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ABSTRACT

Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the
domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the
Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce
many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height
as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations
of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots.
Aims. We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is.
Methods. We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic
flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field.
Results. Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength
of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar
to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach
numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough.
Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing
the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies
comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being ≤1%
equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of
the instability.
Conclusions. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow
from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.
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1. Introduction

Sunspots and active regions are generally thought to be the re-
sult of magnetic fields emerging from deep at the bottom of the
solar convection zone (Fan 2009). Alternatively, solar magnetic
activity may be a shallow phenomenon (Brandenburg 2005).
Several recent simulations with realistic physics of solar turbu-
lent convection with radiative transfer have demonstrated the ap-
pearance of magnetic flux concentrations either spontaneously
(Kitiashvili et al. 2010; Stein & Nordlund 2012) or as a re-
sult of suitable initial conditions (Cheung et al. 2010; Rempel
2011). There is also the phenomenon of magnetic flux expul-
sion, which has been invoked as an explanation of the segre-
gation of magneto-convection into magnetized, non-convecting
regions and non-magnetized, convecting ones (Tao et al. 1998).

The magneto-hydrothermal structure of sunspots has been
studied using the thin flux tube approximation (Spruit 1981), in
which the stability and buoyant rise of magnetic fields in the
solar convection zone has been investigated. This theory has
been also applied to vertical magnetic flux tubes, which open

up toward the surface. An important property of such tubes is the
possibility of thermal collapse, caused by an instability that leads
to a downward shift of gas and a more compressed magnetic field
structure; see Spruit (1979), who adopted a realistic equation of
state including hydrogen ionization. On the other hand, sunspot
simulations of Rempel (2011) and others must make an ad hoc
assumption about converging flows outside the tube to prevent it
from disintegrating due to turbulent convection. This approach
also does not capture the generation process, that is now implic-
itly seen to operate in some of the simulations of Kitiashvili et al.
(2010) and Stein & Nordlund (2012).

To understand the universal physical mechanism of mag-
netic flux concentrations, which has been argued to be a min-
imal model of magnetic spot formation in the presence of a
vertical magnetic field (Brandenburg et al. 2013), we consider
here forced turbulence in a strongly stratified isothermal layer
without radiation. In the past few years, there has been signif-
icant progress in modelling the physics of the resulting mag-
netic flux concentrations in strongly stratified turbulence via the
negative effective magnetic pressure instability (NEMPI). The
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physics behind this mechanism is the suppression of total (hy-
drodynamic plus magnetic) turbulent pressure by a large-scale
magnetic field. At large enough magnetic Reynolds numbers,
well above unity, the suppression of the total turbulent pressure
can be large, leading to a negative net effect. In particular, the
effective magnetic pressure (the sum of non-turbulent and turbu-
lent contributions) becomes negative, so that the large-scale neg-
ative effective magnetic pressure instability is excited (Kleeorin
et al. 1989, 1990, 1993, 1996; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007).

Hydromagnetic turbulence has been studied for decades
(Biskamp 1993), but the effects of a large-scale magnetic field
on the total pressure are usually ignored, because in the incom-
pressible case the pressure can be eliminated from the problem.
This changes when there is gravitational density stratification,
even in the limit of small Mach number, because ∇ · ρU = 0
implies that ∇ · U = Uz/Hρ � 0. Here, U is the velocity,
Hρ = |d lnρ/dz|−1 is the density scale height, and gravity points
in the negative z direction. When domain size and gravitational
stratification are big enough, the system can become unstable
with respect to NEMPI, which leads to a spontaneous accumula-
tion of magnetic flux. Direct numerical simulations (DNS) with
large scale separation have been used to verify this mechanism
for horizontal magnetic fields (Brandenburg et al. 2011; Kemel
et al. 2012a, 2013). In that case significant progress has been
made in establishing the connection between DNS and related
mean-field simulations (MFS). Both approaches show that the
resulting magnetic flux concentrations are advected downward
in the nonlinear stage of NEMPI. This is because the effective
magnetic pressure is negative, so when the magnetic field in-
creases inside a horizontal flux structure, gas pressure and den-
sity are locally increased to achieve pressure equilibrium, thus
making the effective magnetic buoyancy force negative. This
results in a downward flow (“potato-sack” effect). Horizontal
mean magnetic fields are advected downward by this flow and
never reach much more than a few percent of the equipartition
field strength.

The situation is entirely different for vertical magnetic fields.
The downflow draws gas downward along magnetic field lines,
creating an underpressure in the upper parts, which concentrates
the magnetic field to equipartition field strength with respect to
the turbulent kinetic energy density (Brandenburg et al. 2013).
The resulting magnetic flux concentrations have superficially
the appearance of sunspots. For horizontal fields, spots can also
form and they have the appearance of bipolar regions, as has
been found in simulations with a coronal layer above a turbu-
lent region (Warnecke et al. 2013). However, to address the ex-
citing possibility of explaining the occurrence of sunspots by
this mechanism, we need to know more about the operation of
NEMPI with a vertical magnetic field. In particular, we need to
understand how it is possible to obtain magnetic field strengths
much larger than the optimal magnetic field strength at which
NEMPI is excited. We will do this through a detailed examina-
tion of magnetic flux concentrations in MFS, where the origin of
flows can be determined unambiguously owing to the absence of
the much stronger turbulent convective motions.

We complement our studies with DNS and so-called “im-
plicit large-eddy” simulations (ILES), which are comparable to
DNS in that they aim to resolve the inertial range of the forced
turbulence. ILES differ from DNS in that one does not attempt
to resolve the dissipation scale, which is numerically expensive
due to resolution requirements. In short, ILES are DNS without
explicit physical dissipation coefficients. However, unlike large-
eddy simulations, no turbulence parameterization model is used

at all to represent the unresolved scales. Lacking explicit dissi-
pation, ILES instead rely on suitable properties of the trunca-
tion error of the numerical scheme (Grinstein et al. 2005), which
guarantees that kinetic and magnetic energies are dissipated near
the grid scale. In the finite-volume code Nirvana (Ziegler 2004)
that we use for ILES here, dissipation occurs in the averaging
step of the Godunov scheme. The advantage of the finite-volume
scheme is the ability to capture shocks without explicit or artifi-
cial viscosity. This allows us to probe the regime of higher Mach
numbers without the requirement to adjust the Reynolds number
or grid resolution.

Following earlier work of Brandenburg et al. (2011), we will
stick to the simple setup of an isothermal layer. This is not only
a computational convenience, but it is also conceptually signif-
icant, because it allows us to disentangle competing explana-
tions for sunspot and active region formation. One of them is the
idea that active regions are being formed and held in place by
the more deeply rooted supergranulation network at 20−40 Mm
depth (Stein & Nordlund 2012). In a realistic simulation there
will be supergranulation and large-scale downdrafts, but NEMPI
also produces large-scale downdrafts in the nonlinear stage of
the evolution. However, by using forced turbulence simulations
in an isothermal layer, an explanation in terms of supergranula-
tion would not apply.

We emphasize that an isothermal layer can be infinitely
extended. Furthermore, the stratification is uniform in the
sense that the density scale height is independent of height.
Nevertheless, the density varies, so the equipartition magnetic
field strength also varies. Therefore, the ratio of the imposed
magnetic field strength to the equipartition value varies with
height. NEMPI is excited at the height where this ratio is
around 3% (Losada et al. 2013). This explains why NEMPI can
be arranged to work at any field strength if only the domain is
tall enough.

At large domain size, DNS and ILES become expensive and
corresponding MFS are an ideal tool to address questions con-
cerning the global shape of magnetic flux concentrations. In that
case, significant conceptual simplifications can be achieved by
making use of the axisymmetry of the resulting magnetic flux
concentrations. We also need to know more about the operation
of NEMPI under conditions closer to reality. For example, how
does it operate in the presence of larger gravity, larger Mach
numbers, and smaller scale separation? This aspect is best be-
ing addressed through ILES, where significant dissipation only
occurs in shocks.

We consider three-dimensional (3D) domains and compare
in some cases with MFS in two-dimensions (2D) using axisym-
metry or Cartesian geometry. Here, axisymmetry is adequate for
vertical tubes while Cartesian geometry is adequate for vertical
sheets of horizontal magnetic field. The MFS provide guidance
that is useful for understanding the results of DNS and ILES,
so in this paper we begin with MFS, discuss the mechanism of
NEMPI and then focus on the dependencies on gravity, scale
separation, and Mach numbers using DNS. Finally, we assess
the applicability of NEMPI to sunspot formation.

