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ABSTRACT

We report on the results of four convective dynamo simulations with an outer coronal layer. The magnetic field is
self-consistently generated by the convective motions beneath the surface. Above the convection zone, we include a
polytropic layer that extends to 1.6 solar radii. The temperature increases in this region to ≈8 times the value at the
surface, corresponding to ≈1.2 times the value at the bottom of the spherical shell. We associate this region with
the solar corona. We find solar-like differential rotation with radial contours of constant rotation rate, together with
a near-surface shear layer. This non-cylindrical rotation profile is caused by a non-zero latitudinal entropy gradient
that offsets the Taylor–Proudman balance through the baroclinic term. The meridional circulation is multi-cellular
with a solar-like poleward flow near the surface at low latitudes. In most of the cases, the mean magnetic field
is oscillatory with equatorward migration in two cases. In other cases, the equatorward migration is overlaid by
stationary or even poleward migrating mean fields.
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1. INTRODUCTION

The Sun has an activity cycle of 11 yr, which is manifested
by sunspots occurring at the solar surface. The sunspot num-
ber changes from a few during minimum to over 200 during
maximum. The sunspot locations display a latitudinal depen-
dence during the cycle. At solar minimum (maximum), sunspots
emerge preferably at higher (lower) latitudes. By plotting the
sunspot latitudes for several cycles, one obtains the “butterfly
diagram.” Every 11 yr the polarity of sunspot pairs changes sign,
which is characteristic of the 22 yr magnetic cycle. To under-
stand this cyclical behavior, one has to connect the fluid motions
in the Sun with magnetic field generation to construct dynamo
models. These dynamo models should be able to reproduce the
22 yr magnetic activity cycle as well as the large-scale magnetic
field evolution at the surface of the Sun. It is widely believed
that sunspots are correlated with the large-scale magnetic field
distribution. Therefore, a successful solar dynamo model should
reproduce the equatorward migration of the large-scale field as
we observe it indirectly from sunspots and more directly from
synoptic magnetograms.

Until recently, only kinematic mean-field models, where
turbulent effects are parameterized through transport coeffi-
cients (e.g., Krause & Rädler 1980), have been able to show
equatorward migration (e.g., Dikpati & Charbonneau 1999;
Käpylä et al. 2006; Kitchatinov & Olemskoy 2012). Such
models have been used to reproduce certain features of the
solar cycle, such as the Maunder minimum (e.g., Karak
2010). However, those models are only valid in the kine-
matic regime in which the fluid motions are assumed to
be given, so they are not self-consistently generated. The
backreaction from the magnetic field is either ignored or
taken into account in a rudimentary way involving ad hoc
quenching of the turbulent transport coefficients. Until re-
cently, direct numerical simulations (DNS) of the solar dynamo
have been unsuccessful in producing equatorward migration
using convective motions to drive a dynamo (e.g., Gilman 1983;

Brun et al. 2004; Käpylä et al. 2010; Ghizaru et al. 2010; Brown
et al. 2011; Nelson et al. 2013). This was presumably due to the
low fluid and magnetic Reynolds numbers of those simulations.
Equatorward migration was, for the first time, found in DNS
by Käpylä et al. (2012). The exact cause is not yet fully under-
stood, but the amount of density stratification seems to play an
important role (Käpylä et al. 2013).

An important ingredient of the solar dynamo is differential
rotation. It is believed that strong shear at the bottom of the
convection zone (Spiegel & Weiss 1980) or near the surface
(Brandenburg 2005) plays an important role in amplifying the
magnetic field. However, even today it is not straightforward to
reproduce a solar-like differential rotation profile. Mean-field
simulations (Brandenburg et al. 1992; Kitchatinov & Rüdiger
1995) have been able to reproduce a solar-like rotation profile
by modeling small-scale effects through mean-field coefficients
such as the Λ effect and anisotropic heat transport (see, e.g.,
Rüdiger 1980, 1989). These models reproduce the positive
(negative) latitudinal gradient of angular velocity in the northern
(southern) hemisphere—i.e., the equator rotates faster than the
poles—together with “spoke-like” contours in the meridional
plane. DNS of convective dynamos are able to reproduce a
rapidly rotating equator at sufficiently large Coriolis numbers
(Brun et al. 2004; Käpylä et al. 2011b). Spoke-like differential
rotation has only been found in purely hydrodynamical large-
eddy simulations (LES) by imposing a latitudinal entropy
gradient (Miesch et al. 2006) or, recently, by adding a stably
stratified layer (Brun et al. 2011) at the bottom of the convection
zone. A self-consistently generated spoke-like profile in DNS
of magnetohydrodynamics has not yet been found.

An important issue with solar dynamo models is the effect
of catastrophic quenching of the dynamo at high magnetic
Reynolds numbers; see Brandenburg & Subramanian (2005).
This is caused by the accumulation of magnetic helicity in the
dynamo region. DNS provide evidence that magnetic helicity
fluxes both within and through the boundaries of the dynamo
domain can prevent the dynamo from being catastrophically
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quenched (e.g., Brandenburg & Sandin 2004; Hubbard &
Brandenburg 2012). In the case of the Sun, magnetic helicity
flux can emerge through the solar surface and can be transported
away from the Sun by coronal mass ejections or by the solar
wind (Blackman & Brandenburg 2003). In earlier work, this
was modeled by using an upper layer at the top of a dynamo
region to allow for magnetic helicity fluxes leaving the domain
(Warnecke & Brandenburg 2010; Warnecke et al. 2011, 2012a,
2012b). This two-layer model was successful in showing that
the dynamo is not only enhanced, but that it can actually trigger
the emergence of coronal ejections. These ejections have a
similar shape as coronal mass ejections and carry a significant
amount of magnetic helicity out of the dynamo region. In these
models, the temperature in the coronal layer was the same as
at the surface of the convection zone, which did not allow for
a large density jump to develop. Furthermore, in the polytropic
convection zone of Warnecke et al. (2012b), the convective flux
was smaller than the radiative flux. Besides dynamo models,
this two-layer approach was successful in combination with
stratified turbulence in producing a bipolar magnetic region
(Warnecke et al. 2013b) as a possible mechanism of sunspot
formation.

In this work, we use the two-layer approach to investigate the
influence of the coronal layer as an upper boundary condition
for a convective dynamo. We focus on the physical properties
and dynamics in the convection zone. The effects of varying
the strength of stratification on a convective dynamo without a
corona is studied in a companion paper (Käpylä et al. 2013).

