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ABSTRACT
We show how the 3DVAR data assimilation methodology can be used in the astrophysical
context of a two-dimensional convection flow. We study the way in which this variational
approach finds best estimates of the current state of the flow from a weighted average of model
states and observations. We use numerical simulations to generate synthetic observations of a
vertical two-dimensional slice of the outer part of the solar convection zone for varying noise
levels, and implement 3DVAR when the covariance matrices are diagonal and proportional to
the identity matrix. Our simulation results demonstrate the capability of 3DVAR to produce
error estimates of system states that can be more than two orders of magnitude below the
original noise level present in the observations. This work illustrates the importance of applying
data to obtain accurate model estimates given a set of observations. It also exemplifies how
data assimilation techniques can be applied to simulations of stratified convection.

Key words: chaos – convection – MHD – methods: numerical – methods: statistical – Sun:
general.

1 IN T RO D U C T I O N

When using models to describe the temporal evolution of observed
complex systems we are confronted with a number of challenges. An
immediate difficulty in dealing with this issue is that we generally
do not know in full detail the current state of the system or the
initial conditions that are to be used. The lack of such information
prevents us from keeping a model-based simulation in step with the
behaviour of the observed system.

Data assimilation techniques offer a means to address such chal-
lenges for complex systems by keeping a computer simulation (i.e.
model) in synchronization with observations of the system it repre-
sents. They provide a general framework for simultaneously com-
paring, combining and evaluating observations of physical systems
and output from computer simulations.

The methods used in data assimilation have been developed over
several decades, primarily in meteorology and oceanography for
the prediction of future behaviour. Data assimilation is used daily
in operational weather prediction (Bengtsson, Ghil & Källén 1981;
Kalnay 2003), in climate forecasts (Palmer & Hagedorn 2006), and
it was even used to correct the path of the Apollo spacecraft during
the first moon landings (Cipra 1993). There is a large and growing
body of literature, including several monographs (e.g. Daley 1993;
Kalnay 2003; Wunsch 2006) and papers discussing its theoretical
foundations (e.g. Lorenc 1981; Lorenc 1986; Le Dimet & Talagrand
1986; Ghil 1989). Astrophysical data assimilation has recently been
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discussed by Brun (2007), in the context of space weather and
solar cycle prediction (Dikpati 2007; Choudhuri, Chatterjee & Jiang
2007; Kitiashvili & Kosovichev 2008), as well as in dynamo models
(Jouve, Brun & Talagrand 2011).

Here we focus on the three-dimensional variational (3DVAR)
data assimilation technique, which is a sequential approach (Daley
1993). It produces updates of the current state of a model simula-
tion at times when system observations are available. Propagation of
model states between updates is performed using a model run initi-
ated at the latest state estimate. An extension of 3DVAR to implicitly
incorporate dynamical information is known as four-dimensional
variational (4DVAR) data assimilation. 3DVAR produces estimates
only at times when an observation and a model estimate are avail-
able. At other times, model trajectories fill the gaps between the
observations. The 4DVAR estimate is over an interval in time dur-
ing which all observations in the interval have been accounted for,
and the model dynamics is used to propagate information within
the interval.

State estimates produced by 3DVAR are optimal provided that
the model is linear and the error statistics are Gaussian, stationary
and correctly specified. In other words, 3DVAR states are best linear
unbiased estimates, where best and optimal refer to the lowest pos-
sible mean squared error of the estimate (Kalman 1960; Talagrand
1997).

For non-linear models, error statistics may become non-Gaussian
even when the initial distribution is normal and 3DVAR (or 4DVAR)
estimates are no longer unbiased. In this case, data assimilation
techniques are challenged by the fact that actual applications are
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typically based on non-linear processes (Pires, Vautard & Talagrand
1996). Specifically, the states exhibited by real systems under ob-
servation will diverge from those predicted by a model simulation.
This has two principal causes (Palmer & Hagedorn 2006): observa-
tional error and sensitivity to initial conditions. The first of these is
a result of what may be called noise. Because its statistical character
may not be known, we may need to make some assumptions about
its properties. The second source of error occurs in many complex
systems and is referred to as chaotic behaviour. This has been known
for some time, but only in recent decades has serious progress in its
understanding been possible. The sensitivity of the model to initial
conditions limits how far into the future predictions can be made
(Lorenz 1993). Two examples of other data assimilation challenges
are the mismatch between spatial locations of observations and grid
positions of the model, and model variables not corresponding to
observed quantities.