2. Mean-field study of NEMPI

For the analytical study of NEMPI with a vertical field we
consider the equations of mean-field MHD for mean magnetic
field B, mean velocity U, and mean density ρ in the anelastic
approximation for low Mach numbers, and for large fluid and
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magnetic Reynolds numbers,

∂B
∂t
= ∇ ×

(
U × B − ηtμ0 J

)
, (1)

ρ
DU
Dt
= −∇ptot + μ

−1
0 (B · ∇)B + ρg − νtρQ, (2)

0 = −∇ · ρU, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, ptot =
p + peff is the mean total pressure, p is the mean gas pressure,

peff = (1 − qp)B2/2μ0 (4)

is the effective magnetic pressure (Kleeorin et al. 1990, 1993,
1996), ρ is the mean density, B = ∇× A+ ẑB0 is the mean mag-
netic field with an imposed constant field pointing in the z direc-
tion, J = ∇×B/μ0 is the mean current density, μ0 is the vacuum
permeability, g = (0, 0,−g) is the gravitational acceleration, ηt is
the turbulent magnetic diffusivity, νt is the turbulent viscosity,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (5)

is a term appearing in the viscous force with

Si j =
1
2 (Ui, j + U j,i) − 1

3δi j∇ · U (6)

being the traceless rate-of-strain tensor of the mean flow.
We adopt an isothermal equation of state with p = ρc2

s ,
where cs = const. is the sound speed. In the absence of a mag-
netic field, the hydrostatic equilibrium solution is then given by
ρ = ρ0 exp(−z/Hρ), where Hρ = c2

s/g is the density scale height.

2.1. Analytical estimates of growth rate of NEMPI

We linearize the mean-field Eqs. (1)−(3) around the equilibrium:
U0 = 0, B = B0 = const. The equations for small perturbations
(denoted by a tilde) can be rewritten in the form

∂B̃
∂t
= ∇ ×

(
Ũ × B0

)
, (7)

∇ · Ũ = Ũz

Hρ
, (8)

∂Ũ
∂t
=

1
ρ

[
μ−1

0 (B0 · ∇)B̃ − ∇p̃eff

]
, (9)

where

p̃tot = p̃eff =
2B0 B̃z

μ0

(
dPeff

dβ2

)
β=β0

(10)

with β = B/Beq and Beq =
√
μ0ρurms is the local equipartition

field strength, and urms is assumed to be a constant in the present
mean-field study. Here, the effective magnetic pressure is written
in normalized form as

Peff(β) ≡ μ0 peff/B
2
eq =

1
2

[
1 − qp(β)

]
β2. (11)

In this section, we neglect dissipative terms such as the turbu-
lent viscosity term in the momentum equation and the turbulent
magnetic diffusion term in the induction equation. We consider
the axisymmetric problem, use cylindrical coordinates r, ϕ, z and
introduce the magnetic vector potential and stream function:

B̃ = ∇×
(
Aeϕ

)
, ρ Ũ = ∇×

(
Ψeϕ

)
. (12)

Using the radial component of Eqs. (7) and (9) we arrive at the
following equation for the function Φ(t, r, z) = ρ−1 ∇zΨ:

∂2Φ

∂t2
= v2A(z)

⎡⎢⎢⎢⎢⎣∇2
z + 2

(
dPeff

dβ2

)
β=β0

Δs

⎤⎥⎥⎥⎥⎦Φ, (13)

where vA(z) = B0/
√
μ0ρ(z) is the mean Alfvén speed, Δs is the

radial part of the Stokes operator,

Δs =
1
r
∂

∂r

(
r
∂

∂r

)
− 1

r2
,

and we have used an exponential profile for the density stratifi-
cation in an isothermal layer,

ρ = ρ0 exp(−z/Hρ). (14)

We seek solutions of Eq. (13) in the form

Φ(t, r, z) = exp(λt) J1(σr/R)Φ0(z), (15)

where J1(x) is the Bessel function of the first kind, which sat-
isfies the Bessel equation: ΔsJ1(ar) = −a2J1(ar). Substituting
Eq. (15) into Eq. (13), we obtain the equation for the func-
tion Φ0(z):

d2Φ0

dz2
−

⎡⎢⎢⎢⎢⎣ λ2

v2A(z)
+

2σ2

R2

(
dPeff

dβ2

)
β=β0

⎤⎥⎥⎥⎥⎦Φ0 = 0. (16)

For R2Φ′′0 (z)/Φ0 � 1, the growth rate of NEMPI is given by

λ =
vAσ

R

⎡⎢⎢⎢⎢⎣−2

(
dPeff

dβ2

)
β=β0

⎤⎥⎥⎥⎥⎦
1/2

· (17)

This equation shows that, compared to the case of a horizon-
tal magnetic field, where there was a factor Hρ in the denomi-
nator, in the case of a vertical field the relevant length is R/σ.
Introducing as a new variable X = β2

0(z), we can rewrite Eq. (16)
in the form

X3 d2Φ0

dX2
+ X2 dΦ0

dX
−

⎛⎜⎜⎜⎜⎜⎝λ
2H2
ρ

u2
rms
+

2σ2H2
ρ

R2
X

dPeff

dX

⎞⎟⎟⎟⎟⎟⎠Φ0 = 0. (18)

We now need to make detailed assumptions about the functional
form of Peff(β2). A useful parameterization of qp in Eq. (4) is
(Kemel et al. 2012b)

qp =
qp0

1 + β2/β2
p
≡ β2

�

β2
p + β2

, (19)

where β� =
√

qp0βp. It is customary to obtain approximate ana-
lytic solutions to Eq. (18) as marginally bound states of the as-
sociated Schrödinger equation,Ψ′′0 − Ũ(X)Ψ0 = 0, via the trans-
formation Φ0 = Ψ0/

√
X, where

Ũ(X) =
λ2H2

ρ

u2
rmsX3

− 1
4X2
+
σ2H2

ρ

R2X2

⎛⎜⎜⎜⎜⎝1 − qp0

(1 + X2/β2
p)2

⎞⎟⎟⎟⎟⎠ , (20)

where primes denote a derivative with respect to X. The po-
tential Ũ(X) has the following asymptotic behavior: Ũ →
λ2H2

ρ/(u
2
rmsX

3) for small X, and Ũ(X) → (σ2H2
ρ/R

2 − 1/4)X−2

for large X. For the existence of an instability, the potential Ũ(R)
should have a negative minimum. However, the exact values of
the growth rate of NEMPI, the scale at which the growth rate
attains the maximum value, and how the resulting magnetic field
structure looks like in the nonlinear saturated regime of NEMPI
can only be obtained numerically using MFS.
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2.2. MFS models

For consistency with earlier studies, we keep the governing MFS
parameters equal to those used in a recent study by Losada et al.
(2013). Thus, unless stated otherwise, we use the values

qp0 = 32, βp = 0.058 (reference model), (21)

which are based on Eq. (22) of Brandenburg et al. (2012), ap-
plied to ReM = 18.

The mean-field equations are solved numerically without
making the anelastic approximation, i.e., we solve

∂ρ

∂t
= −∇ · ρU (22)

together with the equations for the mean vector potential A such
that B = B0 + ∇ × A is divergence-free, the mean velocity
U, and the mean density ρ, using the Pencil Code1, which has
a mean-field module built in and is used for calculations both
in Cartesian and cylindrical geometries. Here, B0 = (0, 0, B0)
is the imposed uniform vertical field. The respective coordi-
nate systems are (x, y, z) and (r, ϕ, z). In the former case we
use periodic boundary conditions in the horizontal directions,
−L⊥/2 < (x, y) < L⊥/2, while in the latter we adopt perfect con-
ductor, free-slip boundary conditions at the side walls at r = Lr

and regularity conditions on the axis. On the upper and lower
boundaries at z = ztop and z = zbot we use in both geometries
stress-free conditions, ẑ × ∂U/∂z = 0 and ẑ · U = 0, and assume
the magnetic field to be normal to the boundary, i.e., ẑ × B = 0.