2. MODEL AND SETUP

We use a two-layer model in spherical polar coordinates
(r, θ, φ), where the lower layer (r � R) represents the con-
vection zone and the upper layer represents the corona. The
simulations are performed in a spherical wedge with radial
extent r0 � r � Rc = 1.6 R, where r0 = 0.7 R corresponds
to the bottom of the convection zone and R to the solar ra-
dius, for colatitudes 15◦ � θ � 165◦ and an azimuthal extent
0 � φ � 45◦. We solve the following equations of compressible
magnetohydrodynamics:

∂ A
∂t

= u × B − μ0η J, (1)

D ln ρ

Dt
= −∇ · u, (2)

Du
Dt

= g − 2�0 × u +
1

ρ
( J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds

Dt
= − 1

ρ
∇ · (Frad + FSGS) + 2νS2 +

μ0η

ρ
J2 − Γcool, (4)

where the magnetic field is given by B = ∇× A and thus obeys
∇ · B = 0 at all times, J = μ−1

0 ∇× B is the current density, μ0
is the vacuum permeability, η and ν are the magnetic diffusivity
and kinematic viscosity, respectively, D/Dt = ∂/∂t + u · ∇
is the advective time derivative, ρ is the density, and u is the
velocity. The traceless rate-of-strain tensor is given by

Sij = 1

2
(ui;j + uj ;i) − 1

3
δij∇ · u, (5)

where semicolons denote covariant differentiation; see
Mitra et al. (2009) for details. Furthermore, �0 = Ω0(cos θ,

Figure 1. Averaged radial profiles of stratification for Run A. The normalized
density ρ/ρ0 (dashed lines), pressure p/p0 (triple-dot-dashed lines), and
temperature T/T0 (solid lines) are plotted together with the specific entropy
s/cP (dash-dotted lines) over radius. The inset shows various profiles in a
logarithmic representation to emphasize the steep decrease of the pressure and
density in the coronal layer. The subscript 0 refers to the value at the bottom of
the convection zone.

− sin θ, 0) is the rotation vector and p is the pressure. The grav-
itational acceleration is given by

g = −GM r/r3, (6)

where G is Newton’s gravitational constant and M is the mass
of the star. The radiative and sub-grid scale (SGS) heat fluxes
are defined as

Frad = −K∇T , FSGS = −χSGSρT ∇s, (7)

where K is the radiative heat conductivity and χSGS is the
turbulent heat diffusivity, which represents the unresolved
convective transport of heat. The fluid obeys the ideal gas
law, p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio
of specific heats at constant pressure and constant volume,
respectively, and e = cVT is the internal energy density, defining
the temperature T. Finally, Γcool is the cooling profile that is
specified in Equation (10).

The two-layer model is similar to that used in previous work
(Warnecke & Brandenburg 2010; Warnecke et al. 2011, 2012a,
2012b), except that here we improve the model of Warnecke
et al. (2012b) in two important ways. First, we use a more
realistic model for the convection zone than in Käpylä et al.
(2011a, 2012). Instead of using a polytropic setup with m = 1,
we lower the radiative flux by using a profile for m (defined in
Equation (11)) and introducing a turbulent heat conductivity
χSGS (referred to as χt in Käpylä et al. 2012). We apply a
piecewise constant profile for χSGS such that in the interval of
0.75 R � r � 0.97 R, it is equal to a quantity χSGS (whose value
is related to ν via the Prandtl number specified below) and it goes
smoothly to zero above and below the boundaries of the interval.
Additionally, we change the temperature profile compared with
our earlier isothermal cold corona to a temperature-stratified
corona, which is ≈8 times hotter than the surface and ≈1.2
times hotter than the bottom of the convection zone. The profiles
of averaged temperature, density, pressure, and entropy for a
typical run are shown in Figure 1.

We initialize the simulations with precalculated radial profiles
of temperature, density, and pressure. In the convection zone
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Table 1
Summary of the Runs

Run grid Pr Pm Ta ρ0/ρs Ma Rat Re Rm Co B2
rms/B

2
eq ΔΩ ΔT

A 400 × 256 × 192 5 1 1.4 · 1010 14 0.08 1.8 · 106 25 25 11 0.25 −0.011 0.08
Ab 400 × 256 × 192 5 0.71 1.4 · 1010 14 0.08 1.8 · 106 25 18 11 0.22 −0.014 0.08
Ac 400 × 256 × 192 5 1.67 1.4 · 1010 14 0.08 2.1 · 106 25 41 11 0.27 0.009 0.08
B 400 × 256 × 192 4 1 7.2 · 109 14 0.09 1.2 · 106 37 37 5.2 0.36 −0.06 0.12

Notes. The second to sixth columns show quantities that are input parameters to the models, whereas the quantities in the last eight
columns are results of the simulations computed from the saturated state. All quantities are volume averaged over the convection zone
r � R, unless explicitly stated otherwise. The Mach number is defined as Ma = urms/cs|r=0.97 R and the latitudinal differential rotation
is quantified through (ΔΩ = ∂Ω/∂cos2θ )/Ω0 evaluated at r � R. ΔT = (Tpol − Teq)/Teq is the normalized temperature difference
between pole Tpol = (T (θ = 15◦) + T (θ = 165◦)) /2 and equator Teq = T (θ = 90◦), measured at the surface (r = R).

(r � R), we have an isentropic and hydrostatic initial state for
the temperature, whose gradient is given by

∂T

∂r
= −|g(r)|

cV(γ − 1)(mad + 1)
, (8)

where mad = 1.5 is the polytropic index for an adiabatic
stratification. This leads to a temperature minimum Tmin above
the surface of the convective layer at r = R. In the corona
(R � r � Rc), we prescribe the temperature as

Tref(r) = Tmin + 1
2 (Tcor − Tmin)

[
1 + tanh

(
r − rtra

w

)]
, (9)

where Tcor is temperature in the corona and rtra and the width
w = 0.02 R are chosen to produce a smooth temperature profile
as shown in Figure 1. The cooling profile Γcool in Equation (4)
maintains the temperature profile

Γcool = Γ0f (r)
T − Tref(r)

Tref(r)
, (10)

where f (r) is a profile function equal to unity in r > R and
going smoothly to zero in r � R and Γ0 is a cooling luminosity
chosen such that the temperature in the corona relaxes toward
the reference temperature profile Tref(r) given in Equation (9).
As stated in Equation (10), the cooling function is sensitive to the
total temperature consisting of a mean part and a fluctuating part.
Nevertheless, temperature fluctuations can still develop. The
stratification of density follows from hydrostatic equilibrium.
The density contrast within the convection zone is ρ0/ρs ≈ 14
(see the sixth column in Table 1), while in the whole domain
ρ0/ρt ≈ 2000, where ρ0 is the density at the bottom (r = r0), ρs
is the density at the surface (r = R) and ρt is the density at the top
of the corona (r = 1.6 R). The location of the surface, r = R, is
close to the position where the radial entropy gradient changes
sign, which is slightly below the surface; see Figure 1. This
implies that, similar to the Sun, convection ceases just below
the surface. The radial heat conductivity profile is chosen such
that the energy in the convection zone is transported mostly by
convective motions. We apply a profile for the viscosity ν that is
constant in the convection zone (r � R) and increases smoothly
above the surface to a value that is 20 times higher in the corona.
This helps to suppress high velocities and sharp flow structures
aligned with the rotation vector in the corona—especially in the
beginning of the simulation, when the magnetic field is weak.
Compared with the use of velocity damping in Warnecke et al.
(2012b), this approach is Galilean invariant and allows the flow
to develop more freely. The magnetic diffusivity η is constant

throughout the convection zone, but decreases by 20% in the
corona. In the convection zone, the radiative heat conductivity
K is defined via a polytropic index m given by

m = 2.5 (r/r0)−15 − 1, (11)

which has a value of 1.5 at the bottom of the convection
zone. The conductivity is proportional to m + 1 and decreases
toward the surface as r−15. In the corona, K is chosen such that
χ = K/cPρ = const. The radiative diffusivity χ varies from
0.5χSGS at the bottom of the convection zone to 0.04χSGS near
the surface and 0.3χSGS in the corona. We initialize the magnetic
field with weak Gaussian-distributed perturbations inside the
convection zone.

