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ABSTRACT

As a test bed for the growth of protoplanetary bodies in a turbulent circumstellar disk, we examine the fate of
a boulder using direct numerical simulations of particle seeded gas flowing around it. We provide an accurate
description of the flow by imposing no-slip and non-penetrating boundary conditions on the boulder surface using
the immersed boundary method pioneered by Peskin. Advected by the turbulent disk flow, the dust grains collide
with the boulder and we compute the probability density function of the normal component of the collisional
velocity. Through this examination of the statistics of collisional velocities, we test the recently developed concept
of collisional fusion which provides a physical basis for a range of collisional velocities exhibiting perfect sticking.
A boulder can then grow sufficiently rapidly to settle into a Keplerian orbit on disk evolution timescales.

Key words: accretion, accretion disks – planets and satellites: formation – protoplanetary disks – turbulence

Online-only material: color figures

1. INTRODUCTION

1.1. Accretion Disks and Protoplanets

Planet formation is hypothesized to occur through the growth
of protoplanetary bodies formed from gas, dust, and ice grains
in an accretion disk around a central star (Armitage 2010). The
complex scenario of the planet formation process involves the
following four stages. First, the initial collapse of interstellar
gas to create the central protostar (∼0.1 Myr); second, the slow
accretion of mass onto the star and the formation of primary
planetesimals within the evolving accretion disk (∼Myr); third,
a phase (∼Myr) of reduced accretion rate allowing the photo-
evaporative wind to divide the disk into an inner and an outer
region at a radius determined by the ratio of the stellar accretion
rate to the mass loss rate due to photoevaporation; and finally,
there is a clearing phase (∼0.1 Myr) during which the inner disk
accretes onto the star while the lightest elements of the outer
disk are removed due to direct exposure to photoevaporative
UV flux. Recent cosmochemical evidence reveals that the long
held view of a ∼Myr age difference between Ca-Al-rich in-
clusions (CAIs) within carbonaceous chondrite meteorites and
chondrules within chondrites can be refuted (Connelly et al.
2012). To the extent that these data demonstrate commensura-
bility over disk lifetime scales of CAI and chondrule formation,
the detailed transient development of matter within circumstellar
disks becomes all the more compelling for studies that can iso-
late essential physical processes. Here we focus on fundamental
aspects of the second stage above. This stage is crucial for un-
derstanding how the material that forms the building blocks of
planets can organize into bodies that thwart the radiative pres-
sure effects in the subsequent stages that sweep the disk of small
particles and gas.4

The accretion disk is treated as a two-phase system defined
by a fluid phase (“gas”) and solid particles (“dust”) advected
by the fluid. Ubiquitous attractive long range van der Waals and

4 A different hypothesis originally due to Safronov and Goldreich and Ward
(see, e.g., Goldreich et al. 2004; Armitage 2010; Youdin 2010 for a review)
leads to planetesimals by the gravitational collapse of the disk material. We do
not consider this here.

electrostatic interactions facilitate the agglomeration and growth
of small (micron or smaller) dust grains that are brought into
proximity by the turbulent flow of the gas. However, depending
on the material and the mechanical and thermodynamic condi-
tions of a particle–particle collision, sticking (through a number
of mechanisms), fragmentation, or bouncing will determine the
fate and the size distribution of accreting matter from the small
scales upward (Blum & Wurm 2008; Wettlaufer 2010; Zsom
et al. 2011).

Because the central star creates a radially decaying pressure
gradient, the gas moves at a slightly sub-Keplerian speed. Thus,
depending on the position in the disk, there are a range of
particle sizes that experience a strong “headwind” and so lose
angular momentum, thereby driving them into the central star
on timescales as rapidly as a century (Armitage 2010; Youdin
2010). We are concerned with the long-standing problem of how,
when objects grow and begin to experience the local headwind,
they can accumulate matter sufficiently quickly to slow their
drift inward. To focus the question, we examine in some detail
how a meter-sized object grows by accretion of small particles
mediated by turbulent flows of the gas.