Following earlier work, we display results for the mag-
netic field either by normalizing with B0, which is a constant,
or by normalizing with Beq, which decreases with height. The
strength of the imposed field is often specified in terms of
Beq0 = Beq(z = 0).

2.3. Nondimensionalization

Nondimensional parameters are indicated by tildes and hats, and
include B̃0 = B0/(μ0ρ0c2

s )1/2 and η̃t = ηt/csHρ, in addition to pa-
rameters in Eq. (21) characterizing the functional form of qp(β).
Additional quantities include k̃f = kfHρ and k̂f = kf/k1, where
a hat is used to indicate nondimensionalization that uses quan-
tities other than cs and Hρ, such as k1 = 2π/L⊥, which is the
lowest horizontal wavenumber in a domain with horizontal ex-
tent L⊥. For example, ĝ = g/c2

s k1, is nondimensional gravity and
λ̂ = λH2

ρ/ηt is the nondimensional growth rate. It is convenient
to quote also B0/Beq0 with Beq0 = Beq(z = 0). Note that B0/Beq0

is larger than B̃0 by the inverse of the turbulent Mach number,
Ma = urms/cs. It is convenient to normalize the mean flow by

urms and denote it by a hat, i.e., Û = U/urms. Likewise, we de-

fine B̂ = B/Beq.
In MFS, the value of ηt is assumed to be given by ηt0 =

urms/3kf. Using the test-field method, Sur et al. (2008) found
this to be an accurate approximation of ηt. Thus, we have to
specify both Ma and k̃f . In most of our runs we use Ma = 0.1
and k̃f = 33, corresponding to η̃t = 10−3. Furthermore, kf and
Hρ are in principle not independent of each other either. In fact,
mixing length theory suggests kfHρ ≈ 6.5 (Losada et al. 2013),
but it would certainly be worthwhile to compute this quantity
from high-resolution convection simulations spanning multiple
scale heights. However, in this paper, different values of kf Hρ

1 http://pencil-code.googlecode.com

Fig. 1. Horizontal patterns of Bz at z = 0 from a 3D MFS during the
kinematic growth phase with B0/Beq0 = 0.1 and horizontal extents with
a) L⊥/Hρ = 4π; b) 8π; and c) 16π.

are considered. With these preparations in place, we can now
address questions concerning the horizontal wavelength of the
instability and the vertical structure of the magnetic flux tubes.

2.4. Aspect ratio of NEMPI

The only natural length scale in an isothermal layer in MFS
is Hρ. It determines the scale of NEMPI. At onset, the horizon-
tal scale of the magnetic field pattern will be a certain multiple
of Hρ. In the following we denote the corresponding horizontal
wavenumber of this pattern by k⊥. Earlier work by Kemel et al.
(2013) showed that for an imposed horizontal magnetic field we
have k⊥Hρ ≈ 0.8...1. This pattern was 2D in the plane perpendic-
ular to the direction of the imposed magnetic field, correspond-
ing to horizontal rolls oriented along the mean magnetic field.
In the present case of a vertical field, the magnetic perturbations
have a cellular pattern with horizontal wavenumber k⊥. To de-
termine the value of k⊥Hρ for the case of an imposed vertical
magnetic field, we have to ensure that the number of cells per
unit area is independent of the size of the domain. In Fig. 1, we
compare MFS with horizontal aspect ratios ranging from 2 to 8.
We see that the magnetic pattern is fully captured in a domain
with normalized horizontal extent L⊥/Hρ = 4π, i.e., the horizon-
tal scale of the magnetic field pattern is twice the value of Hρ,
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Fig. 2. Power spectra of Bz for different horizontal domain sizes at z = 0
from a 3D MFS during the kinematic growth phase with B0/Beq0 = 0.1.

Fig. 3. Time evolution of normalized spectra of Bz from 3D MFS during
the late nonlinear phase at the top of the domain, k1z = π, at normalized
times tηt0/H2

ρ ≈ 5 (blue), 6, 7, 10, 20, 30, 40, and 50 (red), with g =
c2

s k1, B0/Beq0 = 0.1, and L⊥/Hρ = 16π.

i.e., kx = ky = H−1
ρ /2, so that k⊥ ≡ (k2

x + k2
y)

1/2 = H−1
ρ /
√

2, or
k⊥Hρ ≈ 0.7. The value k⊥Hρ ≈ 0.7 is also confirmed by taking a
power spectrum of Bz(x, y); see Fig. 2, which shows a peak at a
similar value.

Comparing the three simulations shown in Fig. 1, we see that
a regular checkerboard pattern is only obtained for the smallest
domain size; see Fig. 1a. For larger domain sizes the patterns are
always irregular such that a cell of one sign can be surrounded
by 3–5 cells of the opposite sign. Nevertheless, in all three cases
we have approximately the same number of cells per unit area.

In the nonlinear regime, structures continue to merge and
more power is transferred to lower horizontal wavenumbers; see
Fig. 3. Later in Sect. 3.5 we present similar results also for
our DNS.

2.5. Vertical magnetic field profile during saturation

In an isothermal atmosphere, the scale height is constant and
there is no physical upper boundary, so we can extend the com-
putation in the z direction at will, although the magnetic pres-
sure will strongly exceed the turbulent pressure at large heights,
which can pose computational difficulties. To study the full ex-
tent of magnetic flux concentrations, we need a big enough do-
main. In the following we consider the range −3π ≤ z/Hρ ≤ 3π,
which results in a density contrast of more than 108. To simplify
matters, we restrict ourselves in the present study to axisymmet-
ric calculations which are faster than 3D Cartesian ones.

Fig. 4. Comparison of magnetic field profiles from axisymmetric MFS
for Runs Bv002/33–Bv05/33 with three values of B0/Beq0 and η̃t =
10−3, corresponding to kf Hρ = 33.

In Fig. 4 we compare the results for the mean magnetic field
profiles for three values of B0/Beq0 ranging from 0.002 to 0.05.
These values are smaller than those studied in Sect. 2.4, because
in the nonlinear regime and in a deeper domain the structures are
allowed to sink by a substantial amount. By choosing B0/Beq0 to
be smaller, the tubes are fully contained in our domain. As B0
increases, we expect the position of the magnetic flux tube, zB,
to move downward like

zB = zB0 − 2Hρ ln(B0/Beq0), (23)

where zB0 = 2Hρ ln βopt
0 is a reference height and

β
opt
0 ≡ B0/Beq(zB) ≈ 0.03...0.06 (24)

is the optimal normalized field strength for NEMPI to be excited
(Losada et al. 2013). The validity of Eq. (23) can be verified
through Fig. 4, where B0/Beq0 increases by a factor of 25, corre-
sponding to ΔzB = −6.4.

In all cases, we obtain a slender tube with approximate as-
pect ratio of 1:8. In other words, the shape of the magnetic field
lines is the same for all three values of B0/Beq0, and just the
position of the magnetic flux concentration shifts in the verti-
cal direction. Note in particular that the thickness of structures
is always the same. This is different from the nonlinear MFS in
Cartesian geometry discussed above, where structures are able
to merge. Merging is not really possible in the same way in an
axisymmetric container, because any additional structure would
correspond to a ring.

The mean flow structure associated with the magnetic flux
tube is shown in Fig. 5 for Run Bv05/33 with B0/Beq0 = 0.05.
We find inflow into the tube along field lines at large heights and
outflow at larger depth. The vertical component of the flow in
the tube points always downward, i.e., there is no obvious ef-
fect from positive magnetic buoyancy. The maximum downflow
speed is about 0.27urms, so it is subdominant compared with the
turbulent velocity, but this could be enough to cause a noticeable
temperature change in situations where the energy equation is
solved.

The resulting magnetic field lines look roughly similar to
those of the DNS with an imposed vertical magnetic field
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Fig. 5. Bz/Beq together with field lines and flow vectors from MFS,
for Run Bv05/33 with B0/Beq0 = 0.05. The flow speed varies
from −0.27urms (downward) to 0.08urms (upward).

(Brandenburg et al. 2013). In DNS, however, the thickness of
the magnetic flux tube is larger than in the MFS by about a fac-
tor of three. This discrepancy could be explained if the actual
value of ηt was in fact larger than the estimate given by ηt0. We
return to this possibility in Sect. 3.5. Alternatively, it might be
related to the possibility that the coefficients in Eq. (21) could
actually be different.