We use periodic boundary conditions in the azimuthal di-
rection. For the velocity field, we apply stress-free boundary
conditions at the radial and latitudinal boundaries. The mag-
netic field follows a perfect conductor condition at the lower
radial and the two latitudinal boundaries. On the outer radial
boundary, we force the field to be radial; for a discussion on
the applicability of this boundary condition for the Sun, see
Warnecke et al. (2012b). We fix the gradient of the temperature
at the lower radial boundary such that it corresponds to a given
radiative flux and we set the temperature to a constant value
at the radial outer boundary. At the latitudinal boundaries, we
impose a vanishing θ -derivative of entropy to have zero heat
flux through the boundary.

Our runs are characterized by the values of the fluid and
magnetic Reynolds numbers, Re = urms/νkf and Rm =
urms/ηkf , respectively, where urms is the volume averaged
rms velocity in the convection zone and kf = 2π/(R −
r0) ≈ 21/R is used as a reference wavenumber. To represent
the turbulent velocities in a proper way, we define urms =√

3/2〈u2
r + u2

θ 〉θφr�R , which corrects for the removal of the
differential rotation-dominated φ-component of velocity. In our
case, χSGS ≈ 0.02χt0, where χt0 = urms/3kf is an estimate
for the macro-physical turbulent diffusivity. We also define
the fluid and magnetic Prandtl numbers Pr = ν/χSGS and
Pm = ν/η = Rm/Re, the Coriolis number Co = 2Ω0/urmskf ,
and the Taylor number Ta = (2Ω0R

2/ν)2. Time is given in
turnover times, τ = (urmskf)−1. We measure the magnetic field
strength as the rms value over the convection zone, Brms, and
we normalize this value with the equipartition value of the
magnetic field defined by B2

eq = μ0〈ρu2〉r�R . The typical
diffusion time of the system is characterized by the fluid and
magnetic Reynolds numbers times the turnover time. We use
the (semi-)turbulent Rayleigh number Rat from the thermally
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Figure 2. Time evolution of the total rms velocity and magnetic field. The
rms velocity of the whole domain utot

rms is normalized by urms (solid lines)
and is plotted together with the rms magnetic field of the whole domain B tot

rms
normalized by the equipartition field in the convection zone, Beq, (dotted lines)
and multiplied by 10 for visualization purposes, for Runs A (black line), Run
Ab (yellow), Run Ac (blue), and Run B (red).

(A color version of this figure is available in the online journal.)

relaxed state of the run

Rat = GM(R − r0)4

νχSGSR
2

(
− 1

cP

d〈s〉θφt

dr

)
r=0.85 R

. (12)

To monitor the solutions in the convection zone, we use two
different heights, one near the surface at r1 = 0.97 R and one
in the middle of the convection zone at r2 = 0.84 R. We use
the Pencil Code5 with sixth-order centered finite differences in
space and a third-order Runge–Kutta scheme in time; see Mitra
et al. (2009) for the extension of the Pencil Code to spherical
coordinates.

3. RESULTS

In this work, we focus on four simulations that are summa-
rized in Table 1. The main differences between these runs are
their rotation rates and their magnetic Reynolds numbers. Runs
Ab and Ac are a continuation of Run A after t/τ = 1350 and
t/τ = 1150, respectively, but with smaller and higher diffusivi-
ties η in the convection zone. Runs A, Ab, and Ac have a higher
Coriolis number Co and lower values of Re than Run B. The
Coriolis number of Run A is more than twice that of Run B.
However, the nominal rotation rate determined by Ω0 is only
1.8 times larger. We show the time evolution of the total rms
velocity and magnetic field, averaged over the whole domain,
utot

rms = 〈u2
r + u2

θ + u2
φ〉1/2

rθφ and B tot
rms = 〈B2

r + B2
θ + B2

φ〉1/2
rθφ , in all

the four runs in Figure 2. Here, the subscripts on angle brackets
denote averaging over r, θ , φ. Convection is sufficiently super-
critical to develop during the first few tens of turnover times.
After 50–200 turnover times, the dynamo starts to operate and
a magnetic field grows at a rate that is higher for faster rotation
(compare Runs A and B). Due to the high rotation rate and the
lower density in the corona, the velocities there grow to higher
values than in the convection zone. As described in Section 2, we
use a higher viscosity to suppress these velocities and associated
numerical difficulties. After the magnetic field in the convection

5 http://pencil-code.googlecode.com

Figure 3. Top panel: the different contributions to the total radial luminosity
(thick solid line) are due to radiative diffusion (dashed red line), resolved
convection (blue dotted line), unresolved turbulent convection (black dotted
line), viscosity (yellow dashed line), cooling flux (dash-dotted line), and the
Poynting flux (orange dash-dotted line) for Run A. The thin solid black lines
denote the zero level and the total luminosity through the lower boundary,
respectively. Bottom panel: latitudinal heat fluxes. The various contributions to
the latitudinal energy flux, Fi, are normalized by the rms value of −χt0ρT ∇θ s.
The thin solid black lines indicate the zero line as well as the equator at θ = 90◦.

(A color version of this figure is available in the online journal.)

zone has reached sufficient strength and expanded throughout
the whole domain, it quenches the high velocities in the corona
significantly, as is evident from Figure 2. When the magnetic
field reaches B tot

rms/Beq ≈ 0.3, the rms velocity decreases from
utot

rms/urms ≈ 6 to ≈1, i.e., the contribution from the corona is
now sub-dominant. This is caused by the Lorentz force, which
becomes much stronger and comparable to the Coriolis force in
the corona. In the saturated state, we have utot

rms ≈ urms, which
is reached after around t/τ = 1000 turnover times for Run A.
Runs Ab and Ac are restarted from Run A after this saturation
point.

For Run B, at first it seems that the saturated state has
been reached at t/τ = 1000, but it turns out that both utot

rms
and the magnetic field start to grow again to reach another
saturation level at t/τ ≈ 1700. While the differential rotation
profile remains roughly unchanged despite of the growth of the
energies (see Section 3.1), the magnetic field seems to undergo
a mode change from an oscillatory to a stationary solution or
an oscillatory solution with a much longer period in Run B (see
Section 3.4). We note that an increase of B tot

rms in Figure 2, where
we show the rms values of the magnetic field computed over
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Figure 4. Zoomed-in differential rotation profiles in the northern hemisphere in the convection zone. Top row: mean rotation profiles Ω(r, θ )/Ω0 for Runs A and B.
The black dashed lines indicate the surface (r = R). Bottom row: mean rotation profiles at four different latitudes for the four Runs A, Ab, Ac, and B: 90◦ − θ = 0◦
(solid black), 90◦ − θ = 15◦ (yellow), 90◦ − θ = 30◦ (red), 90◦ − θ3 = 45◦ (green), and 90◦ − θ3 = 75◦ (blue).

(A color version of this figure is available in the online journal.)

the whole domain, does not necessarily imply an increase of the
magnetic field inside the convection zone. The increase of the
rms magnetic field can also be attributed to the development of
magnetic structures ejected from the convection zone into the
coronal region.