Despite the challenges and some open questions, 3DVAR is
widely used in the oceanographic and meteorological communi-
ties, and would make a good candidate method to explore in the
context of astrophysical flows.

2 ST R ATI F I E D C O N V E C T I O N MO D E L

We are motivated to use data assimilation techniques in the con-
text of stratified convection as a path to obtain predictions of solar
subsurface weather events, namely of the flow structure beneath the
surface. The ability to anticipate the possibility of violent events
on the solar surface, such as coronal mass ejections that affect the
space weather and the dynamics of the Earth’s magnetosphere, is
important (see Ilonidis, Zhao & Kosovichev 2011). The idea is
to use a model of solar subsurface convection, ultimately involv-
ing the magnetic fields that give rise to surface activity such as
sunspots, solar flares, and coronal mass ejections, although current
advances in that direction are still at a preliminary stage (Warnecke,
Brandenburg & Mitra 2011). However, once such models are able
to reproduce sufficient details of solar activity, it will be important
to synchronize a given model with daily observations to be able to
use it for predictions.

As a proof of concept, we design a data assimilation experiment
to test the implementation of 3DVAR for the PENCIL CODE, a public-
domain code of high order (sixth order in space and third order
in time) for solving the hydrodynamic equations (Brandenburg &
Dobler 2002).1 We consider here a simple two-dimensional con-
vection model representing the turbulent flows of stars with outer
convection zones. In our experiment, synthetic observations are
generated by adding noise to the output from our model. These
observations are then processed by 3DVAR to produce an analysis.
An analysis is an estimation of the unknown state of a system in
terms of model variables (Lorenc 1986; Talagrand 1997).

Our implementation is general and in the future could be used for
other problems that can be addressed with the PENCIL CODE. In this
work we assume the model to be ideal and to reproduce faithfully
the features present in the observations. In real-world applications,
the models are far from ideal, and imperfections and uncertainties
related to the model are always present. Ideally, we would like to be
able to account for some portion of those unknowns by using data
assimilation techniques.

We use the sample 2d/conv-slab-MLT of the PENCIL CODE

(revision r14696 and later). This sample simulates a vertical

1 http://pencil-code.googlecode.com/

two-dimensional slice of the outer part of a stellar convection zone.
In particular, we use it to simulate convection at low resolution,
64 × 64, at a Rayleigh number of 8 × 105 (Dintrans et al. 2005),
and at a Reynolds number of ∼30. The basic setup is similar to that
described in Brandenburg et al. (2005) and for other earlier models
(Hurlburt, Toomre & Massaguer 1986; Brandenburg et al. 1996),
consisting of a convectively unstable layer sandwiched between two
stable layers.

The simulated vertical two-dimensional slice of the outer part of
the solar convection zone has a mean field velocity of urms = 0.08,
the wavenumber of the energy-carrying eddies is kf = 2π/d for a
depth of the unstable layer d = 1, and therefore the correlation time
τ cor = (urmskf)−1 is ∼2. Starting from an initial velocity field of
perturbations with amplitude of 3 × 10−4 times the average sound
speed, convective motion is generated without having to introduce
any other forcing. This model is chosen to illustrate 3DVAR in an
astrophysical context for sufficiently complex behaviour without
including any stochastic elements.

3 DATA A SSI MI LATI ON SETUP

The 3DVAR scheme was developed in the meteorological commu-
nity to improve model-based weather prediction in the face of of
observational and modelling uncertainties. It was formulated in a
unified Bayesian framework by Lorenc (1986). 3DVAR produces an
update of the current state of the system at times when observations
are available, which in turn can be used as a new initial condition to
propagate the model forwards to the time when the next observation
is available.

We can use 3DVAR as a black box along with a low-resolution
simulation to assimilate many data points at low computational
cost on a laptop computer. For example, a typical model run for
a 64 × 64 two-dimensional convection field over a time interval
of 300 time units (corresponding to about 150 correlation times
or about 1 d if applied to the top of the solar convection zone
where typical velocities are 1 km s−1 and typical length scales are
500 km) takes about 15 min on a laptop computer. A single data
assimilation correction takes 4 min. We expect that an optimized
implementation could be much more efficient. 3DVAR minimizes
the sum of the squared differences between the current model state
and the observations to find a solution that is a compromise between
these two estimates of the true state.