Fig. 6. Time evolution of normalized vertical magnetic field pro-
files, a) B

max
z /B0 together with Beq(z)/B0 (shown by blue line),

b) B
max
z /Beq(z); as well as c) Peff(z) and d) (−dPeff/d ln β2)1/2, from a

MFS for Run Bv05/33 with B0/Beq0 = 0.05 at t/τtd = 2.9 (dashed), 3
(dotted), 3.1 (dash-dotted), 3.3, 3.7, 4.2., 5, and 50 (thick solid line).
The blue solid lines indicate Beq(z), normalized by a) B0 and b) by it-
self (corresponding thus to unity). The red lines indicate the locations
zB and zNL

B , as well as relevant intersections with normalized values of
B

max
z and Beq.

The time evolution of the vertical magnetic field profiles,
B

max
z /B0 and B

max
z /Beq(z), is shown in Fig. 6 at different times

for the case B0/Beq0 = 0.05, corresponding to Fig. 4c. Here,
we also show the time evolution of the corresponding profiles
of Peff(z) and (−dPeff/d lnβ2)1/2. In the kinematic regime, the
peak of the latter quantity is a good indicator of the peak of the
eigenfunction (Kemel et al. 2013). In the present case, the mag-
netic field in the kinematic phase peaks at a height zB that is
given by the condition (24). According to the MFS of Losada
et al. (2013), this condition is approximately the same for verti-
cal and horizontal fields. Looking at Fig. 6 for B0/Beq0 = 0.05,
we see that at z/Hρ ≈ −0.5 we have Beq/B0 ≈ 33, which agrees
with Eq. (24). However, unlike the case of a horizontal magnetic
field, where in the kinematic phase the mean field was found to
peak at a height below that where (−dPeff/d lnβ2)1/2 peaks, we
now see that the field peaks above that position.
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Fig. 7. Comparison of magnetic field profiles from an axisymmetric
MFS for Runs Bv01/33–Bv01/7 with B0/Beq0 = 0.01 and three values
of kf Hρ.

As NEMPI begins to saturate, the peak of B
max
z moves fur-

ther down to z = zNL
B ≈ −5 Hρ during the next one or two tur-

bulent diffusive times. By that time, B
max
z has reached values up

to B
max
z /B0 ≈ 50. At that depth, B

max
z /Beq(z) is about 0.25, but

this quantity continues to increase with height and reaches super-
equipartition values at z/Hρ ≈ 3 (second panel of Fig. 6).

2.6. Smaller scale separation

In MFS, as noted above, the wavenumber of turbulent ed-
dies, kf , enters the expression for the turbulent diffusivity via
ηt ≈ urms/3kf, and thus η̃t ≈ Ma/3k̃f, so we have

k̃f ≡ kfHρ = H2
ρ/3τηt = Ma/3η̃t, (25)

where τ = Hρ/urms is the turnover time per scale height. When
urms is kept unchanged, smaller scale separation implies a de-
crease of k̃f , i.e., the size of turbulent eddies in the domain is
increased. Earlier work has indicated that the growth rate of
the instability for horizontal magnetic field decreases with de-
creasing k̃f (Brandenburg et al. 2012). However, we do not know
whether this also causes a change in the spot diameter, which
would be plausible, or a change in the depth at which NEMPI
occurs. In our MFS we have chosen Ma = 0.1 and η̃t corre-
sponds to k̃f ≈ 33. For η̃t = 5 × 10−3 we have k̃f ≈ 7, which
is about the smallest scale separation for which NEMPI is still
possible in this geometry; see Fig. 7. Interestingly, as k̃f is de-
creased, the location of the flux tube structure moves upward.
This can be understood as a consequence of enhanced turbulent
diffusion, which makes the flux tubes less concentrated, so the
magnetic field is weaker, but weaker magnetic field sinks less
than stronger fields.

Even for kfHρ ≈ 3 it is still possible to find NEMPI in MFS,
but, as we have seen, the flux tube moves upward and becomes
thicker. To accommodate for this change, we need to increase the
diameter of the domain and, in addition, we would either need to
extend it in the upward direction or increase the magnetic field
strength to move the tube back down again; cf. Fig. 4. We choose
here the latter. In Fig. 8, we show three cases for a wider box.
In the first two runs (referred to as “0.01/33” and “0.05/33”) we

Fig. 8. Comparison of magnetic field structure in axisymmetric MFS.
a) Run 0.01/33 with B0/Beq0 = 0.01 and b) Run 0.05/33 with B0/Beq0 =
0.05, both with kf Hρ = 33. The flow speeds vary from −0.27urms

to 0.08urms in both cases. c) Run 0.05/3 with B0/Beq0 = 0.05 and
kf Hρ = 3. The flow speed varies from −0.23urms to 0.07urms.

Fig. 9. Comparison of magnetic field structure in axisymmetric MFS
for Runs Bu01/33–Bw01/33 with three values of βp.

keep the scale separation ratio the same as before, i.e. k̃f = 33,
and increase B0/Beq0 from 0.01 to 0.05, while in the third case
we keep B0/Beq0 = 0.05 and decrease k̃f to 3. We increase the
magnetic field by a factor of 5 so as to keep the structure within
the computational domain. In the first case, the natural separa-
tion between tubes would be too small for this large cylindrically
symmetric container. By contrast, in a 3D Cartesian domain, a
second downdraft would form, which is not possible in an ax-
isymmetric geometry. Instead, a downdraft develops on the outer
rim of the container. On the other hand, if k̃f is decreased and
thus η̃t increased, a single downdraft is again possible, as shown
in Fig. 8b, suggesting that the horizontal scale of structures is
also increased as η̃t is increased. We see that the tube can now
attain significant diameters. Its height remains unchanged, so the
aspect ratio of the structure is decreased as the scale separation
ratio is decreased.

2.7. Parameter sensitivity

It is important to know the dependence of the solutions on
changes of the parameters βp and β� that determine the func-
tion qp. In Figs. 9 and 10, we present results where we change
either βp or β�, respectively. Characteristic properties of these
solutions are summarized in Table 1. Runs Ov002/33–Ov05/33
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Table 1. Survey of axisymmetric MFS giving normalized growth rates, mean field strengths, mean flow speeds, and other properties for different
values of β0, β�, βp, and k̃f .

Run β0 qp0 β� βp βmin Pmin
eff k̃f λ̂ B̂

max

z Û
min

z Û
max

z z̃B z̃NL
B Z̃b Z̃t R̃ A

Ov002/33 0.002 32 0.33 0.058 0.125 −0.036 33 5.0 52 −0.27 0.03 8.3 4.8 3.5 4.6 0.27 17
Ov01/33 0.01 32 0.33 0.058 0.125 −0.036 33 5.6 52 −0.27 0.08 5.0 1.6 3.6 4.3 0.27 16
Ov05/33 0.05 32 0.33 0.058 0.125 −0.036 33 2.2 51 −0.27 0.08 1.7 −1.7 3.7 4.3 0.27 16

Bv002/33 0.002 32 0.33 0.058 0.125 −0.036 33 7.6 52 −0.27 0.03 7.9 2.0 3.1 4.1 0.35 12
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 3.9 −1.2 3.1 4.1 0.35 12
Bv05/33 0.05 32 0.33 0.058 0.125 −0.036 33 12.3 51 −0.27 0.08 1.8 −4.4 3.0 4.1 0.35 12

Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Bv01/17 0.01 32 0.33 0.058 0.125 −0.036 17 2.1 25 −0.27 0.08 4.9 0.3 2.8 4.1 0.50 8
Bv01/7 0.01 32 0.33 0.058 0.125 −0.036 7 0.4 8 −0.23 0.07 4.7 2.7 2.4 3.8 0.95 4

Bu01/33 0.01 270 0.33 0.02 0.079 −0.048 33 5.1 69 −0.35 0.10 4.5 −2.1 4.0 4.5 0.30 15
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Bw01/33 0.01 4.8 0.33 0.15 0.164 −0.016 33 3.2 25 −0.15 0.05 5.4 0.3 2.2 3.8 0.50 8

Av01/33 0.01 12 0.2 0.058 0.091 −0.010 33 2.6 22 −0.13 0.04 4.3 −0.3 2.3 3.8 0.55 7
Bv01/33 0.01 32 0.33 0.058 0.125 −0.036 33 9.4 52 −0.27 0.08 4.8 −1.2 3.1 4.1 0.35 12
Cv01/33 0.01 74 0.5 0.058 0.160 −0.097 33 10.6 91 −0.47 0.09 5.4 −1.7 3.5 4.3 0.25 17

Av01/33* 0.01 12 0.2 0.058 0.091 −0.010 33 2.4 11 −0.07 0.04 4.2 1.6 1.4 3.4 0.85 4
Bv01/33* 0.01 32 0.33 0.058 0.125 −0.036 33 4.8 21 −0.15 0.08 4.7 1.5 1.3 3.3 0.60 5
Cv01/33* 0.01 74 0.5 0.058 0.160 −0.097 33 8.7 33 −0.26 0.10 5.3 1.4 1.2 3.2 0.50 6

Notes. In all cases we have k1Hρ = 1, so k̃f = k̂f . Asterisks indicate that the domain was clipped at zbot = 0.

