ= 1 τadjust Teff Kbot

A4 1 −3.5 3.25 104 8 2.8 1.0 × 10−4 50 23 600 3.9 × 10−6

A5 1 −3.5 3.25 105 8 5.2 1.7 × 10−5 90 13 900 4.6 × 10−7

A6 1 −3.5 3.25 106 8 6.6 2.5 × 10−6 700 7800 4.6 × 10−8

A7 1 −3.5 3.25 107 8 7.4 3.7 × 10−7 15 000 4400 4.4 × 10−9

B4 1 0 1.5 104 5 1.4 2.2 × 10−4 40 26 600 4.53 × 10−6

B5 1 0 1.5 105 5 2.9 9.0 × 10−5 60 16 300 5.15 × 10−7

B6 1 0 1.5 106 5 3.8 3.7 × 10−5 400 9300 5.38 × 10−8

B7 1 0 1.5 107 5 4.3 1.6 × 10−5 5000 5200 5.08 × 10−9

C4 1 1 1 104 4 1 2.6 × 10−4 7 27 600 5.1 × 10−6

C5 1 1 1 105 4 2.3 1.3 × 10−4 20 17 400 5.6 × 10−7

C6 1 1 1 106 4 3.1 7.0 × 10−5 200 10 100 6.0 × 10−8

C7 1 1 1 107 4 3.4 3.9 × 10−5 2100 5700 6.1 × 10−9

D4 1 5 −1 104 2 0.2 3.6 × 10−4 6 31 000 1.1 × 10−5

D5 1 5 −1 105 2 0.8 2.8 × 10−4 7 23 100 1.3 × 10−6

D6 1 5 −1 106 2 1 2.8 × 10−4 80 15 600 1.9 × 10−7

D7 1 5 −1 107 2 1 3.2 × 10−4 700 10100 3.1 × 10−8

E4 −1 3 0/0 104 4 3.0 8.7 × 10−5 6 23 700 4.47 × 10−6

E5 −1 3 0/0 105 4 3.6 5.6 × 10−5 45 14 900 4.47 × 10−7

E6 −1 3 0/0 106 4 3.8 3.9 × 10−5 400 8800 4.47 × 10−8

Notes. The size of the domain ztop and the height of the surface zτ= 1 are in Mm, the density at the surface ρτ= 1 is in g cm−3, the thermal adjustment
time τadjust is in ks, the effective temperature Teff is in K, radiative heat conductivity at the bottom of the domain Kbot is in g cm−3 km3 s−3 Mm K−1

and the normalized opacity κ̃0 = κ0ρa
0T b

0 is in Mm−1 cm3 g−1 are shown for each run. The second to the sixth columns show quantities which are
input parameters to the models whereas the quantities in last five columns are the results of the simulations, computed from the equilibrium state.

Fig. 2. Temperature over height for Run A6 at different times t = 0,
0.01, 0.1, and 0.2 ks, plotted as solid, dotted, dashed and dashed-dotted
lines, respectively. The red dots correspond to the location of τ ≈ 1.

is the optical depth with respect to the surface of the domain. If
the domain is tall enough, one can see that an initially isothermal
stratification cools down first near the location where τ(z) ≈ 1,
which is where the cooling is most efficient. As an example we
plot in Fig. 2 the early stages of the temperature evolution at t =
0, 0.01, 0.1, and 0.2 ks for a taller variant of Run A6 with ztop =
12 Mm using 1024 equally spaced grid points. At t = 0.01 ks,
the temperature starts to decrease at the height where τ ≈ 1,
while in the upper part, which is far enough from the surface,
the temperature remains at first unchanged. Only at a somewhat
later time (t = 0.1 ks) does the temperature at z = 12 Mm start to
decrease. This is explained by the fact that the radiative cooling
rate (or inverse cooling time) is largest near τ = 1 (Spiegel 1957;
Unno & Spiegel 1966; Edwards 1990); see also Appendix A.

3.2. Temperature stratification

For all runs, the temperature reaches an equilibrium state after a
certain time; see Fig. 1. The temperature profile can be divided
into two distinguishable parts, a nearly polytropic part which
starts from the bottom of the domain and extends to a certain
height, and a nearly isothermal part which starts from this height
and extends to the top of the domain. The transition of the tem-
perature from the initial state to the equilibrium state follows a
specific pattern, which is the same for all the runs. The higher
the value of κ̃0, the lower the temperature is in the isothermal
part and the longer it takes to reach this state. Increasing the
normalized opacity κ̃0 by three orders of magnitude results in a
decrease in the temperature by a factor of five for Set A and a
factor of three for Set D. As the exponent b changes from the
smallest value in Set A to the largest one in Set D, the slope of
the temperature decreases with height. This means that the poly-
tropic part of the atmosphere is smaller for larger values of b. We
note that the size of the domain is chosen larger for smaller val-
ues of b. For Sets A, B and C, the temperature in the polytropic
part is almost the same for different values of κ̃0, although for the
lowest value of κ̃0 the temperature deviates somewhat. However,
in Set D, for different values of κ̃0, the slope of the temperature is
different for each value of κ̃0. This has to do with the fact that in
this case with (b − 3)/(1+ a) = −1 the stratification is no longer
a polytropic one. (A polytrope with n = −1 would have constant
pressure, which is unphysical.)

The temperatures in the isothermal part also show a depen-
dency on b. For κ̃0 = 104 Mm−1 cm3 g−1 the surface temperature
in Run A4 is T ≈ 2.2 × 104 K, whereas in Run D4 the value
is T ≈ 2.9 × 104 K. A similar behavior can also be seen for
the other values of κ̃0. Next, we calculate the optical depth for
all runs. We find that the transition point from the polytropic
part to the isothermal part coincides with the τ ≈ 1 surface.

A68, page 5 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322461&pdf_id=2


A&A 571, A68 (2014)

Fig. 3. Density, temperature and entropy of the equilibrium state versus height, from left to right, for Sets A, B, C and D, from top to bottom.
The four different lines in each plot corresponds to the value of the rescaled opacity κ̃0 = 104, 105, 106, 107 Mm−1 cm3 g−1. The dots in all plots
represent the surface τ ≈ 1. The red dashed lines represent the initial profile of each set.