It is important to realize that, in real problems, the true state
is available only through noisy observations of the system. We
have the ideal case in which there is no model uncertainty and the
only source of uncertainty is in the observations. In this way, we
can assess how far/close the model state is to the true state of the
system. The key is to generate a known true state against which the
estimated state obtained via data assimilation can be verified.

In our twin-experiment (Bengtsson et al. 1981) we select two
different initial fields to run the PENCIL CODE simulation. One of
these initial fields represents the unknown true initial state of the
system. The other initial field represents what might be, in practice,
a good approximation, or guess, of the initial state of the system.

The initial field chosen to represent the true initial state of the
system initializes a model run corresponding to the original state
of the system. This is to be used as a reference trajectory or con-
trol. The other initial field is used to initialize two different runs:
one free model run and another that will become the assimilated
trajectory or analysis. The analysis is a collection of segments of
model trajectories initialized at the 3DVAR corrections made at all
times when the observations are available. The model state before
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correction is called the background state, and the updated estimate
is called the analysis.

Comparing the free and the control run gives us a measure of the
sensitivity to initial conditions of our model; that is, it shows how
similar initial conditions diverge in time. Similarly, a comparison
of the free run and the analysis represents the effect of the data
assimilation procedure over a trajectory, where both start from the
same initial field. If the assimilation of the second set of initial
conditions is effective it will bring the analysis ‘closer’ to the control
run.

We generate synthetic observations by adding independent and
identically distributed noise to the horizontal velocity field at all grid
points of the control run. These synthetic data are considered to be
our experimental observations, which in turn will be used to update
the analysis. As explained in the next section, 3DVAR requires both
a model state and an observation to update the analysis at each
assimilation.

4 3 DVA R A N D T H E W E I G H T FAC TO R

The 3DVAR technique finds a model state x that agrees with the
current state of the observed system given the information available
in the observations and the model. Specifically, we minimize the
weighted average of the residues for both observations y0 and model
states xb at a specific time t to find an optimal solution. This is
expressed in the 3DVAR cost function (Lorenc 1986)

J (x) = 1

2
[x − xb]� B

−1 [x − xb]

+ 1

2

[
y0 − H(x)

]�
R

−1 [
y0 − H(x)

]
, (1)

where xb is the model state – traditionally called the background
state – and y0 is the observed state. The background covariance
matrix is defined as

B =
〈(

δuA
x − 〈

δuA
x

〉) (
δuA

x − 〈
δuA

x

〉)�〉
, (2)

with averages denoted by 〈·〉, and where δuA
x is defined as the

difference between the background state xb and the reference state
xr:

δuA
x = xb − xr. (3)

The observational covariance matrix is in a similar way defined as

R =
〈(

δu0
x − 〈

δu0
x

〉) (
δu0

x − 〈
δu0

x

〉)�〉
, (4)

where δu0
x is defined as the difference between the observations y0

and the corresponding reference state H(xr):

δu0
x = y0 − H(xr), (5)

where the observation operator H has been used to project the model
variables onto observables.

As a result of minimizing J (x) in equation (1) we obtain the
analysis xa corresponding to the best estimate of the current state of
the system. After the estimate is generated, the model is integrated
forwards using the analysis as the initial condition to the next time
an observation is available. Synthetic observations are denoted by
y0, and contain normally distributed noise of amplitude σ R, pro-
portional to the maximum amplitude of the full two-dimensional
vertical velocity field.

For example, a noise level of 1 per cent corresponds to σ R =
0.01 times the peak-to-peak amplitude for a normalized field or to
σ R = 6 × 10−3 for an unnormalized field. A realistic noise level

for observations in the vertical component of the velocity at the top
3.5 to 5.5 Mm of the convection zone is one between 0.007 and
1 per cent of the peak-to-peak amplitude (Švanda et al. 2011).

The selection and construction of the observational and back-
ground covariance matrices (R and B) are of great interest in data as-
similation (Bannister 2008a,b). In our case, the observational noise
is not correlated in space, and we neglect spatial correlations be-
tween model states, making the off-diagonal components of the B

and R matrices vanish. By doing this, we can set these matrices
to be proportional to identity matrices (referred to as scalar vari-
ances), Rij = δij σ

2
R and Bij = δij σ

2
B. Without these spatial correla-

tions 3DVAR generates an analysis that is, in general, less smooth
over the two-dimensional domain. In more sophisticated formula-
tions of equation (1), the form of B can also include physical con-
straints to processes not resolved in the model (Dobricic & Pinardi
2008).