Fig. 10. Comparison of magnetic field structure in axisymmetric MFS
for Runs Av01/33–Cv01/33 three values of β�.

are 2D Cartesian while all other ones are 2D axisymmetric. In
addition to βp and β�, we also list the values of qp0 = β

2
�/β

2
p, as

well as the minimum position of the Peff(β) curve, namely (cf.
Kemel et al. 2012b)

Pmin
eff = − 1

2 (β2
� − β2

p)2, βmin =

(
βp

√
−2Pmin

eff

)1/2

. (26)

The main output parameters include the normalized growth rate
in the linear regime, λ̂ = λH2

ρ/ηt, the maximum normalized ver-
tical field in the tube

B̂
max

z = B
max
z

/
B0, (27)

the minimum and maximum normalized velocities,

Û
min

z = U
min
z

/
urms, Û

max

z = U
max
z

/
urms, (28)

Fig. 11. Comparison of magnetic field structure in axisymmetric MFS
for Runs Av–Cv01/33* with three values of β� in a domain that is trun-
cated from below.

the normalized maximum magnetic field positions in the linear
and nonlinear regimes, z̃B = zB/Hρ and z̃NL

B = zNL
B /Hρ, respec-

tively, the similarly normalized positions where Bz has dropped
by 1/e of its maximum at the bottom end Z̃b, at the top end Z̃t,
and to the side R̃ of the tube, as well as the aspect ratio A = Zt/R.

The changes of λ̂ are often as expected: a decrease with de-
creasing values of k̃f , and a increase with increasing values of β�.
There are also some unexpected changes that could be associ-
ated with the tube not being fully contained within our fixed do-
main: for Run Ov05/33 the domain may not be deep enough
and for Run Bw01/33 it may not be wide enough. Furthermore,
we find that structures become taller when βp is small and β�
large, and they become shorter and fatter when βp is large and β�
small. Thus, thicker structures, as indicated by the DNS of
Brandenburg et al. (2013), could also be caused by larger val-
ues of βp or smaller values of β�. When the domain is clipped
at z = 0, flux concentrations cannot fully develop. The structures
are fatter and less strong; see Fig. 11.
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Fig. 12. Comparison of magnetic field structure in axisymmetric MFS
for a run similar to Run Bv01/33, but for three values of Co and
r/Hρ ≤ π/2.

2.8. Effect of rotation

The effect of rotation through the Coriolis force is determined
by the Coriolis number,

Co = 2Ω/urmskf = 6Ωηt/u
2
rms, (29)

whereΩ is the angular velocity. Losada et al. (2012, 2013) found
that NEMPI begins to be suppressed when Co >∼ 0.03, which is a
surprisingly small value. They only considered the case of a hor-
izontal magnetic field. In the present case of a vertical magnetic
field, we can use the axisymmetric model to include a vertical
rotation vector Ω = (0, 0,Ω). We add the Coriolis force to the
right-hand side of Eq. (2), i.e.,

ρ
DU
Dt
= ... − 2Ω × ρU. (30)

When adding weak rotation (Co = 0.01) in Run Bv01/33, it turns
out that magnetic flux concentrations develop on the periphery
of the domain, similar to the case considered in Fig. 8. We have
therefore reduced the radial extent of the domain to r/Hρ ≤ π/2.
The results are shown in Fig. 12.

In agreement with earlier studies, we find that rather weak
rotation suppresses NEMPI. The magnetic structures become
fatter and occur slightly higher up in the domain. For Co = 0.01,
the magnetic flux concentrations have become rather weak. If
we write Co in terms of correlation of turnover time τ as 2Ωτ,
we find that the solar values of Ω = 3 × 10−6 s−1 corresponds
to 30 min. According to stellar mixing length theory, this, in turn,
corresponds to a depth of less than 2 Mm.

3. DNS and ILES studies

In the MFS discussed above, we have ignored the possibility of
other terms in the parameterization of the mean-field Lorentz
force. While this seems to capture the essence of earlier DNS
(Brandenburg et al. 2013), this parameterization might not be
accurate or sufficient in all respects. It is therefore useful to per-
form DNS to see how the results depend on scale separation,
gravitational stratification, and Mach number.

3.1. DNS and ILES models

We have performed direct numerical simulations using both the
Pencil Code2 and Nirvana3. Both codes are fully compress-
ible and are here used with an isothermal equation of state with
p = ρc2

s , where cs = const is the sound speed. The background
stratification is then also isothermal. Turbulence is driven us-
ing volume forcing given by a function f that is δ-correlated
in time and monochromatic in space. It consists of random non-
polarized waves whose direction and phase change randomly at
each time step.

In DNS we solve the equations for the velocity U, the mag-
netic vector potential A, and the density ρ,

DU
Dt
= −c2

s∇ ln ρ +
1
ρ

J × B + f + g + Fν, (31)

∂A
∂t
= U × B + η∇2 A, (32)

∂ρ

∂t
= −∇ · ρU, (33)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, η is the
magnetic diffusivity due to Spitzer conductivity of the plasma,
B = B0 + ∇ × A is the magnetic field, B0 = (0, 0, B0) is the
imposed uniform vertical field, J = ∇× B/μ0 is the current den-
sity, μ0 is the vacuum permeability, Fν = ∇·(2νρS) is the viscous
force. The turbulent rms velocity is approximately independent
of z. Boundary conditions are periodic in the horizontal direc-
tions (so vertical magnetic flux is conserved), and stress free on
the upper and lower boundaries, where the magnetic field is as-
sumed to be vertical, i.e., Bx = By = 0. In the ILES we solve
the induction equation directly for B, ignore the effects of ex-
plicit viscosity and magnetic diffusivity and use an approximate
Riemann solver to keep the code stable and to dissipate kinetic
and magnetic energies at small scales.

The simulations are characterized by specifying a forcing
amplitude, which results in a certain rms velocity, urms, and
hence in a certain Mach number. Furthermore, the values of ν
and η are quantified through the fluid and magnetic Reynolds
numbers, Re = urms/νkf and ReM = urms/ηkf , respectively. Their
ratio is the magnetic Prandtl number, PrM = ν/η. Occasionally,
we also quote ν̃ = ν/csHρ and η̃ = η/csHρ.

An important diagnostics is the vertical magnetic field, Bz,
at some horizontal layer. In particular, we use here the Fourier-
filtered field, Bz, which is obtained by removing all components
with wavenumbers larger than 1/6 of the forcing wavenumber kf .
This corresponds to a position in the magnetic energy spectrum
where there is a local minimum, so we have some degree of scale
separation between the forcing scale and the scale of the spot.
We return to this in Sect. 3.5. To identify the magnetic field in
the flux tube, we take the maximum of Bz, either at each height

2 http://pencil-code.googlecode.com
3 http://nirvana-code.aip.de/
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Table 2. Summary of DNS at varying B̃0, and fixed values of η̃ =
2× 10−4, PrM = 0.5, Re ≈ 38, Ma ≈ 0.1, ĝ = 1, k̂f = 30, τtd/τto ≈ 2700,
using 2563 mesh points.

Run B̂0 Re ReM Ma B̂z B̂z R̃ z̃NL
B

(a) 0.0005 39 19 0.12 1.81 0.36 0.13 3.1
(b) 0.0010 39 19 0.12 2.68 1.00 0.11 1.8
(c) 0.0020 38 19 0.11 2.45 0.87 0.17 1.4
(d) 0.0050 37 18 0.11 3.47 1.25 0.22 −0.5
(e) 0.0100 35 18 0.11 3.95 1.49 0.29 −1.2
(f) 0.0200 31 16 0.09 4.21 1.26 0.45 −π

Notes. In all cases the number of resulting spots is unity. The posi-
tions z̃NL

B agree with those marked in Fig. 13.