We indicate the surface τ ≈ 1 by dots in all plots in Fig. 3.
The polytropic part corresponds to the optically thick part with
τ > 1 and the isothermal part corresponds to the optically thin
part with τ < 1. For each set, the transition point depends on
the value of κ̃0. As we go from smaller to larger values of κ̃0,
the surface shifts to larger heights and becomes cooler. This is
because the radiative heat conductivity K is inversely propor-
tional to κ̃0 and directly proportional to the flux. Therefore, by
increasing the value of κ̃0, K decreases and, as a consequence,
the radiative flux also decreases. By decreasing the flux, the ef-
fective temperature decreases as Teff ∝ F1/4

rad . This means that the
temperature at the surface is smaller for larger values of κ̃0. For
Set A, the τ ≈ 1 surfaces lie on the polytropic part of the tem-
perature profile. However, by increasing the value of b, the loca-
tions of the τ = 1 surfaces shift toward the lower boundary and
the optically thick part becomes narrower. This is particularly
severe for the solutions with a small value of κ̃0, especially for
κ̃0 = 104 Mm−1 cm3 g−1, when the boundary condition T = Tbot
at z = 0 becomes unphysical and the temperature drops between
the first two meshpoints in a discontinuous fashion; see Fig. 3.

3.3. Entropy stratification

We plot the entropy profiles for all sets of runs in the equilib-
rium state in the last column of Fig. 3. For Runs C6−7 and

D5−7, the entropy decreases in the polytropic part and starts to
increase in the isothermal part. All runs show a positive verti-
cal entropy gradient in the isothermal part. In the lower part,
the entropy gradient is positive (∇zs > 0) for Set A, while for
Set B it is constant and equal to zero (∇zs ≈ 0). This shows
that for Set B, the atmospheres are isentropic. In Sets C and D,
except for the case κ̃0 = 104 Mm−1 cm3 g−1, the entropy gradi-
ent is negative, ∇z s < 0. This means that their atmospheres are
convectively unstable. (Convection will of course not occur in
our one-dimensional model, but we will obtain the so-called hy-
drostatic reference solution that is used to compute the Rayleigh
number, as will also be done later in this paper.) In Set D the en-
tropy gradients are larger than in case C where their atmospheres
are marginally stable. In the isothermal part of Set C, the entropy
gradient is much larger than in Set D. For each set of runs, as we
go from smaller values of κ̃0 to larger ones, the entropy profiles
have larger gradients.

3.4. Incoming and outgoing intensity profiles

It is instructive to inspect the vertical profiles of the intensity for
rays pointing in the up- and downward directions, n̂ = (0, 0,±1),
denoted in the following by I±. If we have just these two rays,
the energy flux is given by Frad = (2π/3)(I+ − I−). In thermal
equilibrium, the difference between I+ and I− must be constant.
This is indeed the case; see Fig. 4, where we plot I+ and I− and
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Fig. 4. Source function and vertical profiles of incoming and outgoing
intensity near the surface for Run A7. The dashed line represents the
source function and the solid lines represent the incoming intensity I+

(red) and outgoing intensity I− (blue). The vertical lines represent the
(constant) difference between I+ and I−.

compare with S . The vertical lines in this figure represents the
difference between I+ and I−, where I+ − I− ≈ 104 erg cm−2 s−1

in the whole domain as we have radiative equilibrium∇ · Frad =
0. Radiative equilibrium also demands that J = S , so S has to
be equal to the average of I+ and I−, which is indeed the case.

3.5. Radiative heat conductivity

In Sets A, B, and C, the value of radiative heat conductivity K
turns out to be constant in the optically thick part of the atmo-
sphere, but not for Set D. The value of K at the bottom of the
optically thick part of the domain is denoted in Table 3 by Kbot,
and agrees roughly with

Kbot ≈ K0 ≡
16σSBT 3

0

3κ̃0ρ0
· (18)

Indeed, for a fixed value of κ̃0, it has even the same order of mag-
nitude for Sets A, B and C, independently of the value of b, but
it is one order of magnitude larger for Set D. This is because in
this set the density is lower in the optically thick part compared
to the other sets. Moreover, as we go from higher values of κ̃0
to the lower ones, the radiative heat conductivity increases. This
can be explained by the inverse proportionality of K with opac-
ity as K ∝ 1/κ̃0. For smaller values of κ̃0, K is larger and vice
versa. As an example, we plot in Fig. 5 the resulting vertical pro-
files of radiative heat conductivity for Set C. We note that K is
constant in the optically thick part and starts to increase in the
optically thin part. In the optically thin part, κρ decreases, so K
increases as K ∝ 1/κρ. To maintain ∇ · Frad = 0, the modulus of
∇T has to decrease. As K increases even further, a thermostatic
equilibrium can be satisfied if ∇T comes close to zero.

3.6. Effective temperature

The effective temperature Teff of all runs is calculated from the
z component of the radiative flux Frad,

Teff =

(Frad

σSB

)1/4

· (19)

The values of Teff of all sets of runs are summarized in Table 3.
By increasing the value of b, Teff also increases. The value of Teff
decreases as we go from lower to higher opacities for each set.

Fig. 5. Radiative heat conductivity K versus height for Set C. K is
plotted for different values of κ̃0 where κ̃0 = 104 Mm−1 cm3 g−1 is
shown by dotted-dashed line, κ̃0 = 105 Mm−1 cm3 g−1 dashed line,
κ̃0 = 106 Mm−1 cm3 g−1 dotted line and κ̃0 = 107 Mm−1 cm3 g−1 solid
line.

Fig. 6. Effective temperature Teff versus rescaled opacity κ̃0 for Sets A,
C, and D. The crosses, circles and stars show the values of Teff for dif-
ferent values of κ̃0 for Sets A, C, and D, respectively. Different lines
correspond to line fit of Teff with normalized opacity κ̃0.

We plot Teff versus κ̃0 in Fig. 6 for Sets A, C and D where the
values of Teff are represented by crosses, circles and stars, re-
spectively. For each set of runs, we fit a line to Teff versus κ̃0. We
find that Teff has a power law relation with κ̃0. The power of κ̃0,
which is the slope of the plot, depends on the polytropic index
and therefore on b. For larger values of b, the power is smaller
than for smaller values of b. Additionally, the offset shows also
a weak dependence on b. A power law relation between Teff and
the opacity of roughly 1/4 can be expected, because of the lin-
ear relation of the radiative flux and the opacity. Toward larger
b, this dependency is no longer accurate. We also calculate for
each run the corresponding optical depth where T = Teff. For all
runs, Teff corresponds to the optical depth τ ≈ 1/3. This is less
than what is expected for a gray atmosphere, where Teff = T at
τ ≈ 2/3. This is presumably because in our integration of τ we
have not included the contribution between∞ and z = ztop.