In turn, we set the observation operator to be Hij = δij. This
means that we assume that the observations cover all grid points in
the model domain; that is, that the observables and model variables
belong to the same space. In other words, the system and model
are the same. In more realistic implementations of 3DVAR, H is
typically a computer algorithm that cannot be expressed explicitly
as a matrix owing to its non-linear nature (Dobricic & Pinardi 2008).

After these assumptions, we can translate the cost function (equa-
tion 1) to

J (x) = w (x − xb)2 + (
x − y0

)2
, (6)

where w is the ratio of the scalar variances corresponding to the
observed and background states

w = (σR/σB)2. (7)

In this setting, to find the state vector xa that minimizes (6), we
use Powell minimization (Press et al. 1992). The advantage of this
procedure is that no information about the gradient or adjoint of
the model is needed. This would be required for more efficient
optimization schemes such as the quasi-Newton or the conjugate
gradient method (Press et al. 1992).

The coefficient w in equation (6) behaves as a weight factor in
the optimization process and will be referred to as such. Solving
∇J (x) = 0 yields

w(x − xb) + (x − y0) = 0, (8)

and the optimal state of the model, the analysis xa ≡ x, that repre-
sents the systems given the current observations is found by solving
equation (8) for x.

xa = 1

w + 1
y0 + w

w + 1
xb ≡ xb + y0 − xb

w + 1
. (9)

Equation (9) reveals how the contribution of the background states
xb and observations y0 affects the analysis xa in terms of the weight
factor w. Fig. 1 clearly shows the result of this process. At times
when observations (grey open diamonds) are available, 3DVAR
performs a correction, given by equation (6), to the analysis (black
plus signs), and from which a segment of background states (dotted
curve) is initialized and run up to the next assimilation time. The
analysis is the background states for times different from the as-
similation times, and the corrected values obtained at assimilation
times.

Given a model and a fixed set of observations, equation (9) help
us to understand the effects of the weight factor in the resulting
analysis xa. The case w < 1, or σ R < σ B, corresponds to the ob-
servational uncertainty being smaller than the model uncertainty. In
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Figure 1. Temporal evolution of the horizontal velocity at a certain mid-
point of a two-dimensional convection field for t ∈ [0, 500]. The control,
free run and analysis correspond to the grey, black and dotted curves. Grey
diamonds represent observations, and plus signs ‘+’ represent corrections
(xa) made by 3DVAR, both at assimilation time. The corrections ‘+’ take
the estimate (dotted line) towards the true state of the observed system (grey
line).

other words, weight is given to the observations because small w

allows the distance |xa − xb| to grow without making large contri-
butions to the cost function. In contrast, having w > 1, or σ R > σ B,
favours model states corresponding to more uncertainty related to
the observations than to the model.

The next section presents and describes the results of our numer-
ical experiments. We study the ‘quality’ of the 3DVAR analyses
by varying the value of the weight factor w, when applying the
procedure to two sets of observations with different noise levels.

We calculate the correlation time to be approximately two using
our simulation setup parameters (see Section 2).

We choose an assimilation time large enough to let the oscillations
propagate over the two-dimensional field but still small enough to
be able to capture the smaller-scale dynamics. In each 3DVAR
experiment, data assimilation corrections are made every 10 time
units (which corresponds to about 5 correlation times). We found
no fundamental difference when using assimilation times between
5 and 20 time units.

5 R ESU LTS

We generate analyses using 3DVAR for each of the weight factors
w = {0.1, 1, 10}. For a fixed value of w we generate an analysis that
is the result of assimilating one set of observations with 1, 2, 5 or
10 per cent noise levels for two different fields of initial conditions.
The resulting horizontal velocity, ux, at the midpoint of the upper
right quadrant of the two-dimensional domain, is plotted in Fig. 2
for w = 0 in the upper panel and for w = 0.5 in the lower panel,
and in Fig. 3 for w = 1 in the upper panel and for w = 10 in the
lower panel.

Note that the grey and dashed lines are the same in all panels
and they represent the reference states of the system (control) and
the corresponding free run of the model. Observations are plotted
with grey diamond symbols. Black plus marks (+) are used for
the corrections calculated at the time of assimilation by minimizing
expression (6). Between assimilations, the analysis is the segment
of model trajectory (dotted segments) initialized at the corrected
state ‘+’, as seen in detail in all insets in Figs 2 and 3.