In the upper panel of Figure 3, we show the balance of various
radial energy fluxes, contributing to the total luminosity for
Run A. The radial components of radiative, convective, kinetic,
viscous, and Poynting fluxes, as well as the flux due to the
turbulent heat conductivity, are defined as

F rad = 〈
F rad

r

〉
, (13)

F conv = cP〈(ρur )′T ′〉, (14)

F kin = 1

2
〈ρur u2〉, (15)

F visc = − 2ν 〈ρuiSir〉 , (16)

F SGS = 〈
F SGS

r

〉
, (17)

F Poy = 〈EθBφ − EφBθ 〉/μ0, (18)

where E = ημ0 J −u× B is the electric field, the primes denote
fluctuations, and angle brackets imply averaging over θ , φ, and a
time interval over which the turbulence is statistically stationary.
The resolved convective flux dominates inside the convection
zone and reaches much higher values here than in our earlier
model (Warnecke et al. 2012b). In the corona, the cooling keeps
the total flux constant. Note the convective overshoot into the
exterior and the negative radiative flux just above the surface
(r = R), caused by the higher temperature in the corona. The
kinetic energy flux has small negative values in the convection
zone. The luminosity due to viscosity and Poynting flux are too
small to be visible. In the lower panel of Figure 3, we show the
corresponding latitudinal contributions Fi normalized by the rms
value of the expected turbulent contribution from the latitudinal
entropy gradient, −χt0ρT ∇r s, where χt0 = urms/3kf . They are
generally just a few percent of the rms value of the turbulent
latitudinal heat flux and oriented mostly equatorward (positive
in the north and negative in the south). These values are small,
indicating that the system is thermally relaxed also in the θ
direction.

5



The Astrophysical Journal, 778:141 (15pp), 2013 December 1 Warnecke et al.

Figure 5. Representations of the two dominant terms in the evolution equation of mean azimuthal vorticity (see Equation (19)) for Run A: (∇T × ∇s)φ (left panel)

and r sin θ ∂Ω2
/∂z (middle panel), both normalized by Ω2

0. The rightmost panel shows the mean latitudinal entropy gradient R∇θ s/cP. The dashed lines indicate the
surface (r = R).

(A color version of this figure is available in the online journal.)

3.1. Differential Rotation

In Figure 4, we show the mean rotation profiles Ω(r, θ ) =
Ω0 +uφ/r sin θ for Runs A and B in the meridional plane and for
Runs A, Ab, Ac, and B at four different latitudes. The contours
of constant rotation are clearly not cylindrical for any of the four
runs. They show a “spoke-like” structure, i.e., the contours are
more radial than cylindrical, which is similar to the solar rotation
profile obtained by helioseismology (Schou et al. 1998). The
equator is rotating faster than the poles, which has been seen
in many earlier simulations (Gilman 1983; Brun et al. 2004;
Miesch et al. 2006; Käpylä et al. 2010, 2011b) and resembles
the observed rotation of the Sun for our slower rotation case
(Run B).

The source of differential rotation is the anisotropy of
convection and is described by the rφ and θφ components of
the Reynolds stress. Using a suitable parameterization of the
Reynolds stress in terms of the Λ effect, one obtains differential
rotation where the equator rotates faster than the poles. However,
nonlinear mean-field hydrodynamic simulations have shown
that for rotation rates comparable with those of the Sun,
the contours of constant angular velocity become cylindrical
(Brandenburg et al. 1992; Kitchatinov & Rüdiger 1995). To
produce spoke-like rotation contours, the Taylor–Proudman
balance has to be overcome by an important contribution in the
evolution equation for the mean azimuthal vorticity ωφ , which
is given by

∂ωφ

∂t
= r sin θ

∂Ω
2

∂z
+ (∇T × ∇s)φ + . . . (19)

where ∂/∂z = cos θ ∂/∂r−r−1sin θ ∂/∂θ is the derivative along
the rotation axis. The first term in Equation (19) is related to
the curl of the Coriolis force and vanishes for cylindrical Ω
contours. The second term is the mean baroclinic term, which

Figure 6. Differential rotation in the northern hemisphere including the coronal
layer. Mean rotation profiles, Ω(r, θ )/Ω0, at five different latitudes for Run A,
90◦ − θ = 0◦ (solid black), 90◦ − θ = 15◦ (yellow), 90◦ − θ = 30◦ (red),
90◦ − θ3 = 45◦ (dotted green), and 90◦ − θ3 = 75◦ (dashed blue). The black
dashed line indicates the surface (r = R).

(A color version of this figure is available in the online journal.)

is caused mainly by latitudinal entropy variations. We ignore
here additional contributions such as meridional Reynolds and
Maxwell stresses, which turn out to be small. In Figure 5, we
plot the first and second terms of Equation (19) for Run A.
These two contributions balance each other nearly perfectly.
This leads us to conclude that these two terms provide the
dominant contribution to the production of mean azimuthal
vorticity and that the Taylor–Proudman balance is broken by
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the baroclinic term. It is remarkable that there is such a large
and spatially coherent latitudinal entropy gradient, which is
crucial to having a significant azimuthal baroclinic term and is
self-consistently produced in the simulations.

Similar results have been obtained in mean-field simula-
tions by including an anisotropic convective heat conductivity
(Brandenburg et al. 1992; Kitchatinov & Rüdiger 1995) or by
including a subadiabatic part of the tachocline (Rempel 2005)
and in convection simulations by prescribing a latitudinal en-
tropy gradient at the lower radial boundary of the convection
zone (Miesch et al. 2006). More recently, Brun et al. (2011)
showed that spoke-like contours can also be obtained by in-
cluding a lower stably stratified overshoot layer in a purely
hydrodynamical simulation.

The rightmost panel of Figure 5 shows the mean latitudi-
nal entropy gradient ∇θ s for Run A. The spatial distribution
of the gradient agrees with the baroclinic term as well, because
∇rT ≈ const in the convection zone, so we can conclude that the
dominant contribution in the baroclinic term is due to the prod-
uct of the latitudinal entropy gradient and the radial temperature
gradient, which is more important than the radial entropy gradi-
ent multiplying the latitudinal temperature gradient. Compared
with Run A, the other three runs, not shown here, have similar
(Run B) or even identical (Runs Ab and Ac) distributions of the
two terms on the right-hand side of Equation (19), as well as the
latitudinal entropy gradient. The location of the spoke-like dif-
ferential rotation profile coincides with a similarly shaped mean
latitudinal entropy gradient. The entropy gradient in the north-
ern (southern) hemisphere is negative (positive) below ±30◦
latitude. In Run B, this region reaches to higher latitudes than in
Runs A, Ab and, Ac, which leads to radial contours of angular
velocity at higher latitudes.

We also note that, owing to the coronal envelope, differential
rotation is able to develop a near-surface shear layer. This is
manifested by the concentration of contours of Ω near the
surface at lower latitudes for Runs A and B and is also visible in
the other runs as a negative gradient of Ω in the same locations;
see Figure 4. In Run B, there also exists a concentration around
r = 1.1 R. In all the simulations, the shear layer is radially
more extended than in the Sun and penetrates deeper into
the convection zone. Further studies using higher stratification
should prove if this is just an artifact of weak stratification.
However, the spoke-like rotation profile with strong shear near
the surface occurs mostly at lower latitudes (90◦−θ � 15◦), i.e.,
close to the equator. At latitudes above ±30◦, the contours of
constant rotation are more complex, but show some indication
of strong shear close to the surface and only in Run B do the
contours become cylindrical beyond ±60◦ latitude. At higher
latitudes (90◦ − θ � 75◦), the near-surface shear layer is again
visible.