3.7. Thermal adjustment time

In our simulations we define a thermal adjustment time τadjust as
the time it takes for each run to reach its numerically obtained fi-
nal equilibrium temperature in the isothermal part to within 1%
(see Fig. 7). The unit of τadjust is ks (see Sect. 2.5). The value
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Fig. 7. Temperature T at ztop = 4 Mm versus time t for Run C5. The two
horizontal lines mark the 1% margin around the final value of T and
the vertical line marks the time τadjust ≈ 20 ks after which T lies within
these margins.

Fig. 8. Normalized mean free path of photons 
/L versus height for
Set C. The dots represent the surface τ ≈ 1.

of τadjust for all runs is summarized in Table 3. As we can see
in Table 3, the thermal adjustment time becomes smaller for
larger b and smaller n. For each set of runs, τadjust grows approx-
imately linearly with κ̃0, although for κ̃0 <∼ 105 Mm−1 cm3 g−1,
the dependency is more shallow. For larger values of κ̃0, τadjust
seems to have a stronger dependency on b. We speculate that the
reason for increasing the value of τadjust for higher values of κ̃0
is that by increasing the opacity the energy transport via radia-
tion becomes less efficient as the mean free path of the photon
decreases. But it seems that there exists a threshold of efficiency,
leading to a comparatively long adjustment time for the lowest
values of κ̃0.

We plot the vertical dependence of the mean free path of the
photons 
 = 1/κρ normalized by the size of the domain L for
Set C. As we can see in Fig. 8, the mean free path increases by
several orders of magnitude from the bottom of the domain to the
top. Furthermore, 
 is larger for smaller κ̃0. In the optically thick
part, the difference in 
 is one order of magnitude, which is equal
to a corresponding change in κ̃0. In the optically thin part, the dif-
ference in the values of 
 becomes smaller, as we reach the top of
the domain. For κ̃0 = 107 Mm−1 cm3 g−1, 
 is the smallest and,
at the bottom of the domain, three orders of magnitude smaller
than for κ̃0 = 104 Mm−1 cm3 g−1. Furthermore, 
 is 10 times the
size of the domain for κ̃0 = 104 Mm−1 cm3 g−1, which makes

Fig. 9. Density, temperature, and entropy profiles for Set E (n = 0/0).
Dashed, dotted, and solid lines represent E4, E5, and E6, respectively.
The red dots present the surface of the model where τ = 1.

the cooling more efficient. We would have expected to see a
large change in the mean free path as we go through the sur-
face. Nevertheless, the exponential growth seems to be roughly
the same throughout the domain, at least for the smallest value
of κ̃0.

3.8. Properties of an atmosphere with undefined n

By choosing a = −1 and b = 3, we have a constant heat con-
ductivity K that is independent of density and temperature as the
heat conductivity is given by Eq. (7). The nominal value of n is
given by

n =
3 − 3
1 − 1

=
0
0
· (20)

In this case, since K = const, we expect to have only a polytropic
solution which satisfies the thermostatic equilibrium if ∇zT =
const, but it is then unclear how ρ varies. In Fig. 9, we plot the
profiles of density, temperature and entropy for all three runs of
Set E. The first panel shows that in the optically thick part the
density is nearly the same for the three values of κ̃0, while in the
optically thin part it decreases with increasing κ̃0. For higher val-
ues of κ̃0, the density drops faster than in the case of smaller κ̃0.
In all cases, K is constant in both the optically thick and thin
parts, but an interesting aspect is that its bottom value Kbot is
of the same order of magnitude as in Sets A, B, and C. In the
second panel of Fig. 9, we plot the temperature profiles. As ex-
pected, there is no isothermal part. The slope of temperature de-
creases approximately linearly as we go to higher values of κ̃0,
because K is proportional to 1/κ̃0. Although the solutions show
no transition from the polytropic part to an isothermal one, the
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Fig. 10. b versus a for different values of the polytropic index n.
The black dots represents the combination of a = 1 with different val-
ues of b which are used in the main simulation; see Table 3. The stars
represent the combination of a = 2 and squares represent a = 0.5 with
different values of b; see Table 4.

atmosphere has still a layer where τ = 1, which is shown as red
dots in all panels of Fig. 9. In contrast to the other sets, A, B, C,
and D, the temperature profiles look qualitatively different. As
in Sets A, B, and C, in the optically thick part, the different tem-
perature profiles have nearly the same gradient, while in Set E,
the gradient is different for the three values of κ̃0. This is because
in this case, thermostatic equilibrium is obeyed with a constant
value of K (independent of z).

In the third panel of Fig. 9, we plot entropy profiles for the
three values of κ̃0. In all cases the entropy increases with a slope
that depends on κ̃0. The actual polytropic index can be computed
from the resulting super-adiabatic (or entropy) gradient,

∇ − ∇ad =
d(s/cp)

d ln p
, (21)

where ∇ad = 1 − 1/γ is the adiabatic gradient. This gives ∇,
which is related to the actual n via

nactual =
dlnρ
dlnT

=
dlnp
dlnT

− 1 = ∇−1 − 1, (22)

which follows from the perfect gas relation p ∝ ρT . We note also
that convection is not possible in one dimension, so we obtain
directly the hydrostatic solution, which may be unstable.

By solving Eq. (8) for b, we obtain b = 3 − n(1 + a); see
Fig. 10. We see that for different values of n, the graphs of b
versus a intersect each other at one common point. This corre-
sponds to K = K0 = const.; see Eq. (7). This means that the
solution for constant K can belong to any of these polytropic in-
dexes. For a = −1 and b = 3, in which case n is undefined, the
solutions have a value of nactual that depends on the height of the
domain. Using Eq. (22) together with hydrostatic equilibrium,
dp/dz = −ρg, we find

nactual = g
μ

R
ztop − zbot

Tbot − Ttop
− 1, (23)

so nactual increases as ztop is increased. However, this increase is
partially being compensated by a small simultaneous decrease of
Ttop, which reduces the increase of nactual by about 10% as ztop in-
creases. When the domain is sufficiently thin, the value of nactual
drops below the critical value (γ − 1)−1 = 3/2, so the system

Fig. 11. Temperature gradient (upper panel) and temperature profile
(lower panel) of seven different sizes of the domain z = 3, 4, 5, 6,
7, 8, and 10 Mm of Run A5. We note that the lines for z ≥ 6 all fall on
top of each other.

would be unstable to the onset of convection. We return to the
relation between n and the height of the domain in Sect. 3.12,
where we consider solutions using the optically thick approxi-
mation with a radiative boundary condition at the top.