From equation (9) and these insets, the amplitude of the correction
made in each case is clearly illustrated for each value of the weight

Figure 2. Data assimilation run over observations marked with grey dia-
monds with 1 per cent noise for w = 0 (upper panel) and w = 0.5 (lower
panel). Black plus signs mark the 3DVAR corrections at assimilation times.
The grey, dotted, and dashed curves correspond to the control, analysis, and
free trajectories, respectively. Both panels include zoom-ins for 170 ≤ t ≤
210.

factor w. This amplitude is measured by the gap between the ‘+’
and the last dot of the previous dotted segment (background states).

For the trivial case of setting w = 0, the second term in (9)
is zero, and the best estimate of the current state of the system
is given by xa = y0, as seen in the upper panel of Fig. 2. The
correction (‘+’) is ‘pulled’ from the background state (dotted curve)
to the observation (‘�’) at the time of assimilation. This specifically
corresponds to replacing the background state with the observed
values at the observed points (i.e. at all grid points of the model).

For any other value of w > 0 the correction is in between the
observation (‘�’) and the last state of the previous background
segment (dotted lines); see insets in Figs 2 and 3.

For 0 < w < 1, the optimal value of the cost function (6) is a factor
1/w closer to the observations, yo, than to the background state xb;
see equation (9). The lower panel of Fig. 2 shows the results for
w = 0.5, where the corrections (‘+’) fall closer to the observations
than to the end of the last background states. This figure shows that
the analysis follows the control trajectory closely (solid grey line).
Note that even if the corrections are large, for example at t = 50 or
t = 90, the analysis quickly relaxes to the control state.

In the case w = 1, equal weights are given to model states and
observations. The optimal value of xa is the average of y0 and xb,
from (9). No preference is given to any estimate, and the midpoint
is the optimal choice for xa as seen in the upper panel of Fig. 3.

When w > 1, the optimization of equation (6) will favour model
states rather than observations as follows from equation (9). The
analysis at assimilation times is closer to the model states than to the
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Figure 3. Data assimilation run over observations marked with grey dia-
monds with 1 per cent noise for w = 1 (upper panel) and w = 10 (lower
panel). Black plus signs mark the 3DVAR corrections at assimilation times.
The grey, dotted, and dashed curves correspond to the control, analysis, and
free trajectories, respectively. Both panels include zoom-ins for 170 ≤ t ≤
210.

observations by a factor w. In the lower panel of Fig. 3, the resulting
trajectories are plotted specifically for w = 10. We observe from
this plot and from results at other locations of the two-dimensional
domain that, for w > 1, the estimates of the original state of the
system are biased towards the background states.

In this simplified experiment, we can see the great importance
of the weight factor w in 3DVAR: this emphasizes out how crucial
the construction of the covariance matrices B and R is for optimal
results. One of the motivations for our choice of R and B to be
proportional to identity matrices is to set a baseline from which we
can illustrate in a simplified analytical way the inner workings of
3DVAR. It can be hard to see how the different components interact
to create a result when more sophisticated choices of R and B are
used.

We note that, in Figs 2 and 3, we chose the interval t ∈ [170, 210]
as an example of an interval in which 3DVAR does not perform very
well. In that range, 3DVAR systematically pulls the analysis away
from the control – considered here as the original system trajectory.
Ascertaining the reason for this behaviour requires further study, but
it is worth noticing that the high performance of the data assimilation
returns around t = 200. The case w ≥ 10, in the lower panel of Fig. 3,
actually performs better in this interval.

Consistently, we observe that the analysis is on average closer to
the control trajectory than to the observations for all values w ≤ 1.
As noted, exceptions are observed for larger values of the weight
factor and during the interval shown in the insets of Figs 2 and 3.

Table 1. Measures of variability (in 10−6) for the dis-
tance between the control and observations with noise
levels of 1, 2, 5 and 10 per cent and the free trajectory.
See text for a description of the notation.

Noise level (δu0
x )mid 〈〈(δu0

x )2〉〉1 〈〈(δu0
x )2〉〉2

Free 1100 530 3000
1 per cent 27 36 36
2 per cent 108 145 143
5 per cent 888 899 900

10 per cent 3553 3596 3602

Tables 1 and 2 present several measures of variation of the output
from the simulations of our twin experiment. For each simulation,
we calculate the variance of the distances between the control and
the observations (Table 1) and between the control and the analysis
(Table 2) over the data assimilation window.