We were not able to see spoke-like rotation profiles in our
previous work (Warnecke et al. 2012b). Therefore, the applied
changes might play an important role in the formation of spoke-
like profiles. There are three main differences between the
two setups. First, the fractional convective flux in Warnecke
et al. (2012b) is much lower than in the present setup; compare
Figure 2 of Warnecke et al. (2012b) with Figure 3. A stronger
convective flux can give rise to more vigorous heat fluxes
and thus a more efficient thermal redistribution, causing a
more pronounced latitudinal entropy gradient. Second, the
temperature in the current setup increases sharply above the
surface, generating a hot corona instead of being constant, as in
Warnecke et al. (2012b). It is possible that the resulting steep

temperature gradient is important in providing enough thermal
insulation between the convection zone and the corona. Third,
the hot corona leads to a higher density stratification in both the
convection zone and the corona.

As seen in Figure 6, the corona rotates nearly uniformly with
Ω(r, θ )/Ω0 = 1 at lower latitudes (90◦ − θ � 30◦). We suggest
that the magnetic field, which connects the surface with the
corona, is responsible for this. Near the poles (90◦ − θ � 45◦),
the rotation rate drops sharply above the surface (r ≈ 1.1 R).
This drop coincides with the steep temperature and density
gradients above the surface, but also with the increase in the
applied viscosity profile. Further outside and away from this
drop, the rotation profile is cylindrical at high latitudes. This
behavior is similar in all four runs.

3.2. Connection with the Anisotropic
Turbulent Diffusivity Tensor

As discussed above, we expect the latitudinal entropy gradient
to be a consequence of an anisotropic convective (turbulent)
diffusivity tensor. Such anisotropies are caused by the rotational
influence on the turbulence (see, e.g., Weiss 1965; Rüdiger
1989). In particular, there is a term proportional to Ω0iΩ0j ,
where Ω0i is the ith component of �0 = (cos θ,− sin θ, 0)Ω0,
which gives a symmetric contribution χrθ = χθr proportional
to cos θ sin θ , so it vanishes at the poles and at the equator.
In the presence of a latitudinal entropy gradient, it leads to an
additional contribution to the radial convective flux

F r = −χrrρT ∇r s − χrθρT ∇θ s. (20)

Since χrθ = χθr and since there is a radial entropy gradient, it
also leads to a contribution in the latitudinal flux

Fθ = −χθrρT ∇r s − χθθρT ∇θ s. (21)

If we were to ignore the second term proportional to ∇θ s, we
could estimate χθr by measuring

Fθ = cPρu′
θT

′, (22)

so
χθr ≈ −cPu

′
θT

′/ T ∇r s. (23)

The result is shown in Figure 7, where we also plot a similar
estimate of the radial component

χrr ≈ −cPu′
rT

′/ T ∇r s. (24)

We normalize χij by χt0 = urms/3kf and find χθr/χt0 ≈ 1
and χrr/χt0 ≈ 2, corresponding to χθr/χSGS ≈ 50 and
χrr/χSGS ≈ 25. So, the SGS energy flux is small compared
with the resolved turbulent energy flux, as expected.

In reality, we cannot neglect the second term proportional to
∇θ s, even though this gradient is about 10 times smaller than
|∇r s| in our simulations. To test the accuracy of Equations (23)
and (24), we compute two-dimensional histograms of latitudinal
and radial heat fluxes versus latitudinal and radial entropy
gradients; see Figure 8. The determined values of the turbulent
heat diffusivities of Figure 7 are consistent with those results.
However, a clear linear trend is not visible, except for a narrow
range in the case of χrr . In the first panel, the line with
χrr = 1.85χt0 fits the maximum of the correlation well. Indeed,
looking at the left panel of Figure 7, χrr ≈ 2χt0 is compatible
with this. A similar behavior can be seen in the top right panel of
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Figure 7. Radial component χrr (left panel) and off-diagonal component
χθr (right panel) of the turbulent heat conductivity tensor normalized by
χt0 = urms/3kf and calculated from Equations (23) and (24) for Run A. Note the
high values at the bottom of the convection zone, which are due to the vanishing
radial entropy gradient.

(A color version of this figure is available in the online journal.)

Figure 8. We see that the lines of χθr = ±0.7χt0 fit well through
the maxima of the data, but we cannot find any indication of a
linear correlation, as suggested by Equations (23) and (24).
The last two panels support our assumption that the latitudinal
entropy gradient can be neglected when calculating the turbulent
heat diffusivity. The main conclusion of the two-dimensional
histogram is that the correlation suggested by Equations (23)
and (24) is at best only true for the radial gradient of s, but

not for the latitudinal one. The ratio of the convective flux
and the entropy gradient is dominated by the ratio of two
points rather than a correlation. Although the latitudinal entropy
gradient is only 10 times smaller than the radial one, we cannot
find a linear correlation. This is surprising, given that these
mean field relations have been used successfully to model the
differential rotation profile as well as the turbulent heat transport
of the Sun—in good agreement with observations (see, e.g.,
Kitchatinov & Rüdiger 1995). In fact, as shown in the mean-
field calculations of Brandenburg et al. (1992), the χrθ term
tends to balance the first term so as to reduce the latitudinal
heat flux and thus produce a latitudinal entropy gradient and a
baroclinic term as we see it.

To investigate the baroclinic term and the turbulent heat
diffusivities as well as their influence on the differential rotation
in more detail, we compare the present runs, where we include
a coronal envelope, with runs without a coronal envelope. The
runs without a coronal envelope are taken from Käpylä et al.
(2012, 2013). Thus, we compare Figures 5 and 7 for Run A
with the corresponding ones for Run C1 of Käpylä et al. (2013),
which is the same as Run B4m of Käpylä et al. (2012); see
Figures 9 and 10. As in Run A above, the baroclinic term of Run
C1 balances the advection term. However, the values are four
times larger and the shape shows a clear radial variation. The
baroclinic term is largest near the surface, whereas in Figure 5
of Run A the term is stronger near the bottom of the convection
zone. In Run C1, on the other hand, the terms are small near the
bottom and close to the equator. The component of the turbulent
heat diffusivity tensor (Figure 10) looks quite different from Run
A; compare with Figure 7. The radial heat conductivity is about
two times smaller than in the runs with a corona. The mean
radial entropy gradient has a positive sign at ±15◦ latitude and
extends from the bottom to the middle of the convection zone.
How these two behaviors can change the solar-like rotation
to a more cylindrical rotation is unclear. Stratification may be

Figure 8. Two-dimensional histograms of the radial and latitudinal heat flux vs. the radial and latitudinal entropy gradient for Run A. The four panels show, from top
left to bottom right, F r vs. ρT ∇r s, Fθ vs. ρT ∇r s, F r vs. ρT ∇θ s, and Fθ vs. ρT ∇θ s. In the two top panels, we overplot the corresponding values of the turbulent
heat diffusivities, determined from Figure 7 (dashed lines).
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Figure 9. Same as Figure 5, but for Run C1 of Käpylä et al. (2013), which is the same as Run B4m of Käpylä et al. (2012).

(A color version of this figure is available in the online journal.)

Figure 10. Same as Figure 7, but for Run C1 of Käpylä et al. (2013), which is
the same as Run B4m of Käpylä et al. (2012). This run is similar to those of the
present work without a coronal envelope.

(A color version of this figure is available in the online journal.)

important, because in Run C1 without a corona the density
contrast is ρ0/ρs = 22, which is slightly higher than in the four
runs of this work.