3.9. Dependence on the size of the domain

In our model, the size of the domain plays an important role in
getting the polytropic and isothermal solutions for the tempera-
ture profile. The domain has to be big enough so that the transi-
tion point lies inside the domain. In Fig. 11, we show the vertical
dependence of temperature for six domain sizes for Run A5. If
the size of the domain is z < 7 Mm, it is too small to yield the
isothermal part where ∇zT = 0 and a boundary layer is pro-
duced. The opacity is then too large to let the heat be radiated
away. A size of around z = 8 Mm is sufficient to get the isother-
mal part. However, a domain size that is too large (z = 10 Mm)
leads to numerical difficulties near the top boundary, especially
if the resolution is too low. For all the runs shown in Table 3,
we have always started by performing several test simulations to
find a suitable domain size.

3.10. Radiative diffusivity

In numerical simulations, the radiative diffusivity χ is an im-
portant parameter, and has the same dimension as the kinematic
viscosity ν. Both χ and ν determine whether the results of nu-
merical turbulence simulations are reliable or not and whether
they are able to dissipate all the energy within the mesh. In a nu-
merical simulation we are restricted to a certain number of grid
points. If the diffusion of the temperature in a simulation is very
small, it can happen that the changes in the temperature are too
large over the distance of neighboring grid points. Hence, the
changes in the temperature cannot be resolved in such a simu-
lation. Therefore, it is important to measure how large are the
thermal diffusivity in our models of a radiative atmosphere. The
Péclet number is a dimensionless number that quantifies the im-
portance of advective and diffusive term, which is here defined as

Pe = urmsHp/χ, (24)
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Fig. 12. P̃e versus z for Set C using different values of κ̃0: κ̃0 =
104 Mm−1 cm3 g−1 (dotted-dashed line), κ̃0 = 105 Mm−1 cm3 g−1

(dashed line), κ̃0 = 106 Mm−1 cm3 g−1 (dotted line) and κ̃0 =
107 Mm−1 cm3 g−1 (solid line).

where Hp is a pressure scale height and urms is rms velocity. The
radiative diffusivity is defined as

χ = K/cpρ, (25)

where K is evaluated using Eq. (7). As we do not solve for a
velocity equation in our model, we use instead the sound speed,
which can be related to urms via the Mach number Ma = urms/cs.
The normalized Péclet number in our simulation P̃e is then
given by

P̃e ≡ Pe/Ma = csHp/χ. (26)

As an example, we plot P̃e for Set C in Fig. 12. As we can see
in Fig. 12, P̃e is a large number for the optically thick part and
it decreases as we go toward the optically thin part. This can
be explained with Eq. (25), where χ is proportional to K. In the
optically thin part, K increases, so χ also increases. As a result,
P̃e decreases. Furthermore, P̃e is larger for the larger value of κ̃0.

The quantity P̃e is a measure of the ratio of Kelvin-
Helmholtz time to the sound travel time, τsound = d/cs. In our
case, τsound ≈ 0.1 ks. Looking at Fig. 12, one sees that P̃e is pro-
portional to κ̃0 and thus proportional to the thermal adjustment
time. P̃e depends on z, but in the middle of the layer at z = 2 Mm
we have P̃e τsound ≈ τadjust. This time is much longer than the re-
sponse time to general three-dimensional disturbances (Spiegel
1987).

3.11. The same polytropic index with different a and b

As we can see in Fig. 10, for a certain value of the polytropic
index, we can choose different combinations of a and b. For
each value of n that we have in Table 3, we choose two dif-
ferent other combinations of a and b with the same value of
κ̃0 = 105 Mm−1 cm3 g−1. For example for the polytropic index
n = 1 we choose two other combinations as a = 0.5 and b = 1.5
for one set and a = 2 and b = 0 for another one (see Table 4).
We run eight more simulations with the same initial conditions
as in previous runs and we obtain a similar equilibrium solution
for the same polytropic index n. We calculate the effective tem-
perature and the position where τ ≈ 1 as reference parameters

Table 4. Summary of the results for different values of a and b with the
same polytropic index n.

Run a b n zτ=1 Teff

F1 0.5 −1.9 3.25 5.3 13 900
F2 1 −3.5 3.25 5.2 13 900
F3 2 −6.75 3.25 5.1 13 400
G1 0.5 0.75 1.5 3.2 16 600
G2 1 0 1.5 2.9 16 300
G3 2 −1.5 1.5 2.7 16 100
H1 0.5 1.5 1 2.6 17 100
H2 1 1 1 2.3 17 500
H3 2 0 1 2.1 18 100
I1 0.5 4.5 −1 1.1 21 800
I2 1 5 −1 0.8 23 100
I3 2 6 −1 0.6 23 700

Notes. zτ=1 is the position of τ ≈ 1 in Mm and Teff is in K. For all the
runs, κ̃0 = 105 Mm−1 cm3 g−1.

Fig. 13. Profile of T and χ for Set H. In the upper panel, the red dots
denote the locations of τ = 1.

with our old runs. The results are summarized in Table 4. For
each set of runs with the same polytropic index, we labeled the
runs similarly to those in Table 3.

As we see in Table 4, for each set of runs the effective tem-
perature does not vary strongly, but there is a systematic behav-
ior. By increasing the value of a, the effective temperature in-
creases when n < 3/2 and decreases when n ≥ 3/2, but the
surface is shifted to the lower part of the domain for all sets.
The stratification of temperature and other important properties
of these atmospheres can be explained analogously to those of
Sets A, B, C and D. As an example, we plot in Fig. 13 the tem-
perature profiles (upper panel) and radiative diffusivity χ (lower
panel) for Set H. In the optically thick part, χ is the same for
different combinations of a and b for the same n. However, in
the optically thin part, χ becomes larger for larger values of a.
This can be explained using Eqs. (7) and (25) to show that in the
upper isothermal part, χ increases with decreasing ρ like ρ−(a+2).
Thus, we can conclude that, even though χ is the same and the
solution similar to the optically thick part, there are differences
in the optically thin part.
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3.12. Optically thick case with radiative boundary

To compare our results with those in the optically thick approx-
imation, we adopt the radiative boundary condition,

−K
dT
dz
= σSBT 4 on z = ztop, (27)

and keep all other conditions the same as in the radiative transfer
calculation, except that −∇ ·Frad in Eq. (3) is replaced by K∇2T .
Here, we have assumed K to be constant, so we shall from now
on refer to its value as K0, so our solutions will be polytropes
with constant polytropic index n = dlnρ/dlnT and constant
double-logarithmic temperature gradient ∇ = dlnT/dlnp.