Specifically, Table 1 shows the variance of the distance between
the control trajectory and the free trajectory (first row), and the
noisy observations for 1 per cent (second row) and 2 per cent (third
row) noise levels, followed by 5 per cent and finally 10 per cent.
The second column of Table 1 presents the variance of the values
at the midpoint of the field denoted by (δu0

x)mid; these values mea-
sure the variability of the local behaviour. The third and fourth
columns of this table shows the averaged variance over the whole
vertical two-dimensional field, for the first and the second half of the
assimilation window respectively. This variance is denoted by the
inner angle brackets, 〈〈(δOux)2〉〉T, where T = 1, 2 correspond to
the assimilation window intervals t ∈ [1, 150] and t ∈ [151, 300],
respectively.

Table 2. Measures of variability (in 10−6)
for the distance between the control and the
analysis for several values of the w of the
x-component of the velocity, ux . The italic
values are larger than the corresponding noise
level. See text for a description of the notation.

w (δuA
x )mid 〈〈(δuA

x )2〉〉1 〈〈(δuA
x )2〉〉2

Noise level 1 per cent

0 0.43 0.34 3.83
0.1 0.47 0.35 4.40
1 2.96 4.09 130.92
10 271.65 506.57 1534.65

Noise level 2 per cent

0 1.84 1.29 15.45
0.1 1.99 1.34 17.86
1 25.30 12.24 751.81
10 888.62 718.40 2823.14

Noise level 5 per cent

0 5.17 6.57 15.47
0.1 4.54 5.96 17.54
1 8.10 6.37 60.48
10 607.71 818.45 3003.26

Noise level 10 per cent

0 22.36 27.45 70.99
0.1 20.13 24.63 79.58
1 40.21 26.19 237.57
10 1087.08 2676.32 4775.14
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Note that from the values in Table 1, the free run is one or two
orders of magnitude further away from the original state of the sys-
tem (control) than the 1 and 2 per cent noisy observations. The large
difference between the second and third columns reflects how the
free run is diverging from the control run over two different time
intervals. Table 1 is the baseline from which we measure the perfor-
mance of 3DVAR when estimating the state of the system from noisy
observations or the free trajectory (i.e. trajectories corresponding to
the 0 per cent noise level).

When assessing the performance of 3DVAR for different values
of w and noise levels, we look for variability measures between the
control and the analysis lower than the levels set by the free run
and the noisy observations. As can be seen in Table 1, all variance
measures for the free trajectory are larger than the corresponding
variance values for all w and noise levels up to 5 per cent. This
means that performing 3DVAR data assimilation is more effective
at estimating the original state of the system than just using as an
estimate the trajectory initialized with a very close initial field.

The variance of the distance between the two initial velocity
fields is ∼0.18 × 10−6. Table 2 shows the variance of the distance
between the control run and the analysis at the midpoint of the field
in the second column, denoted by (δuA

x )mid. In the third and fourth
columns of the table, we show the averaged variance over the whole
vertical two-dimensional field for the first and the second half of
the assimilation window, denoted by 〈〈(δAux)2〉〉T, for T = 1, 2,
respectively.

From the values presented in both tables, we observe that for noise
levels below 10 per cent and w < 10, the variance of the distance
between the control and the analysis is smaller – on average –
than the corresponding variance of the distance between the control
and the observations at the same noise level (see Table 1). This
means that over the two-dimensional domain, on both local and
global scales, 3DVAR is effectively reducing noise and accounting
for sensitivity to initial conditions; that is, it is estimating a value
for the horizontal velocity closer to the original state of the system
(control) than to the trajectory generated using a guess of the initial
state of the system (free run).

In contrast, for w = 10 and all noise levels at both global and
local scales, the free run and the analysis are on average consistently
further away from the control than the original noisy observations
(corresponding values in Table 1). This is also observed, for exam-
ple, at the specific location of the two-dimensional domain shown
in Figs 2 and 3.

More sophisticated choices for R and B, which inform the cost
function more realistically (6) about spatial correlations over the
field, might generate an improved and more consistent performance.

Furthermore, in Fig. 4 we plot on a semi-logarithmic scale the
variance of the point-by-point distances of the two-dimensional
vertical slices between the control and analysis (grey solid circles),
the control and the observations (grey diamonds), and the control
and the free run (black solid circles) for all t ∈ [1, 300]. The black
plus signs mark the variance of distances between the control and
analysis fields at assimilation times. From the top panel to the
bottom panel, plots correspond to w = 0.1, 1, 10, for a 1 per cent
noise level. Black dotted and grey diamond curves are the same for
all panels in the figure.