1.2. Hydrodynamic Preliminaries

The typical value of the “disk Mach number” Md is based
on the Keplerian velocity vkepler, which in the thin disk approx-
imation is

Md = vkepler

cs
≈ r

h
, (1)

where r is the radial position in the disk and h is its vertical scale
height. At 1 AU, h/r ≈ 0.02 and hence Md ≈ 50 (see, e.g.,
Armitage 2010, p. 40). Now, as noted above, because the central
star creates a radially decreasing pressure gradient, relative to
a meter-sized object the gas moves at a sub-Keplerian speed
vwind = ηvkepler where η can be as small as 10−3 depending on
the position in the disk.

To understand the effects of the interaction between the dust
and the gas, we begin by considering a solid body of spherical
shape with radius RSB, moving through a gas with kinematic
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viscosity ν and speed vwind. We estimate its Reynolds number as

ReSB = vwindRSB

ν
= vwind

cs

RSB

λ

λcs

ν
≈ M

RSB

λ
, (2)

where M ≡ vwind/cs is the Mach number of the headwind and
λ is the mean-free-path of the gas molecules. Importantly, for
this estimate we have used the well known expression for the
viscosity of gases ν ∼ csλ (see, e.g., Lifshitz & Pitaevskii 1981,
Section 8). Now, because M = ηMd , we can have M ≈ 0.05,
and hence, so long as RSB < M−1λ ≈ 20 λ, the local Reynolds
number of the solid body is less than unity. For RSB ∼ λ the
size of the solid body is well below the smallest hydrodynamic
length scale in the gas and its motion is then described by the
simple drag law:

dvSB

dt
= 1

τSB
(vSB − U) , (3)

where vSB is the velocity of the particle, U is the local velocity
of the gas, and τSB is the so-called stopping time describing
the deceleration of particle motion relative to the gas. When a
particle is smaller than the typical hydrodynamic length scale
in the problem, τSB is given by the Epstein drag law,

τ
Ep
SB = ρSB

ρg

RSB

cs
, (4)

where ρSB is the material density of the solid particles and ρg is
the gas density. When M−1λ > RSB > λ, the relevant drag law
is that of Stokes and τSB is given by

τ St
SB = 2

9

ρSB

ρg

R2
SB

ν
. (5)

Despite the fact that when RSB > M−1λ, the simple drag law
(Equation (3)) no longer describes the motion of the dust par-
ticles, most numerical approaches to these problems (see, e.g.,
Johansen et al. 2007; Armitage 2010; Nelson & Gressel 2010;
Carballido et al. 2010, 2011) continue to use it because a more
accurate description is computationally prohibitive. Here we
will call bodies of approximately this size “boulders.” The mean-
free-path λ in an accretion disk varies with radius; e.g., accord-
ing to the minimum mass solar nebula model λ ranges from
≈10 cm at approximately 1.5 AU to ≈10 m at 10 AU. Hence
Rboulder ranges from ∼2 m in inner disk regions to ∼200 m at
about 10 AU. A more accurate approximation of the motion of
such particles is given by the Maxey–Riley equation (Maxey
& Riley 1983), which assumes a spherical geometry. While the
Maxey–Riley approach is appealing on fundamental grounds, it
has yet to be used in simulations of fully developed turbulence.

1.3. Bouncing, Sticking, Fusing

A crucial and often used assumption is that all collisions
have a sticking probability of unity. Indeed, under such an
assumption, planetesimal growth under a wide range of disk
conditions is sufficiently rapid that there is no loss to the cen-
tral star. Clearly, however, the probability of sticking depends,
among other things, on the collisional velocity, the material
properties of the colliding bodies, the ambient temperature,
and the relative particle size. It is a commonly accepted pic-
ture that for collisional velocities Vc above a certain thresh-
old value, Vth ∼ 0.1–10 cm s−1, particle agglomeration is

not possible; and elastic rebound overcomes attractive surface
and intermolecular forces (e.g., Chokshi et al. 1993). How-
ever, for bodies covered with ice, experimental (Blum & Wurm
2008) and theoretical (Wettlaufer 2010) studies of collisions
between dust grains and meter-sized objects have elucidated
the range of collisional velocities (which depends on the rela-
tive particle size) over which perfect sticking occurs. This latter
work considers the basic role of the phase behavior of mat-
ter (phase diagrams, amorphs, and polymorphs) in leading to
the so-called collisional fusion. In this fusion process, a physi-
cal basis for efficient sticking is provided through collisional
melting/amphorphization/polymorphization and subsequent
fusion/annealing to extend the collisional velocity range of
sticking to ΔVc ∼ 1–100 m s−1 � Vth, which encompasses both
typical turbulent rms (root-mean-square) speeds and the veloc-
ity differences between boulders and small grains ∼1–50 m s−1.
Moreover, bodies of high melting temperature and multicompo-
nent materials, such as silicon and olivine, can fuse in this man-
ner depending on the details of their phase diagrams. Hence, in
principle, the approach provides a framework for sticking from
the inner to the outer nebula. Here, we explore the influence of
such a range, ΔVc, on the growth of a boulder in a simulated disk.