The value of ∇ = 1/(1 + n) can be computed from the equa-
tions governing hydrothermal equilibrium,

dp
dz
= −ρg, dT

dz
= −Frad

K0
, (28)

which yields

∇ = dlnT
dlnp

=
p

Tρ
Frad

gK0
= ∇adcp

Frad

gK0
· (29)

Such a model is characterized by choosing values for n and K0.
This is analogous to the case with radiative transfer, where n
and κ̃0 are specified, and κ̃0 is related to K0 via Eq. (18). Here,
it is convenient to define a non-dimensional radiative conductiv-
ity as

K = gK0

cpσSBT 4
bot

∇
∇ad
· (30)

The radiative flux is then given by

Frad = K0
g

cp

∇
∇ad
= KσSBT 4

bot, (31)

so we get the temperature at the top immediately as

Ttop = (Frad/σSB)1/4 = K1/4Tbot. (32)

Since the temperatures at top and bottom are now known, the
thickness of the layer cannot be chosen independently and is in-
stead given by

d = (Tbot − Ttop) K0/Frad =
cp (Tbot − Ttop)

g∇/∇ad
, (33)

which is equivalent to Eq. (23) used before. Again, the fact that
the value of d cannot be chosen independently is analogous to
the case with radiative transfer, where the thickness of the opti-
cally thick layer with nearly constant K emerges as a result of
the calculation. In Table 5 we present models for the same pa-
rameters as in Table 3, where Teff = Ttop in the optically thick
model. In agreement with our radiative transfer calculations, we
have here treated κ̃0 (instead of K) as our main input parameter
(in addition to n). We have used Eq. (18) to convert κ̃0 into K0
and then used Eq. (30) to compute K . It turns out that there is
good agreement regarding the values of d, ρtop, and Ttop between
the optically thick approximation using a radiative upper bound-
ary condition and the radiative transfer calculations. However,
unlike Fig. 6, the data in Table 5 show power law dependence
of Teff versus κ̃0 with the same exponent of 1/4 in all cases. To
characterize the strength of density and temperature stratifica-
tion, we also list the ratios ρbot/ρtop and the ratio of the pressure
scale height at the top to the thickness of the layer, ξ = Htop

p /d.

Table 5. Summary of model parameters as a function of n and κ̃0 as
obtained from the optically thick approximation with radiative upper
boundary condition.

n κ̃0 d ρtop Ttop ξ ρbot/ρtop

3.25 104 3.09 8.3 × 10−5 24 600 0.40 4.5
3.25 105 5.40 1.3 × 10−5 13 800 0.13 28.9
3.25 106 6.70 2.1 × 10−6 7800 0.06 187
3.25 107 7.44 3.2 × 10−7 4400 0.03 1220

1.50 104 1.37 2.2 × 10−4 28 100 1.04 1.6
1.50 105 2.93 8.9 × 10−5 15 800 0.27 3.9
1.50 106 3.80 3.8 × 10−5 8900 0.12 9.2
1.50 107 4.30 1.6 × 10−5 5000 0.06 21.8

1.00 104 0.94 2.8 × 10−4 29 700 1.61 1.3
1.00 105 2.25 1.4 × 10−4 16 700 0.38 2.3
1.00 106 2.99 8.0 × 10−5 9400 0.16 4.1
1.00 107 3.41 4.5 × 10−5 5300 0.08 7.4

Notes. The units of dimensional quantities are [κ̃0] = Mm−1 cm3 g−1,
[d] = Mm, [ρtop] = g cm−3, and [T ] = K.

As expected, smaller values of ξ are reached by increasing the
value of κ̃0, but even for κ̃0 = 107 Mm−1 cm3 g−1 the smallest
values of ξ are 0.03 for n = 3.25 and 0.08 for n = 1.

We emphasize that the only place where the choice of den-
sity enters our calculation is in Eq. (18) when we convert κ̃0 into
K0. As already indicated at the end of Sect. 2.5, an increase of ρ0
by some factor is equivalent to an increase of κ̃0 by the same fac-
tor. We note here that ρ0 enters both as the initial density at the
bottom and in the definition of opacity through Eq. (16). The lat-
ter ensures that the opacity only changes through changes in κ̃0,
and not also through changes in ρ0.

3.13. Convection

We now consider two-dimensional convection and compare
again results from the optically thick approximation using a ra-
diative upper boundary condition with a calculation using ra-
diative transfer. The control parameter characterizing onset and
amplitude of convection is the Rayleigh number,

Ra =
gd4

νχmid

(
−ds/cp

dz

)
mid

, (34)

where (−c−1
p ds/dz)mid = (∇ − ∇ad)/Hmid

p is the superadiabatic
gradient of the unstable, non-convecting hydrostatic reference
solution, and Hmid

p = ∇adcpTmid/g is the pressure scale height in
the middle of the optically thick layer. Furthermore, we define
the Prandtl number as Pr = ν/χmid, where ν is assumed to be
constant and χmid is the radiative diffusivity in the middle of the
optically thick layer; see Appendix B for details and an example.
In Table 6 we list the values of the product Pr Ra, as well as d and
χmid for models with n = 1 and different values of K . We adopt
periodic boundary condition in the x direction over a domain
with side length Lx. When we adopt the diffusion approximation
we take ztop = d, where d is calculated from Eq. (33) and given
in Table 6. The mid-layer is then at z = d/2, which is also the
case when using radiative transfer, where the value of ztop (> d)
was chosen to be sufficiently large and a = b = 1 is chosen to
yield n = 1 (see Table 3).

We determine the critical value for the onset of convection
by calculating the rms velocity in the domain, urms, for differ-
ent values of K and extrapolate to urms → 0. For the final to
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Fig. 14. Comparison of velocity and entropy distribution in two-dimensional convection using the optically thick approximation with a radiative
upper boundary condition (upper panel) and radiative transfer (lower panel). In both cases we have Pr = 100 and K = 0.01, corresponding to
Ra = 3.6 × 104. In the lower panel, the dashed line gives the contour τ = 1. In order to compare similar structures in the two plots, we have
extended the color table of the lower panel to slightly more negative values of s and have clipped it at high values, which are dominated by the
strong increase of s above the τ = 1 surface.