Fig. 13. Normalized vertical magnetic field profiles from DNS, B
max
z /B0

(top) and B
max
z /Beq(z) (bottom) for the six values of B0/Beq0 listed in

Table 2. In both panels, the red dots mark the maxima of B
max
z /B0 at

positions z̃NL
B . The labels (a)–(f) correspond to those in Table 2.

at one time, which is referred to as B
max
z (z), or in the top layer at

different times. The latter is used to determine the growth rate of
the instability.

When comparing results for different values of g, it is con-
venient to keep the typical density at the surface the same. Since
our hydrostatic stratification is given by Eq. (14), this is best
done by letting the domain terminate at z = 0 and to consider the
range −Lz ≤ z ≤ 0. In most of the cases we consider Lz = π/k1,
although this might in hindsight be a bit short in some cases. For
comparison with earlier work of Brandenburg et al. (2013), we
also present models in a domain −π ≤ k1z ≤ π.

3.2. Magnetic field dependence

In Table 2 and Fig. 13 we compare results for six values of B̃0 =
B0/(μ0ρ0c2

s0)1/2. These models are the same as those discussed
in Brandenburg et al. (2013), where visualizations are shown
for all six cases. Increasing B̃0 leads to a decrease in the Mach
number Ma and hence to a mild decline of Re and ReM for
B̃0 > 0.01, corresponding to B0/Beq0 > 0.1. There is a slight

increase of B̃max
z , while B̃

max

z remains on the order of unity. This

Table 3. Summary of DNS at varying PrM , and fixed values of η̃ =
2 × 10−4, B̃0 = 0.002, ReM ≈ 20–40, Ma ≈ 0.1, ĝ = 1, k̂f = 30,
τtd/τto ≈ 2700, using 2563 mesh points.

ν̃ PrM ReM Ma λ̂ B̂z B̂z R̃

4 × 10−5 0.2 20 0.12 5.18 1.87 0.19 0.36
1 × 10−4 0.5 19 0.11 1.33 2.45 0.87 0.17
2 × 10−4 1 17 0.10 1.66 2.76 0.84 0.17
4 × 10−4 2 14 0.08 1.46 2.78 0.64 0.20
5 × 10−4 5 25 0.07 0.10 2.66 0.22 0.34
1 × 10−3 10 19 0.06 0.04 2.87 0.28 0.30
5 × 10−4 10 45 0.07 0.04 2.96 0.22 0.34

Notes. In all cases the number of spots is unity.

Table 4. Summary of DNS at varying Re and ReM , and fixed values of
ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kf Hρ = 30.

Run Re ReM Ma B̂z B̂z R̃ Resol.

A30/1 38 19 0.11 2.45 0.87 0.17 2563

B30/1 80 40 0.12 3.30 1.02 0.16 5123

b30/1 200 40 0.12 3.45 1.10 0.15 5123

C30/1 190 95 0.11 3.47 0.71 0.19 10243

D30/1 190 95 0.11 3.54 0.69 0.19 10242×1536
E30/1 190 190 0.11 3.23 0.39 0.25 10242×1536

is the case even for the largest value, B̃0 = 0.02, when NEMPI
is completely suppressed and there is no distinct maximum of
B

max
z /B0 in the upper panel of Fig. 13. This is why the visualiza-

tion in Brandenburg et al. (2013) was featureless for B̃0 = 0.02,
even though B̃z/Beq(z) ≈ 1 at z = ztop. Moreover, while B̃max

z
shows only a slight increase, the non-dimensional radius of the
spot increases from 0.1 to about 0.4 as B̃0 is increased.

3.3. Magnetic Prandtl number dependence

The results for different values of PrM are summarized in
Table 3. It turns out that for PrM ≥ 5, no magnetic flux con-
centrations are produced. We recall that analysis based on the
quasi-linear approach (which is valid for small fluid and mag-
netic Reynolds numbers) has shown that for PrM ≥ 8 and
ReM � 1, no negative effective magnetic pressure is possible
(Rüdiger et al. 2012; Brandenburg et al. 2012). Because of this,
most of the earlier work used PrM = 0.5 so as to stay below unity
in the hope that this would be a good compromise between PrM
being small and ReM still being reasonably large. In fact, it now
turns out that the difference in B

max
z for PrM = 1 and 1/2 be neg-

ligible, and even for PrM = 2 the decline in B
max
z is still small.

For PrM = 0.2, on the other hand, we find a large value of λ̂, but
a low saturation level. Again, this might be explained by the fact
that the domain is not deep enough in the z direction, which can
suppress NEMPI. Alternatively, the resolution of 2563 might not
be sufficient to resolve the longer inertial range for smaller mag-
netic Prandtl numbers. In Sect. 3.4 we present another case with
PrM = 0.2 where both the resolution and the Reynolds numbers
are doubled, and B

max
z is again large.

3.4. Reynolds number dependence

Increasing ReM from 19 to 95, we see some changes; see Table 4.
There is first a small increase of B

max
z /Beq(z) from 0.87 to 1.02

as ReM is increased from 19 to 40 (Run B30/1). Increasing Re
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Fig. 14. Similar to Fig. 13, but for DNS Runs A30/1–C30/1 listed in
Table 4, i.e., ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kf Hρ = 30.
In the upper panel, the blue lines denote Beq(z)/B0 and in both panels,
the red dots mark the maxima of B

max
z /B0 at positions z̃NL

B .

to 200, but keeping ReM = 40, results in a further increase
of B

max
z /Beq(z) to 1.10 (Run b30/1). This is also an example

of a strong flux concentration with PrM = 0.2; cf. Sect. 3.3.
However, when ReM is increased further to 95, B

max
z /Beq(z) de-

creases to about 0.71; see Table 4. Again, the weakening of
the spot might be a consequence of the domain not being deep
enough. Alternatively, it could be related to the occurrence of
small-scale dynamo action, which is indicated by the fact that in
deeper layers the small-scale magnetic field is enhanced in the
run with the largest value of ReM; see Fig. 14. In Run C30/1 with
the largest value of ReM , the spot is larger and more fragmented,
but it still remains in place and statistically steady; see Fig. 15
and online material4 for corresponding animations.

To eliminate the possibility of the domain not being deep
enough, we have performed additional simulations where we
have extended the domain in the negative z direction down to
zbot/Hρ = −1.5π. In Fig. 16 we show a computation of the result-
ing profiles of B

max
z /B0 and B

max
z /Beq(z). We also include here a

run with PrM = 1 instead of 0.5 (Run E30/1). It turns out that
the strength of the spot is unaffected by the position of zbot and
that there is a deep layer below z/Hρ ≈ −2 in which there is
significant magnetic field generation owing to small-scale dy-
namo action, preventing thereby also the value of B

max
z /Beq(z)

to drop below the desired value of 0.01. This might explain the
weakening of the spot. This is consistent with earlier analytical
(Rogachevskii & Kleeorin 2007) and numerical (Brandenburg
et al. 2012) work showing a finite drop of the important NEMPI
parameter β� around ReM = 60.

3.5. Dependence on scale separation and stratification

We have performed various sets of additional simulations where
we change ĝ and/or k̂f ; see Table 5 and Fig. 17. In those cases,
the vertical extent of the domain is from −π to 0. As discussed in

4 http://www.nordita.org/~brandenb/movies/NEMPI/

Table 5. Summary of DNS at varying k̂f = kf/k1, k̃f = kf Hρ, ĝ = g/c2
s k1,

and fixed values of B̃0 = 0.02, η̃0 = 2 × 10−4, using resolutions of 2563

mesh points (for Run a30/1), 5123 mesh points (for Run a30/4, a10/3,
and a30/3), as well as 10242 × 384 mesh points (for Runs a40/1 and
A40/1).