It is important to note that the values plotted in Fig. 4 are not
the running variance of the distance between control trajectories
and the other relevant trajectories but the variance of the distances
between the two-dimensional fields at each step.

We observe in Fig. 4 that for all values of w and for t ∈
[0, 10] the analysis and free runs are good estimators of the control

Figure 4. Semi-logarithmic plot of the variance of the point-by-point dis-
tances of the two-dimensional vertical slices between the control and the
analysis (grey solid circles, 〈(δAux )2〉), between the control and the obser-
vations (grey diamonds, 〈(δ0ux )2〉), and between the control and the free
run (black solid circles, 〈(δFux )2〉) for all t ∈ [1, 300]. The black plus signs
correspond to 〈(δAux )2〉 at assimilation times, after the correction is made.
All quantities are scaled by 106. From the top to bottom panels, w = 0.1,
1, 10.

trajectory. In addition, for all values of w and t ∈ [20, 100], the
free run and the analysis variance with respect to the control run
are below the variance of the noise level (the grey curve is below
the black curve), showing that for a 1 per cent noise level 3DVAR
produces a better estimate than the free run. Only for w = 0.1 is
the 3DVAR analysis a better estimate of the state of the system than
the free run or control run for all values in t ∈ [30, 300]. Note that
there is an increase in the error of the estimate from t ∈ [160, 190]
with respect to the control, which corresponds to the interval shown
in the insets in Figs 2 and 3. Otherwise, the error of the estimate
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exceeds the noise level for w = 1 at t ∈ [170, 300], and for w = 10 at
t ∈ [190, 230].

The noise reduction of 3DVAR is clearly seen in the top panel of
Fig. 4. At time t = 300 the grey estimate has a value of 0.15 × 10−6,
a factor of ∼230 below the noise level of 36 × 10−6. This should be
compared with the variance of the distance between the two initial
velocity fields of 0.18 × 10−6. The error of the estimate is also
below the noise level for most cases (w < 10 per cent) presented
in Table 2. The important point is that our estimates not only are
‘nudged’ towards the observations, but are steered towards the true
unknown state of the system, effectively reducing the noise of the
observations. The magnitude of this noise reduction, found in this
preliminary study, should not be expected in real-world applications.
The quality of the estimates ultimately depends on the quality of
the model and the observations.

Fig. 4 also shows how far apart – on average – the control and the
free run become as time increases. The increase in the amplitude of
the variance (the black curve) from t = 0 to t = 300 is observed to
be up to six or seven orders of magnitude.

We again see evidence of how the 3DVAR correction (black plus
signs) lands closer to the observations (diamonds) for lower values
of w, and how the background states start to move towards the
grey model trajectory for higher values of w, as observed in earlier
figures. The effect of w < 1 is to pull the background states back
closer to the observations, as the grey dotted curve is below the
corrections (plus signs).

Recall that the weight factor is w = (σ R/σ B)2, and it is interpreted
here as a measure of the relative confidence given to either the
observations or the model. High values of w reflect a higher trust
in the observations than in the model representation of the system,
and the opposite is the case for low values of w. In this simple
setting, σ B relates to the sensitivity to initial condition rather than
to model deficiencies. As noted earlier, the estimate is sensitive
to the choice of σ B, and a more sophisticated choice can include
additional components that might help to alleviate some of the
model deficiencies.

In the particular case where the covariance matrices are assumed
to be scalar and the weight factor is small, we can conclude that
the effect of trusting the observations more than the model states
(σ R < σ B) provides a closer estimate of the original state of the
system than just generating a trajectory close to the initial condition.
This means that 3DVAR is successful at finding an optimal state
estimator in the limit of small observational noise, small model
uncertainty related only to sensitivity to initial conditions, and scalar
covariance matrices, R and B. Our results emphasize the importance
of choosing more sophisticated covariance matrices (R and B) to
better reflect the known uncertainty sources in the data assimilation
problem of interest.

6 D ISC U SSION

We have presented an idealized case in which the model and sys-
tem are the same: a computer simulation is used both to generate
synthetic observations and as the model required for the data assim-
ilation procedure. In this way, we can assess the closeness of the
model estimate to the true state of the system. The key is to have
access to the true states, which we can use to verify and evaluate
estimates obtained using data assimilation.