3.3. Meridional Circulation

Another important result is the multi-cellular meridional
circulation in the convection zone with a poleward (solar-like)
flow near the surface. In Figure 11, we plot the meridional

circulation in terms of the mass flux as vectors of ρ(ur, uθ , 0)
and as radial cuts of ρuθ through colatitudes θ1 = 60◦, θ2 =
75◦, and θ3 = 83◦, corresponding to latitudes of 30◦, 15◦,
and 7◦. Note here that in the northern (southern) hemisphere
a negative ρuθ means a poleward (equatorward) flow and a
positive one equatorward (poleward) flow. Runs A, Ab, and
Ac show significant solar-like surface profiles of meridional
circulation, while Run B shows a different pattern. Looking at
Run A, in the northern hemisphere at lower latitudes (�20◦) just
below the surface (r1 = 0.97 R), the meridional circulation is
poleward with ρ uθ = −0.007ρ0urms. Above the surface there
is a return flow in the equatorward direction. This return flow
peaks above the surface with a similar flux. The turning point
ρ uθ = 0 is just below the surface, at around r = 0.985 R.
The location of this turning point is consistent with the location
where the entropy gradient changes from negative to positive,
i.e., from convectively unstable to convectively stable; see
Figure 1. If we were to redefine the surface of the simulated
star to this radius, we would obtain a solar-like meridional
circulation, where the circulation is poleward at the surface.
The velocity near the surface is uθ ≈ 0.07urms. To compare
this with the meridional circulation at the surface of the Sun,
which is 10–30 m s−1 (Zhao & Kosovichev 2004), we calculate
the corresponding value of urms from the convective flux,
F conv ≈ ρu3

rms, with a typical density of ρconv = 2.5 kg m−3 near
the surface of the convection zone at r = 0.996 R (Stix 2002).
Our estimate of corresponding meridional circulation gives
um = 0.07(F conv/ρconv)1/3 ≈ 20 m s−1, which is consistent
with the solar value. Similar estimates apply to the southern
hemisphere, but the meridional circulation is a bit weaker here.
This behavior can also be found in Runs Ab and Ac, where the
flows are weaker and the turning points lie slightly deeper. Note
that the strong return flow above the surface is a consequence
of our particular setup, which has a much weaker stratification
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Figure 11. Meridional circulation in the northern hemisphere in the convection zone. Top row: meridional circulation as vectors in terms of the mass flux ρ(ur , uθ , 0)
for Runs A (left) and B (right), where for Run B the arrows are reduced in size by a factor of three. The three red dashed lines represent the latitudes 90◦ − θ1 = 30◦,
90◦ − θ2 = 15◦, and 90◦ − θ3 = 7◦, which are used in the bottom row. The black solid lines indicate the surface (r = R) and the bottom of the convection zone
(r = 0.7 R). Bottom row: latitudinal mass flux ρuθ /ρ0urms plotted over radius r/R for three different latitudes θ1 (blue dot-dashed line), θ2 (red dashed line), and
θ3 (black solid line) in the northern hemisphere for Runs A (left) and B (right). The black dashed lines indicate the surface (r = R) and the radii r1 = 0.97 R and
r2 = 0.84 R, which are also used in Figures 12 and 13.

(A color version of this figure is available in the online journal.)

than the Sun; see Figure 1. Higher stratification should lead
to a much weaker return flow in this location. In Run B, a
poleward flow develops in the northern hemisphere only close
to poles (θ = θ1). The meridional circulation has a latitudinal
dependence. In Run A, the return flow reaches higher velocities
at lower latitudes (� ± 20◦). The same is true for the poleward
circulation below the solar surface. In Run B, we find the

opposite and both the return flow and the meridional circulation
increase with latitude, as does the meridional circulation.

From the bottom row of Figure 11, we can estimate the
number of meridional circulation cells at low latitudes. We
find that there are at least two cells in the convection zone.
In Run A, there is one cell with poleward flow maxima around
r = r1 and minima around r = 0.91 R, where the mass flux
closer to the surface is as large as that in the return flow deeper
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in the convection zone. A second cell is deeper down in the
convection zone and has similar extent and flux. A similar two-
cell meridional flow pattern has recently been reported by Zhao
et al. (2013) from helioseismic inversions of Solar Dynamics
Observatory/Helioseismic and Magnetic Imager data. In Runs
Ab and Ac, the pattern is different and the flux is weaker, but
there are indications of a third cell. Note that the stratification
leads to stronger mass fluxes over a smaller cross-sectional area
deeper in the convection zone than near the surface, while the
velocity is similar. In Run B, there are two strong cells of
meridional circulation. The cells seem to be more cylindrical
than latitudinal, which can also be seen in the phase shift of
the pattern for different latitudes. Even deeper down in the
convection zone, the meridional flow is much stronger than in
Runs A, Ab, and Ac. This is consistent with results from models
with anisotropic viscosity (or lowest order Λ effect), which
show a maximum of meridional circulation for Taylor numbers
around 107 (Köhler 1970). Our Taylor number is above this
value, so the circulation decreases with faster rotation, which
is also in agreement with numerical simulations (Ballot et al.
2007; Brown et al. 2008; Augustson et al. 2012). We emphasize
that this does not apply to the non-dimensional meridional
circulation, normalized by viscosity, which does not show a
maximum.

3.4. Mean Magnetic Field Evolution

The turbulent helical motions generated by convective heat
transport, together with differential rotation, produce a large-
scale magnetic field inside the convection zone. It grows
exponentially and shows an initial saturation after around
t/τ = 100 for Run A; see Figure 2. Run B shows a more
peculiar behavior: the field seems to have saturated at around
t/τ = 300, but it starts growing again at around t/τ = 700 and
appears to saturate at t/τ = 1700. The latter growth is possibly
related to a change of the oscillatory mode into a stationary one;
see Figure 12 and the discussion below. The magnetic and fluid
Reynolds numbers of Run B are higher than for the other cases,
which should lead to a higher growth rate. However, the rotation
rate measured by Co is around half that of Run A, which leads
to a slower amplification of the field. At a later time, around
t/τ = 1000, the field of Run B becomes comparable to or even
stronger than that of Run A. The value of Brms reaches around
0.5 of the equipartition field strength in Runs A, Ab, and Ac and
0.6 in Run B; see Table 1. In comparison, B tot

rms is around 20%
lower because the field is mainly concentrated in the convection
zone. The equatorward migration pattern is visible in three of
the four runs at high latitudes. In Run A, the pattern seems to
transform into a slow poleward migration at lower latitudes, but
the equatorward migration pattern re-appears at t/τ = 2300.
We suggest that the equatorward migrating dynamo mode is
dominant after t/τ = 500, while being overcome by other
modes between t/τ = 1500 and t/τ = 2300.

Comparing our results with those of Käpylä et al. (2012)
without a corona but an otherwise comparable setup, the
magnetic field in the current simulations is slightly weaker. In
Figure 2 of Käpylä et al. (2012), the mean toroidal magnetic field
strength is close to super-equipartition (Bφ ≈ Beq), whereas
in Figure 12 the mean magnetic field strength is roughly
Bφ = 0.5Beq. Additionally, the growth rate of the dynamo is
greater than in the models without corona, where it takes up to
five times longer to reach dynamically important field strengths.
This is not surprising because the dynamo in the two-layer model
is less restricted and has more freedom for different dynamo

modes to be excited. There is no restriction due to the magnetic
boundary at the surface, which is open in our simulations, but
restricted to vertical fields in the convection zone simulations
of Käpylä et al. (2012). This could explain the fast growth in
the beginning, but not the decreased saturation level. On the
other hand, the runs in this work and the runs of Käpylä et al.
(2012, 2013) also show differences in other parameters, such as
stratification, rotation rate, and Reynolds numbers, so a direct
comparison might not be possible.