Table 6. Summary of model parameters as a function of K for n = 1.

K Pr Ra d χmid K0 κ̃0

5 × 10−1 7.5 × 100 0.63 5.6 × 10−1 6.6 × 10−6 6.8 × 103

2 × 10−1 7.1 × 102 1.31 2.6 × 10−1 2.6 × 10−6 1.7 × 104

1 × 10−1 7.7 × 103 1.73 1.4 × 10−1 1.3 × 10−6 3.4 × 104

5 × 10−2 5.9 × 104 2.08 7.7 × 10−2 6.6 × 10−7 6.8 × 104

2 × 10−2 6.6 × 105 2.46 3.3 × 10−2 2.6 × 10−7 1.7 × 105

1 × 10−2 3.6 × 106 2.70 1.8 × 10−2 1.3 × 10−7 3.4 × 105

5 × 10−3 1.9 × 107 2.89 9.1 × 10−3 6.6 × 10−8 6.8 × 105

2 × 10−3 1.5 × 108 3.11 3.8 × 10−3 2.6 × 10−8 1.7 × 106

1 × 10−3 6.9 × 108 3.24 1.9 × 10−3 1.3 × 10−8 3.4 × 106

5 × 10−4 3.1 × 109 3.35 9.9 × 10−4 6.6 × 10−9 6.8 × 106

2 × 10−4 2.2 × 1010 3.47 4.1 × 10−4 2.6 × 10−9 1.7 × 107

1 × 10−4 9.5 × 1010 3.55 2.1 × 10−4 1.3 × 10−9 3.4 × 107

Notes. The values discussed and used in this paper are shown in bold
face and are valid for any value of Pr. The units are [d] = Mm, [χmid] =
Mm km s−1, [K0] = g cm−3 km3 s−3 Mm K−1, and [κ̃0] = Mm−1 cm3 g−1.

initial bottom density ratio, ρbot/ρ0, we use Eq. (C.5) derived
in Appendix C. Since K is proportional to χ and χmid, we can
compute the product Pr Ra using Eq. (34). It turns out that for
Pr = 1, the critical value is at K >∼ 0.2 (corresponding to
Ra <∼ 710) in the optically thick approximation. This corre-
sponds to κ̃0 = 1.7 × 104 Mm−1 cm3 g−1, which is too small to
obtain a proper polytropic lower part. Therefore we choose in the
following Pr = 100, in which cases the critical value for the on-
set of convection is at K >∼ 0.02 (corresponding to Ra <∼ 6600).

In the following, we take K = 0.01, so Ra = 3.6 × 104,
d = 2.70 Mm, ν = 1.8 Mm km s−1 (corresponding to ν = 1.8 ×
1013 cm2 s−1), and κ̃0 = 3.4 × 105 Mm−1 cm3 g−1; see the sixth
row of Table 6. We choose Lx = 14 Mm, which is large enough to
accommodate two convection cells into the domain; see Fig. 14.
The τ = 1 surface in the radiative transfer calculation agrees

approximately with the height expected from the optically thick
models using a radiative upper boundary condition. The flow is
only weakly supercritical and therefore not very vigorous, which
is also reflected by the fact that the τ = 1 surface is nearly flat. In
the radiative transfer calculation, the specific entropy increases
sharply with height above the τ = 1 surface. We note also that
the characteristic narrow downdrafts of the optically thick cal-
culation are now much broader when radiation transfer is used.
Furthermore, the expected entropy minimum near the surface is
virtually absent in the latter case; see also the middle panel of
Fig. 15. This is because near z = d, the local value of χ is rather
large (see the lower panel of Fig. 13), so the thickness of the
thermal boundary layer becomes comparable to d itself.

In the model using the diffusion approximation, the temper-
ature variations are much larger than in the model with radia-
tive transfer; see Fig. 15. In the latter case, the velocities over-
shoot into the upper stably stratified layer, and the downflows
are much broader and therefore slower than in the diffusion
approximation.

It turns out that the solution with radiative transfer shown
in Fig. 14 is quasi-stable until about 350 ks (≈4 days) and then
switches into a single-cell configuration with a fairly isolated up-
draft; see Fig. 16. We have seen similar behavior in other cases
with radiation too, and it is possible that this is a consequence of
our setup. Firstly, the restriction to two-dimensional convection
is a serious artifact. Secondly, the assumption of a fixed temper-
ature at the bottom was a mathematical convenience, but it is not
physical motivated.

4. Increasing the density contrast

As alluded to in the introduction, the inclusion of the physics of
radiation implies the occurrence of σSB as an additional physical
constant that couples the resulting temperature and density
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Fig. 15. Comparison of vertical temperature, entropy, and velocity pro-
files at different x positions for the model shown in Fig. 14. The black
dotted lines refer to the run with diffusion approximation and radiative
upper boundary condition and the red solid lines to the run with radia-
tive transfer.

Fig. 16. Similar to the lower panel of Fig. 14, but at a later time (t =
500 ks), when the solution has switched into a single-cell configuration.

contrasts to changes in the Rayleigh number. Given that we have
already made other simplifications such as the negligence of hy-
drogen ionization, we end up with rather small density contrasts
of less than ten when n = 1, as seen in Table 5. By considering
σSB an adjustable parameter, we can alleviate this constraint. We
demonstrate this in Table 7, where we increase the value of σSB
from its physical value of 5.67 × 10−20 g cm−3 km3 s−3 K−4 by
eight orders of magnitude, keeping however K0 fixed. We have
chosen here K0 = 1.3 × 10−7 = g cm−3 km3 s−3 Mm K−1, which
corresponds to the model in the sixth row of Table 6. Since σSB
enters the definition of K , its value is now no longer the same,
even though K0 is. The Rayleigh numbers change slightly, be-
cause they depend on the values of density and temperature in
the middle of the domain, which do of course change.

Large density contrasts are one of the important ingredients
in modeling the physics of sunspot formation by surface effects

Table 7. Density contrast and other model parameters as a function of
σSB for n = 1 and K0 = 1.3 × 10−7.