Run PrM ReM Ma k̂f k̃f ĝ λ̂ B̂z B̂z

a30/1 1.0 16 0.09 30 30 1 0.94 3.09 0.78
a30/4 1.0 21 0.13 30 7.5 4 0.18 4.42 0.88
a10/3 1.0 63 0.13 10 3.4 3 – 4.83 0.40
a40/1 1.0 33 0.07 40 10 1 0.83 3.83 0.87
A40/1 1.0 33 0.07 40 10 1 1.05 5.81 1.41
a30/3 0.5 23 0.14 30 10 3 0.46 4.47 1.31

Sect. 3.1 this might be too small in some cases for NEMPI to de-
velop fully. Nevertheless, in all cases there are clear indications
for the occurrence of flux concentrations. The results regarding
the growth rate of NEMPI are not fully conclusive, because the
changes in kf and Hρ also affect turbulent-diffusive and turnover
time scales. As shown in the appendix of Kemel et al. (2013) the
normalized growth rate of NEMPI is given by:

λ̂ + 1 = 3β� (kfHρ)/(k⊥Hρ)2, (34)

which is not changed significantly for a vertical magnetic field;
see Sect. 2.1. If k⊥Hρ = const. ≈ 0.7, as suggested by the MFS
of Sect. 2.4, we would expect λ̂ + 1 to be proportional to kfHρ,
which is not in good agreement with the simulation results.

To shed some light on this, we now discuss horizontal power
spectra of Bz(x, y) taken at the top of the domain. These spec-
tra are referred to as Ez

M(k) and are normalized by B2
eq/kf . In

Run a30/4 with ĝ = 4 and k̂f = 30, we have access to wavenum-
bers down to k1Hρ = 0.25. The results in Fig. 18 show that
there is significant power below k⊥Hρ = 0.7. This is in agree-
ment with the MFS in the nonlinear regime; see Fig. 3. The time
evolution of Ez

M(k) suggest a behavior similar to that of an in-
verse magnetic helicity cascade that was originally predicted by
(Frisch et al. 1975) and later verified both in closure calculations
(Pouquet et al. 1976) and DNS (Brandenburg 2001). Similar re-
sults with inverse spectral transfer are shown in Fig. 19 for DNS
Run A40/1. The only difference between Runs A40/1 and a40/1
is the vertical extent of the domain, which is twice as tall in the
former case (3πHρ instead of 1.5πHρ). We note in this connec-
tion that the spectra tend to show a local minimum near kf/6.
This justifies our earlier assumption of separating mean and fluc-
tuating fields at the wavenumber kf/6; see Sect. 3.1. The spec-
tra also show something like an inertial subrange proportional
to k−5/3 (Fig. 19) or k−2.5 (Fig. 18). The latter is close to the
k−3 subrange in the MFS of Fig. 3. Those steeper spectra could
be a symptom of a low Reynolds number or, alternatively, a con-
sequence of most of the energy inversely “cascading” to larger
scales in the latter two cases.

We have also checked how different kinds of helicities vary
during NEMPI. In the present case, magnetic and kinetic helic-
ities are fluctuating around zero, but cross helicity is not. The
latter is an ideal invariant of the magnetohydrodynamic (MHD)
equations, but in the present case of a stratified layer with a ver-
tical net magnetic field, 〈u · b〉 can actually be produced; see
Rüdiger et al. (2011), who showed that

〈u · b〉 ≈ ηtg · B0/c
2
s = −ηtB0/Hρ. (35)

In a particular case of Run 30/1, we find a time-averaged value
of 〈u · b〉 that would suggest that ηt/ηt0 is around 6, which is sig-
nificantly larger than unity. This would agree with independent
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Fig. 15. Magnetic field configuration at the upper surface for DNS Runs A30/1–C30/1 at three values of the magnetic Reynolds number. The
white contours represent the Fourier-filtered with k⊥ ≤ kf/6; their levels correspond to B

max
z /Beq(ztop) = 0.05, 0.2, and 0.4.

Fig. 16. Similar to Fig. 14, but for DNS Runs C30/1 (zbot/Hρ = −π;
thicker lines) and D30/1 (zbot/Hρ = −1.5π; thinner lines) listed in
Table 4, i.e., ν̃ = 10−4, B̃0 = 0.002, PrM = 0.5, k1Hρ = 1, and kf Hρ = 30.
In the upper panel, the blue lines denote Beq(z)/B0.

arguments in favor of having underestimated ηt; see the discus-
sion in Sect. 2.5. In other words, if ηt were really larger than
what is estimated based on the actual rms velocity, it would also
explain why the diameter of tubes is bigger in the DNS than in
the MFS.

3.6. Mach number dependence

To study the dependence on Mach number, it is useful to con-
sider ILES without any explicit viscosity or magnetic diffu-
sivity. In Figs. 20−22 we show the results for three values of
Ma at ĝ = gk1/c2

s = 3 and k̂f = kf/k1 using a resolution of
2562 × 128 nodes on the mesh. In Table 6 we give a summary
of various output parameters and compare with corresponding
DNS. Note first of all that the results from ILES are generally in
good agreement with the DNS. This demonstrates that the mech-
anism causing magnetic flux concentrations by NEMPI is robust

Table 6. Summary of DNS and ILES at varying values of Ma, all for
ĝ = 3, k̂f = 30.

Run B̃0 ReM Ma λ̂ B̂z B̂z

D01 0.01 24 0.15 0.28 3.06 0.78
D02 0.02 24 0.14 0.46 4.47 1.31
D10 0.10 8 0.50 0.25 4.91 1.61
I03 0.10 – 0.16 >1 2.86 1.14
I10 0.10 – 0.34 >1 2.70 1.00
I30 0.10 – 0.68 >1 2.41 1.02

Notes. For ILES, no accurate values of λ̂ are available. In the DNS, the
resolution is 2562 for Runs D01 and D02, and 5122 for Run D10, while
for Runs I03–I30 it is 2562 × 128.

and not sensitive to details of the magnetic Reynolds number,
provided that ReM >∼ 10. The normalized growth rate is in all
three cases above unity.

As the Mach number is increased, the magnetic structures
become smaller; seen in the left-hand panels of Fig. 22. Since
the properties of NEMPI depend critically on the ratio Bz/Beq,
and since Beq(z) and hence Beq0 increase with increasing Mach
number, the decrease in the size of magnetic structures might
just reflect the fact that for smaller values of Bz/Beq0, NEMPI
would operate at higher layers which are no longer included in
our computational domain. Looking at Fig. 20, it is clear that
the maximum of Bz/B0 moves to higher layers, but it is still
well confined within the computational domain. Nevertheless,
if one compensates for the decrease of Beq by applying succes-
sively weaker mean fields when going to lower Mach number
(right-hand panels of Fig. 22), the size of the emerging struc-
tures remains approximately similar and the curves of Bz/Beq lie
now nearly on top of each other. This shows clearly that in our
simulations with Ma ≈ 0.7, flux concentrations are well possi-
ble. This is important, because it allows for the possibility that
the energy density of magnetic flux concentrations can become
comparable with the thermal energy.

4. Possible application to sunspot formation

Compared with earlier studies of NEMPI using a horizontal im-
posed magnetic field, the prospects of applying it to the Sun
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Fig. 17. Magnetic field configuration at the upper surface for DNS Runs a30/1–a30/3 of Table 5.

Fig. 18. Normalized spectra of Bz from DNS Run a30/4 at normalized
times tηt0/H2

ρ ≈ 0.2, 0.5, 1, 2, 5, 10, and 20, for ĝ ≡ g/c2
s kf = 4.

Fig. 19. Normalized spectra of Bz from DNS Run A40/1 at normalized
times tηt0/H2

ρ ≈ 0.2, 0.5, 1, and 2.7 with kf Hρ = 10 and k1Hρ = 0.25.

have improved in the sense that the flux concentrations are
now stronger when there is a vertical magnetic field. In particu-
lar, the resulting magnetic structures survive in the presence of
larger Mach numbers up to 0.7, which is relevant to the photo-
spheric layers of the Sun (Stein & Nordlund 1998). However,
those structures do become somewhat weaker as the magnetic
Reynolds number is increased sufficiently to allow for the pres-
ence of small-scale dynamo action. This was expected based on
a certain drop of β� for ReM >∼ 60 found in earlier simulations
(Brandenburg et al. 2012), but the possibility of spot formation
still persists. More specifically, we have seen that the largest field
strength, Bz/B0, occurs at a height where B

max
z /Beq is at least 0.4;

see Fig. 16.

Fig. 20. Same as Fig. 13, but for the ILES runs with varying forcing am-
plitude. Note the different vertical extent of this set of models. The dif-
ferent lines indicate Ma = 0.16 (solid), 0.34 (dotted), and 0.68 (dashed).