Recently, other authors have also reported magnetic cycles. In
the works by Brown et al. (2011) and Nelson et al. (2013) using
anelastic LES, the authors were able to produce an oscillatory
field, but without a clear pattern and no equatorward migration.
In the simulations by Ghizaru et al. (2010) and Racine et al.
(2011), who used an implicit method, the mean magnetic field
shows a clear oscillatory behavior, but only a weak tendency
for equatorward migration; see Figure 4 of Ghizaru et al. (2010)
and Figure 8 of Racine et al. (2011). There is evidence that
oscillatory solutions are favored when the density stratification
is strong (Gastine et al. 2012), but such dynamos might well be
of the α2 type (Mitra et al. 2010; Schrinner et al. 2011), while
strong shear favors poleward migration (Schrinner et al. 2012).
At the moment, only the work by Käpylä et al. (2012, 2013) and
the present work show clear evidence of equatorward migration.

Looking just at Brms in the convection zone or at B tot
rms in

the whole domain in Figure 2, we find evidence of cyclical
behavior of the field for Runs A, Ab, and Ac. The cycle period
is ≈100τ . In Run B, there is no clear evidence of cyclical
behavior. Investigating the different components of the mean
magnetic field, we find signs of oscillatory behavior for all
runs, except that Run B shows oscillations only at early times.
In Figure 12, we plot the azimuthal mean magnetic field Bφ

over time and latitude at r1 for Runs A, Ab, Ac, and B, while
in Figure 13 we show Bφ at r2 and the radial mean field Br

at r1 and r2 for Run A. The structure of the magnetic field
changes as the dynamo evolves from the kinematic regime,
where the magnetic field is weak and does not significantly
influence the flow. In Run A, the azimuthal and radial mean
fields migrate poleward close to the equator in the kinematic
regime. The cycle period is short, just around 20τ . In Run B, we
find a similar behavior. The fast poleward migration happens at
low latitudes (±40◦) for both runs. We recall that in Run A, after
a short time (t/τ ∼ 100), the field is strong enough to backreact
on the flow. At that time, two things happen simultaneously: an
oscillating mean magnetic field starts to migrate equatorward
at higher latitudes and the fast poleward migration becomes
slower. The period of the equatorward oscillation is longer and
is between 100τ and 150τ for the rest of the run. This period
is consistent with those obtained from the B tot

rms time series. The
poleward migration near the equator slows down until it finally
turns into an equatorward migration aligned with the migration
at higher latitudes (t/τ = 500). Thus, we have equatorward
migration of the mean radial and azimuthal fields at all latitudes
until around t/τ = 1500 and again after t/τ = 2300; see
Figure 13. During this interval, the dynamo mode changes
and, consequently, its latitudinal migration pattern changes.
The equatorward migrating and oscillating field near the poles
show a stable pattern during the whole simulation, but near the
equator the field changes with time. In the northern hemisphere,
there is a transient poleward migration, which is in phase
with the equatorward migration near the poles. In the southern
hemisphere, the equatorward migration is still dominant, but
a stationary mode is superimposed near the equator. After
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Figure 12. Time evolution of the mean magnetic field in the convection zone. From top left to bottom right, we show Bφ for Runs A, Ab, Ac, and B at r1 = 0.97 R.
Dark blue shades represent negative values and light yellow shades represent positive values. The dashed horizontal lines show the location of the equator at θ = π/2.
The magnetic field is normalized by its equipartition value, Beq.

(A color version of this figure is available in the online journal.)

t/τ = 2300, the equatorward migration returns and penetrates
again to lower latitudes.

The migration patterns are not just features appearing close
to the surface, but they penetrate the entire convection zone
until the bottom, as seen in Figure 13. This makes it implausible
that meridional circulation is the main driver of this migration.
As discussed in Section 3.1, the meridional circulation shows
strong variability in radius and has at least two cells.

Runs Ab and Ac have been restarted from a snapshot of
Run A after t/τ ≈ 1350 and 1150, respectively. In Run Ab,
we decrease the magnetic Prandtl number, while in Run Ac
we increase it; see Table 1. This was done to investigate the
influence of the magnetic Reynolds number on the equatorward
migration. As seen from Figure 12, the pattern of the mean
magnetic field is not strongly affected by this change. There is
clear equatorward migration near the poles and some indication
of poleward migration at low latitudes. It seems that Run Ac,
with a higher magnetic Reynolds number, shows a clearer
equatorward migration pattern. However, some stationary fields
are superimposed on the field near the equator. In Run Ab, the
field tends to migrate poleward near the equator and equatorward
near the poles. In any case, a higher magnetic Reynolds number
(keeping the other parameters the same) seems to support
equatorward migration. This is promising because it goes in
the right direction toward explaining the Sun, although the
differences in Reynolds numbers are not large enough to draw
strong conclusions.

In Run B, where the fluid and magnetic Reynolds numbers
are higher and the rotation is slower than in Run A, the structure
of the mean field evolution shows some differences. In the
kinematic regime, the field is similar to that of Run A in
which it migrates poleward at lower latitudes. Also, as the
field gets stronger, it begins to migrate from higher latitudes
toward the equator and the low-latitude fast poleward branch
becomes slower. The main difference from Run A is that the
poleward migration does not turn into equatorward migration
near the equator. In Runs A, Ab, and Ac, the field strengths
have no clear latitudinal dependence. In contrast, in Run B the
field strength near the poles is around half the strength near the
equator. Only during late times does the high-latitude branch
increase in strength. In Runs A and Ac, the radial and azimuthal
components have approximately the same strength, whereas in
Run B the radial mean magnetic field seems to be weaker by a
factor of two. Also, Run B shows no clear radial dependence in
the structure of the mean field. The period of the equatorward
migrating field is t/τ ≈ 200, which is a bit longer than in Run
A. The poleward migration near the equator has an irregular
oscillation and is usually not in phase with the equatorward
migration near the poles. At ≈1000τ, the dynamo mode changes
significantly. Not only does the magnetic field start to grow
(see Figure 2), but the magnetic field also changes from an
oscillatory pattern to a stationary one, or at least an oscillatory
one with a much longer period; see Figure 12. In particular, in the
northern hemisphere, the mean azimuthal field shows a strong
increase in strength. The field pattern now consists of a strong
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Figure 13. Time evolution of the mean magnetic field in the convection zone
for Run A. From top to bottom: mean radial field Br at r1 = 0.97 R, mean
azimuthal field Bφ at r2 = 0.84 R, mean radial field Br at r2 = 0.84 R, and
mean azimuthal field Bφ at 25◦ latitude for the whole radial extent. Otherwise,
the same as in Figure 12. In the last panel, the dashed lines indicate the surface
(r = R) and the radii r1 = 0.97 R and r2 = 0.84 R.

(A color version of this figure is available in the online journal.)

time-independent component with a latitudinal dependence.
Near the surface (at r1; see Section 2), the field seems to migrate
slowly toward the equator, but it is not possible to identify a
migrating pattern in the present run.