σSB Pr Ra d χmid ρbot/ρtop κ̃0

5.67 × 10−20 3.63 × 106 2.70 1.8 × 10−2 3.2 3.4 × 105

5.67 × 10−18 9.45 × 106 3.55 2.1 × 10−2 10.0 3.4 × 107

5.67 × 10−16 1.23 × 107 3.82 2.2 × 10−2 31.6 3.4 × 109

5.67 × 10−14 1.33 × 107 3.90 2.2 × 10−2 100.0 3.4 × 1011

5.67 × 10−12 1.36 × 107 3.93 2.2 × 10−2 316.2 3.4 × 1013

Notes. The units are [σSB] = g cm−3 km3 s−3 K−4, [d] = Mm, [χmid] =
Mm km s−1, and [κ̃0] = Mm−1 cm3 g−1.

such as the negative effective magnetic pressure instability; see
Brandenburg et al. (2013) for a recent model. Including radiation
into such still rather idealized models and to study the relation
to other competing or corroborating mechanisms such as the one
of Kitchatinov & Mazur (2000) was indeed an important moti-
vation behind the work of the present paper.

5. Conclusions

The inclusion of radiative transfer in a hydrodynamic code pro-
vides a natural and physically motivated way of placing an up-
per stably stratified layer on top of an optically thick layer that
may be stably or unstably stratified, which of the two depends
on the opacity. Using a Kramers-like opacity law with freely ad-
justable exponents on density and temperature yields polytropic
solutions for certain combinations of the exponents a and b. The
prefactor in the opacity law determines essentially the values of
the Péclet and Rayleigh numbers. However, in contrast to earlier
studies of convection in polytropic layers, the temperature con-
trast is no longer a free parameter and increases with increasing
Rayleigh number – unless one considers the Stefan-Boltzmann
“constant” as an adjustable parameter. The physical values of the
prefactor on the opacity are much larger than those used here, but
larger prefactors lead to values of the radiative diffusivity that
become eventually so small that temperature fluctuations on the
mesh scale cannot be dissipated by radiative diffusion. In previ-
ous work (Nordlund 1982; Steffen et al. 1989; Vögler et al. 2005;
Heinemann et al. 2007; Freytag et al. 2012), this problem has
been avoided by applying numerical diffusion or using numeri-
cal schemes that dissipate the energy when and where needed.
However, this may also suppress the possibility of physical in-
stabilities that we are ultimately interested in. This motivates the
investigation of models with prefactors in the Kramers opacity
law that are manageable without the use of numerical procedures
to dissipate energy artificially.

It turns out that in all cases with a and b such that n > −1, the
stratification corresponds to a polytrope with index n below the
photosphere and to an isothermal one above it. This was actually
expected given that such a solution has previously been obtained
analytically in the special case of constant κ (corresponding to
a = b = 0); see Spiegel (2006). On the other hand, the isothermal
part was apparently not present in the simulations of Edwards
(1990).

Contrary to the usual polytropic setups (e.g., Brandenburg
et al. 1996), the temperature contrast is now no longer an inde-
pendent parameter but it is tied essentially to the Rayleigh num-
ber. Significant temperature contrasts can only be achieved at
large Rayleigh numbers, which corresponds to a large prefac-
tor in front of the opacity. While this aspect can be reproduced
already with polytropic models using the radiative boundary
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conditions, there are some surprising differences between the
two. Most important is perhaps the fact that the specific en-
tropy must increase above the unstable layer, while with a radia-
tive boundary condition the specific entropy always decreases.
Although the differences in the resulting temperature profiles are
small, there are major differences in the flows speeds in the two
cases. We also find that at late times the convection cells in sim-
ulations with full radiative transport tend to merge into larger
ones. Whether or not this is an artefact of our restriction to two-
dimensional flows remains open. In this connection, we should
also point out the presence of a geometric correction factor in
front of the radiative heating and cooling term in Eq. (15) that
is needed to reproduce the correct cooling rate, but it does not
affect the steady state solution.

Comparing with realistic simulations of the Sun, there is not
really an isothermal part, but a pronounced sudden drop in tem-
perature followed by a continued decrease in temperature (see,
e.g., Stein & Nordlund 1998). On the other hand, in our simu-
lations there is no jump in the temperature profile near the sur-
face and the atmosphere changes smoothly from polytropic to
isothermal. We suspect that the reason for this difference is that
in our models ionization effects are ignored, while in the solar
atmosphere the degree of ionization of hydrogen increases with
depth. In the Sun, the density decreases significantly from the
upper part of the convection zone as we go to the photosphere.
This makes the opacity smaller and the atmosphere in the photo-
sphere becomes transparent. At the height where the ionization
temperature of hydrogen is reached, the H− opacity becomes
important, which is not included in our simulations. The radia-
tive heat conductivity in our simulations is found to be constant
throughout the optically thick part and then increases sharply
in the optically thin part. Solving this in the optically thick ap-
proximation, which has sometimes been done, becomes compu-
tationally expensive and even unphysical, so radiative transfer
becomes a viable alternative for studying layers that are other-
wise polytropic in the lower part of the domain.
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Appendix A: Cooling rate and correction factor

The purpose of this appendix is to show that for one-dimensional
temperature perturbations, the correct cooling rates are obtained
with just two rays if the D/3 correction factor in Eq. (15) is
applied. Similar considerations apply also to the case of two-
dimensional problems. Cooling rates are important for under-
standing temporal aspects such as the approach to the final state
(Sect. 3.1) or the thermal adjustment time (Sect. 3.7). Thus, the
equilibrium solutions discussed in the other sections are not af-
fected by the following considerations.

The source of the problem lies in the fact that the 4π angu-
lar integration in Eq. (4) becomes inaccurate in one dimension
and dependent on the optical thickness. In the optically thick
regime, the diffusion approximation holds, so the cooling rate
is proportional to K, which has a 1/3 factor in Eq. (7). In one
dimension, one uses only the two rays in the vertical direction,
so one misses the 1/3 factor and has to apply it afterwards to
account for the “redundant” rays in the other two coordinate di-
rections that show no variation. This is what is done in Eq. (15).
However, in the optically thin limit, the mean free path becomes
infinite and cooling is now possible in all three directions. In
that case, the one-dimensional approximation is not useful. To
explain this in more detail, we begin by considering first the
general case of three-dimensional perturbations with wavevec-
tor k (Spiegel 1957). In that case, one can use the Eddington
approximation to solve the transfer equation for the mean inten-
sity, J =

∫
I dΩ/4π,

1
3 (
∇)2J = J − S , (A.1)

so the cooling rate (for three-dimensional perturbations) is
(Unno & Spiegel 1966; Edwards 1990)

λ3D =
16σSBT 3

ρcp

κρk2

3κ2ρ2 + k2
· (A.2)

It is convenient to introduce here a photon diffusion speed as

cγ = 16σSBT 3/ρcp (A.3)

and to write Eq. (A.2) in the form

λ3D =
cγ
k2/3

1 + 
2 k2/3
, (A.4)

where cγ
/3 = χ is the radiative diffusivity, as defined in
Eq. (25), and 
 = 1/κρ is the local mean-free path of photons.