We used a simplified formulation of the 3DVAR data assimilation
technique in terms of the weight factor: w = (σ R/σ B)2. The weight
factor defines the contribution of the model states, which contain
propagated information from previous observations, and the current

observation to make a state estimate. The formulation of 3DVAR
used here is achieved by reducing the covariance matrices, R and B,
to diagonal matrices, and the observation operator, H, to the iden-
tity. This selection corresponds to neglecting all spatial correlations
between model states over the two-dimensional domain in addition
to one-to-one correspondences between system observables and
model variables. In this way, we clearly separate the contribution
of observations and model states to the estimated state, as seen in
equations (6) and (9). We solved equation (6) using a minimization
scheme and found that it agrees with the analytic expression (9).

It is less obvious to see how the different components would
interact to create an estimate of the original state of the system when
more sophisticated choices of covariance matrices are made to fully
represent uncertainties and spatial correlations. In those cases, we
would have to think about the optimal combination in analogy to
equation (9), in terms of a generalization of the weight factor w

as a weight matrix, W = RB
−1. In this analogy, model states and

observations will be projected by the matrices W[W + I]−1 and
[W + I]−1, respectively, onto the analysis xa. Here, I is the identity
matrix.

In general, we can say that to understand the 3DVAR algorithm
it is important to look at the weight factor, particularly in the limit
where W is assumed to be the scalar w. Consistently we observe
the error between the state estimate and the original state of the
system to be below the noise level when more weight is given to the
observations than to the model states and the noise level is below
10 per cent. When the contribution from the model states is larger
than the contribution from the observations, we note that the error
eventually becomes larger than the noise level; see the case for
w = 10.

We note in Figs 2, 3 and 4 that 3DVAR under-performs for t ∈
[160, 230] both locally and globally for all values of w. Further
study of the simulation is needed to account for this atypical be-
haviour. Minute differences in initial conditions generate different
time evolutions for the different runs, as is expected for non-linear
systems. This is illustrated by the black curves in Fig. 4 that present
how the variance of the distance between the two initial conditions
grows over the time interval. It can also be seen in Fig. 1, where the
grey and black curves (which started with close initial condition)
are very different at later times. On the other hand, a large correction
made by 3DVAR, for example the black plus signs at times 50 and
90 in Fig. 2, does not appear to have a strong effect. The model run
that starts at these far away estimates converges almost instantly
back to the control trajectory at that time.

These features, reminiscent of chaotic behaviour, can be under-
stood in terms of attracting sets, where small changes in the initial
conditions generate a different time evolution on the attracting set. A
large correction probably takes us outside the attracting set, and the
solution rapidly falls back when the model is integrated forwards.
These features can also be interpreted in more physical terms, as a
large correction takes us to states that are not consistent with con-
servation laws and other physical constraints. The system would
then rapidly be forced back on to a more physical state. This dual
picture, using both physical and mathematical intuition, helps us to
understand the observed behaviour.

The 3DVAR methodology is optimal, provided that it is correctly
specified, for linear models with stationary Gaussian error statistics.
Very few models in astrophysics have these properties. The validity
of variational methods outside the linear or weakly non-linear case
is unclear, but if the assimilation is frequent enough the behaviour
might be close to linear. Higher assimilation frequency during the
interval t ∈ [170, 230] might, for example, give a better result.



Data assimilation for stratified convection 2285

One possible way to better account for non-Gaussian error statis-
tics that change in time would be to use a hybrid-3DVAR approach
(Wang, Snyder & Hamill 2007), in which the background covari-
ances are explicitly modelled by an ensemble.

The indication of chaotic properties and attracting state space
sets invites the use of other data assimilation methods that explic-
itly take these properties into account (Judd & Smith 2001; Judd
et al. 2008). These might be more applicable to non-linear astro-
physical processes. In this work we used an ideal model; that is, the
system and the model are one and the same. There will always be
some limitations to the modelling of a real system that might prove
problematic. In general, it is more important for models used for
the prediction of real systems to be reasonably realistic than just to
be close to the observations.

For non-linear astrophysical systems that operate on time-scales
from seconds to years, data assimilation will be of fundamental
importance when quantitative agreement between the model and
observations is to be assessed. The ultimate verification that a model
is correct is its ability to make reliable predictions, and for this data
assimilation is necessary.
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