To speculate further regarding the applicability to sunspot
formation, we must look at the mean-field models presented in
Sect. 2. In particular, we have seen that spot formation occurs
at a depth zNL

B where B
max
z /Beq is between 0.6 (for ReM = 40)

and 0.4 (for ReM = 95); see Fig. 14 and Table 4. Larger ratios
of B

max
z /Beq occur in the upper layers, but then the absolute field

strength is lower. In the MFS of Sect. 2, the value of B
max
z /Beq

at z = zNL
B is somewhat smaller (around 0.3), suggesting that the

adopted set of mean-field parameters in Eq. (21) was slightly
suboptimal. Nevertheless, those models show that the depth
where NEMPI occurs and where the effective magnetic pres-
sure is most negative is even further down, e.g., at z/Hρ ≈ −7;
see Fig. 5. Furthermore, at the depth where (−dPeff/d lnβ2)1/2

is maximum, i.e., where NEMPI is strongest according to the-
ory, we find B

max
z /Beq ≈ 0.05. Thus, there is an almost tenfold

increase of the absolute field strength between the depth were
NEMPI occurs and where the field is strongest.

As we have seen from Fig. 5, this increase is caused solely
by hydraulic effects, similar to what Parker (1976, 1978) an-
ticipated over 35 years ago. Our isothermal models clearly do
demonstrate the hydraulic effect due to downward suction, but
we cannot expect realistic estimates for the resulting field am-
plification. Parker (1978) gives more realistic estimates, but in
his work the source of downward flows remained unclear. Our
present work suggests that NEMPI might drive such motion,
but in realistic simulations it would be harder to identify this
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Fig. 21. Same as Fig. 20, but for the ILES runs which vary both the
forcing amplitude and the imposed magnetic field at the same time,
keeping the relative field strength comparable. The different lines again
indicate Ma = 0.16 (solid), 0.35 (dotted), and 0.68 (dashed), and agree
markedly well in the lower panel where we plot relative to Beq(z).

as the sole mechanism. Another mechanism might simply be
large-scale hydrodynamic convection flows that would continue
deeper down to the lower part of the supergranulation layer at
depths between 20 and 40 Mm. Some indications of this have
now been seen in simulations of Stein & Nordlund (2012).
Whether the reason for flux concentrations is then NEMPI or
convection can only be determined through careful numerical
experiments comparing full MHD with the case of a passive vec-
tor field. Such a field would still be advected by convective flows
but would not contribute to the dynamical effects that would be
required if NEMPI were to be responsible.

In addition to the magnetic field strength of flux concentra-
tions, there might also be issues concerning their size. Usually
they are not much larger than about 5 density scale heights; see,
e.g., Fig. 15. This might be too small to explain sunspots. On
the other hand, in the supergranulation layer, the density scale
height increases, and larger scale structures might be produced
at those depths.

To make this more concrete, let us discuss a possible sce-
nario. At a depth of 3 Mm, the equipartition field strength
is about 2 kG, and this might be where the sunspot field is
strongest. If NEMPI was to be responsible for this, we should ex-
pect the effective magnetic pressure to be negative at a depth of
about 10 Mm. Here, the equipartition field strength is about 3 kG.
If NEMPI operates at B

max
z /Beq ≈ 0.1, this would correspond to

B
max
z ≈ 300 G, which appears plausible. At that depth, the den-

sity scale height is also about 10 Mm. Thus, if magnetic flux con-
centrations have a size of 5 density scale heights, then this would
correspond to 50 Mm at that depth. To produce spots higher up,
the field would need to be more concentrated, which would re-
duce the size by a factor of 3 again. However, given the many
uncertainties, it is impossible to draw any further conclusions
until NEMPI has been studied under more realistic conditions
relevant to the Sun.

Fig. 22. Surface appearance of the vertical magnetic field, Bmax
z , in the

ILES simulations with different Mach numbers (top to bottom). The
color coding shows Bmax

z /Beq in the range of −0.1 (white) to +1.0
(black). Root-mean-square Mach numbers are given by the labels. For
the upper two rows with lower Mach number, the left column is for fixed
initial mean field, whereas in the right column the initial field is adjusted
between the runs, such that the field strength remains constant relative
to the kinetic energy in the background turbulence.

5. Conclusions

Using DNS, ILES and MFS in a wide range of parameters we
have demonstrated that an initially uniform vertical weak mag-
netic field in strongly stratified MHD turbulence with large scale
separation results in the formation of circular magnetic spots of
equipartition and super-equipartition field strengths. Although
we have confirmed that the normalized horizontal wavenumber
of magnetic flux concentrations is k⊥Hρ ≈ 0.8, as found earlier
for horizontal imposed field (Kemel et al. 2013), it is now clear
that in the nonlinear regime smaller values can be attained. This
happens in a fashion reminiscent of an inverse cascade or inverse
transfer5 in helically forced turbulence (Brandenburg 2001). In
the present case, this inverse transfer is found both in MFS and
in DNS. This property helps explaining the possibility of larger
length scales separating different flux concentrations.

The study of axisymmetric MFS helps understanding
the dependence of NEMPI on the parameters β� and βp,
which determine the parameterization of the effective magnetic

5 In both cases, the transfer is nonlocal in wavenumber space. It is
therefore more appropriate to use the term inverse transfer instead of
inverse cascade.
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pressure, Peff(β). It was always clear that changes in those pa-
rameters can significantly change the functional form of Peff(β),
and yet the resulting growth rate of NEMPI was found to de-
pend mainly on the value of β�. We now see, however, that the
shape of the resulting solutions still depends on the value of
βp, in addition to a dependence on β�. In fact, smaller values
of βp as well as larger values of β� both result in longer struc-
tures. This is important background information in attempts to
find flux concentrations in DNS, where the domain might not al-
ways be tall enough. As a rule of thumb, we can now say that
the domain is deep enough if the resulting large-scale magnetic
field is below 1% of the equipartition value. This is confirmed
by Figs. 13 and 14 as well as Figs. 20 and 21, where all runs
with B

max
z /Beq(z) ≤ 0.01 at z = zbot reach B

max
z /Beq(z) = O(1)

at z = ztop, provided the domain is also high enough. A limited
extent at the top appears to be less critical than at the bottom,
because NEMPI still develops in almost the same way as before.

It is important to emphasize that the formation of magnetic
flux concentrations is equally well possible at large Mach num-
bers. This is important in view of applications to the Sun, where
in the upper layers Ma ≈ 0.5 can be expected. Nevertheless,
our present investigations have not yet been able to address the
question whether sunspots can really form through NEMPI. For
that, we would need to abandon the assumption of isothermality.
Nevertheless, we expect the basic feature of downflows along
flux tubes to persist also in that case. It is the associated inflow
from the side that keeps the tube concentrated. Such flows have
indeed been seen in local helioseismology (Zhao et al. 2010).
Those authors also find an additional outflow higher in the pho-
tosphere that is known as the Evershed flow.

We expect that the downflow in the tube plays an important
role in an unstably stratified layer, such as in the Sun, where
it brings low entropy material to deeper layers, lowering there-
fore the effective temperature in the magnetic tubes. Future work
should hopefully be able to demonstrate that in detail. The con-
ceptual difference between NEMPI and other mechanisms may
not always be very clear. However, by using an isothermal layer,
we can be sure that convection is not operating. Thus, the phe-
nomenon of flux segregation found by Tao et al. (1998) would
not work. Conversely, however, NEMPI might well be a viable
explanation for this phenomenon too. Whether the concept of
flux expulsion can really serve as an alternative paradigm is un-
clear, because it is difficult to draw any quantitative predictions
from it. In particular, flux expulsion does not make any refer-
ence to turbulent pressure or its suppression. Instead, the source
of free energy is more directly potential energy which can be
tapped through the superadiabatic gradient in convection. By
contrast, the source of free energy for NEMPI is turbulent en-
ergy. The other possibility discussed above is the network of
downdrafts associated with the supergranulation layer (Stein &
Nordlund 2012). This mechanism is not easily disentangled from
NEMPI, because both imply flux concentrations in downdrafts.
However, in an isothermal layer, we can be sure that supergran-
ulation flows are absent, so NEMPI is the only known mecha-
nism able to explain the flux concentrations shown in the present
paper.
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