Solving Eq. (5) for two rays corresponds to solving Eq. (A.1)
without the 1/3 factor. We would then obtain Eq. (A.4) without
the two 1/3 factors. This would evidently violate the well-known
cooling rate χk2 in the optically thick limit, but in the optically
thin limit it would be in agreement with Eq. (A.4), because the
two 1/3 factors would cancel for large values of 
. However,
we have to remember that temperature perturbations are here as-
sumed one-dimensional, so the intensity can only vary in the
z direction, while the rays still go in all three directions. This
means that under the sum in Eq. (15) only one third of the I − S
terms give a contribution, and that the cooling rate is therefore

λ1D =
cγ
k2

z /3

1 + 
2k2
z
, (A.5)

which has now only a single 1/3 factor. Likewise, if we had
two-dimensional perturbations such as in two-dimensional con-
vection considered in Sect. 3.13, only 2/3 of the terms un-
der the sum in Eq. (15) would contribute. However, in a two-
dimensional radiative transfer calculation, the additional 1/3

Fig. A.1. Dependence of the cooling rates computed from models with
different values of κ̃0 (from 102 to 105 Mm−1 cm3 g−1) and kz (=1, 2, and
4 indicated by diamonds, triangles, and squares, respectively). 2D mod-
els with four and eight rays are indicated by crosses and circles, respec-
tively, while 3D models with six rays are shown as plus signs. The red
solid line corresponds to Eq. (A.5), the dashed blue line to Eq. (A.4),
and the dotted line with open circles to the case without correction
factor.

would be absent, which explains the D/3 correction factor with
D = 2 in this case.

We have verified that with the correction factor in place, the
code now yields the same cooling rates in both the optically thick
and thin regimes, regardless of the numbers of rays used. This
is shown in Fig. A.1, where we plot cooling rates for different
values of κ̃0 in a domain of size 2π (in Mm), so the smallest
wavenumber is 1 Mm−1. With ρ = 4 × 10−4 g cm−3 the photon
mean-free path varies from 0.025 to 25 Mm as κ̃0 is decreased
from 105 to 102 Mm−1 cm3 g−1. For the Kramers opacity, we
use the exponents a = 1 and b = 0. (No gravity is included here,
so there would be no convection.) The temperature is 38, 968 K,
as before, which yields cγ = 3.87 km s−1 for the photon diffu-
sion speed. There is excellent agreement between 1D cases with
correction factor and the 3D calculation (with one-dimensional
perturbation). However, the 2/3 correction factor in the 2D calcu-
lation (both with four and with eight rays) seems to be system-
atically off and should instead by around 0.8 for better agree-
ment. However, as discussed before, the correction factor does
not affect the steady state and therefore also not the results pre-
sented in Sect. 3.13. The diffusion approximation would imply
λ = (cγk/3)
k = χk2, which corresponds to the diagonal in
Fig. A.1 and agrees with the red solid line for 
k <∼ 0.5.

For three-dimensional perturbations, the correct cooling rate
in the optically thin regime is three times faster than for one-
dimensional perturbations. This is because now the radiation
goes in all three directions. Solutions to three-dimensional per-
turbations clearly cannot be reproduced in less than three dimen-
sions. However, for one-dimensional perturbations, the correct
cooling rate is now obtained with a one-dimensional calculation
both in the optically thin and thick regimes.

Appendix B: Expressions for Pr Ra and χmid

In Table 6 we listed the values of Pr Ra and χmid in the middle of
the layer. The purpose of this appendix is to give the explicit ex-
pressions and to demonstrate the calculation with the help of an
example. Since n = 1 was assumed, we have∇ = (1+n)−1 = 1/2.
Considering the case K = 0.01, Eqs. (31)−(33) yield Frad =
0.00131 g cm−3 km3 s−3, Ttop = 12 320 K, and d = 2.70 Mm.
Next, given that the temperature varies linearly, we compute the
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mid-layer temperature as Tmid =
1
2 (Ttop + Tbot) = 25 600 K.

This allows us to compute ρmid = ρbot (Tmid/Tbot)n = 2.2 ×
10−4 g cm−3, where ρbot = 3.3 × 10−4 g cm−3 is smaller than
ρ0 by a factor ρbot/ρ0 = 0.83; see Appendix C. Thus, χmid =
Frad/(ρmidg∇/∇ad) = 0.0175 Mm km s−1, as well as Hmid

p =

∇adcpTmid/g = 1.30 Mm. This yields Pr Ra = gd4/χ2
mid(∇ −

∇ad)/Hmid
p = 3.6 × 106, where ∇ − ∇ad = 0.1.

Appendix C: Final to initial bottom density ratio

Initially, the stratification is isothermal, so the density is given
by ρ(z) = ρ0 exp(−z/Hbot

p ) and the initial surface density is

Σini =

∫ d

0
ρ(z) dz = ρ0Hbot

p

[
1 − exp(−d/Hbot

p )
]
. (C.1)

In the final state, the stratification is polytropic, so the density is
given by ρ(z) = ρbot[T (z)/Tbot]n and the surface density is

Σfin = ρbot

∫ d

0

[
T (z)
Tbot

]n dz
dT

dT. (C.2)

Here, ρbot is the bottom density of the final state, which is differ-
ent from the initial value ρ0, as explained in Sect. 2.6. Integrating
Eq. (C.2) and using dz/dT = K0/Frad from Eq. (28) yields

Σfin =
ρbot

n + 1

⎡⎢⎢⎢⎢⎢⎣1 −
(
Ttop

Tbot

)n+1⎤⎥⎥⎥⎥⎥⎦ K0Tbot

Frad
· (C.3)

Using Eq. (29) together with ∇ = 1/(1 + n) and Hbot
p =

∇adcpTbot/g, we have

Σfin = ρbotH
bot
p

⎡⎢⎢⎢⎢⎢⎣1 −
(
Ttop

Tbot

)n+1⎤⎥⎥⎥⎥⎥⎦ · (C.4)

Using mass conservation, we have Σfin = Σini, so we obtain from
Eqs. (C.1) and (C.4)

ρbot

ρ0
=

1 − e−d/Hbot
p

1 − (Ttop/Tbot)n+1
· (C.5)

for the final to initial bottom density ratio.
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