If one translates the cycle period of the equatorward migration
to solar values using a turnover time τ of 1 month, we obtain
a cycle period of 12 and 16 yr for Runs A and B, respectively.
This would be a typical value in the middle of the convection
zone. However, if one uses the Coriolis numbers of our runs
(see Table 1), then τ = PsunCo/4π would be 0.7 months, which
would lead to 9 yr and 12 yr for Runs A and B, respectively. The
regular magnetic cycles in the work of Ghizaru et al. (2010) and
Racine et al. (2011) have a somewhat longer period of 60 yr.
Nelson et al. (2013) and Brown et al. (2011) were only able
to generate highly irregular cycles, with no clear reversal in
both hemispheres. They therefore found a large range of cycle
periods, which span from 1 yr to around 60 yr.

To investigate the equatorward migration, we plot the mean
azimuthal magnetic field Bφ for eight different times for Run
A, resolving one cycle; see Figure 14. The field penetrates the
entire convection zone and has up to four regions with different
polarities in one hemisphere. These polarities are migrating
toward the equator. In the northern hemisphere at around 45◦
latitude, there is a magnetic field concentration with positive
polarity. After Δt/τ = 827–740 = 87 (panel 5), we find a
negative magnetic field concentration at the same location, and
again after Δt/τ = 65 (panel 8) the same polarity as in the
beginning of the cycle appears. One can see a clear cyclical
equatorward migration of the field, but it is irregular. The two
hemispheres do not show the same magnetic field strength and
it seems that, from time to time, there is only one dominant
polarity in one hemisphere, while in the other there are three.
Note also the strong negative magnetic fields near and above the
surface, which also seem to show cyclical behavior.

It is still unclear why the equatorward migration takes place,
so we can only speculate about it. There are several candidate
explanations. One is the meridional circulation, which shows a
solar-like pattern in Runs A, Ab, and Ac. However, as shown in
Figure 13, the equatorward migration is present throughout the
bulk of the convective zone, while the meridional circulation
becomes more incoherent with depth. The incoherence is a
manifestation of the multi-cellular structure of the meridional
circulation. The shape and number of cells are similar to those
obtained in recent simulations by Käpylä et al. (2012) and
Nelson et al. (2013) and observations by Zhao et al. (2013). This
is quite different from the single cell circulation postulated in
flux transport dynamo models to drive equatorward migration
(e.g., Choudhuri et al. 1995; Dikpati & Charbonneau 1999;
Kitchatinov & Olemskoy 2012). We can therefore conclude that
we find no evidence for magnetic field generation similar to the
mechanism proposed by the flux transport dynamo models. A
second candidate is the contribution of current helicity of small-
scale fields in the magnetic α tensor. However, preliminary
studies suggest that the isotropic part does not seem to play
an important role here (Warnecke et al. 2013a). This point is not
fully conclusive, because we have not yet determined the full
anisotropic contributions to the magnetic quenching term (see
Brandenburg & Subramanian 2007 for a detailed description
and discussion). Finally, Käpylä et al. (2013) used the phase
difference of the poloidal and toroidal magnetic fields to argue
that an α2 dynamo is responsible for the equatorward migration
in their model. This might also be the case here, which is also
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Figure 14. Time series of 8 snapshots of the mean azimuthal magnetic field Bφ separated by 22 turnover times and covering one full magnetic cycle from Run A.
Dark blue shades represent negative values and light yellow shades represent positive values. The dashed line indicates the surface (r = R). The field is normalized
by the equipartition field strength Beq.

(A color version of this figure is available in the online journal.)

indicated by the fact that the amplitude ratio of poloidal to
toroidal field is near unity; see Figure 13.

The radial dependence of the mean azimuthal magnetic field
(see the last panel of Figure 13) suggests that most of the
contribution to the cyclical behavior comes from the surface
layers. First of all, the field is strong near and above the
surface where the density stratification is large, but also at
the bottom of the convection zone, at least after saturation.
The oscillation pattern seems to be predominantly a surface
phenomenon with extension to the bulk rather than one rooted
deep in the convection zone. The field at the bottom of the
convection zone has constant polarity, while in the bulk and at
the surface of the convection the oscillation is quite pronounced.
For example, at t/τ ≈ 2000, a negative magnetic field rises
from the bottom and gets concentrated near the surface while,
at the same time, a positive field seems to be formed close
to the surface and emerges above the surface, where it gets
concentrated. This suggests that the strong density stratification,
which is present only very close to the surface of the Sun, might
be responsible for the oscillation and the equatorward migration
of the solar magnetic field.

Further investigations measuring the turbulent transport co-
efficients in their full tensorial form are necessary to determine
the reason for the equatorward migration. Measuring the compo-

nents of α by neglecting the contributions of the turbulent mag-
netic diffusivity ηt, as by Racine et al. (2011), can be misleading.
A more sophisticated approach is to use the so-called test-field
method (Schrinner et al. 2007; Brandenburg et al. 2010) adapted
for spherical coordinates.

4. CONCLUSIONS

We have used a model that combines the turbulent convective
dynamo with a coronal layer to reproduce properties of the
Sun. We found a solar-like differential rotation with roughly
radial contours of angular velocity at low latitudes. This is
accompanied by a multi-cellular meridional circulation, which
is manifested as a solar-like poleward flow near the surface.
Additionally, the differential rotation profiles show a near-
surface shear layer in all of the four simulations we perform.
In one of the four simulations, there also exists a similar layer
above the surface. We identify the self-consistently generated,
non-zero latitudinal entropy gradient as the main cause of the
spoke-like differential rotation.

The mean magnetic field shows a pattern of equatorward
migration similar to Käpylä et al. (2012, 2013). This pattern
is mostly visible at higher latitudes and only in two of the
simulations at lower latitudes. However, at intermediate times
of the simulation, the equatorward migration is only visible at
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high latitudes, while at lower latitudes poleward migration or
stationary modes occur. In one of the simulations, the dynamo
mode changed to a stationary one on all latitudes at later stages.
The dynamo has a shorter excitation time than in the earlier
work of Käpylä et al. (2012).

The present work leads to the conclusion that the inclusion
of a coronal layer in convective dynamo simulations has an
influence on the fluid and magnetic properties of the interior. In
recent simulations, we were able to produce recurrent coronal
ejections from the solar surface (Warnecke et al. 2012b) using a
two layer approach. In earlier models of forced turbulence with
a coronal layer (Warnecke & Brandenburg 2010; Warnecke et al.
2011, 2012a), we also found ejection of magnetic helicity out
of the dynamo region. These ejections can support and amplify
the magnetic field due to significant magnetic helicity fluxes.

Here, we present evidence that even the fluid properties in
the bulk of the convection zone might be influenced by the
coronal layer. Spoke-like rotation profiles could not be obtained
by earlier DNS of convective dynamos (Käpylä et al. 2012)
without prescribing a latitudinal entropy gradient at the bottom
of the convection zone (Miesch et al. 2006) or adding a stably
stratified layer below the convection zone (Brun et al. 2011) in
purely hydrodynamical LES. However, to have more convincing
evidence in support of this, we need to perform a detailed
parameter study using different coronal sizes and compare them
with simulations without a corona.

Another extension of our work is the measurement of mag-
netic helicity fluxes through the surface and their dependence
on the size of the corona. To investigate the mechanism of the
equatorward migration, which is crucial for understanding the
solar dynamo, one should measure the turbulent transport coef-
ficients through approaches like the test-field method (Schrinner
et al. 2007).

In further work, we plan to investigate the possibility of
producing coronal ejections using the setup of these runs. In
comparison with Warnecke et al. (2012b), we use here a corona
with a much higher temperature and a lower plasma beta. It will
be interesting to see how the coronal ejections are influenced by
these changes.
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