1.4. Summary of Approach

The fate of the boulder is studied from a reference frame
fixed to it, while the gas flows around it. We provide an
accurate description of the flow by performing a direct numerical
simulation (DNS) with no-slip and non-penetrating boundary
conditions on the boulder surface using a numerical technique
called the Immersed Boundary Method (Peskin 2002). Hence,
there is no ad hoc approximation involved in describing the
mutual interaction between the boulder and the gas flow.
However, at present, it is computationally prohibitive to solve for
more than one boulder using this DNS scheme. Consequently,
we focus our study on the flow mediated collisions between
one boulder and many “effectively” point-sized dust grains
whose sizes are much smaller than Rboulder. Our principal
approximations in treating the motion of the dust grains are
(1) to use Equation (3) and (2) to ignore the back-reaction of the
dust grains onto the flow. Advected by the turbulent disk flow,
the dust grains collide with the boulder and we compute the
probability density function (PDF) of the normal component of
the collisional velocity.

2. MODEL

The mechanism of formation of planetesimals from dust
grains is modeled by the same tools that are used to study,
for example, hydrometeor growth in the terrestrial atmo-
sphere, namely the coagulation/fragmentation equations of
Smoluchowski (1916); see, e.g., Armitage (2010) for a recent
review. The Smoluchowski equations are integro-differential
equations that require two crucial ingredients: the probability
distribution function of relative collisional velocities of the bod-
ies in question and their sticking efficiency. The former, par-
ticularly for the inner disk region, is strongly influenced by
turbulence. Recently, there has been significant progress in cal-
culating the statistical properties of individual particle velocities
(Carballido et al. 2011; Nelson & Gressel 2010) and, perhaps
more importantly, pairwise relative velocities (Carballido et al.
2010) from DNSs. Similar results have also been obtained from
both phenomenological (Ormel & Cuzzi 2007; Cuzzi & Hogan
2003) and shell (Hubbard 2012, 2013) models of turbulence.

2



The Astrophysical Journal, 773:120 (6pp), 2013 August 20 Mitra, Wettlaufer, & Brandenburg

�
g

Figure 1. Illustration of our computational domain. The domain is divided into
two halves. The left half contains the “boulder” sketched by the blue circle. In
the right half the fluid is acted upon by an external white-in-time force which
is non-zero only in the part of the domain limited by the two dashed lines. The
turbulence thus generated is moved toward the “boulder” by the action of weak
body force g along the arrow shown in the figure. The body force does not act
directly on the particles, which are introduced continuously in a small area in
the right half of the domain. Initial positions of a few particles are shown as red
dots.

(A color version of this figure is available in the online journal.)

While these approaches provide key insights and intuition, they
also leave open aspects with which the strategy we take is not
burdened, such as (1) the use of the simple drag law (Equa-
tion (3)) to describe the motion of boulders, (2) the ability to
obtain only the root-mean-square collision velocity, rather than
the PDF of collision velocities (Carballido et al. 2010; Hubbard
2012, 2013 are exceptions), and (3) not modeling actual colli-
sions, so that collisional velocities are inferred from looking at
relative velocities at small distances. To calculate the PDF of col-
lisional velocities between a boulder and small dust grains, such
approximations may be too simplistic because of the presence of
a boundary layer around the larger object. Indeed, Garaud et al.
(2013) have recently pointed out the importance of using the
PDF of collisional velocities instead of simply the root-mean-
square value. However, taking this into account in a global (or
even local) simulation of a disk is computationally prohibitive.
Therefore, we take an initial modest step to try and understand
such collisions by solving the equations of motion for weakly
compressible fluids in two dimensions with a circular objec-
t—the boulder—inside. We ignore two classes of collisions: (1)
between dust grains themselves and (2) between two or more
boulders.

2.1. Numerical Method

Our computational domain is a rectangular box divided into
two equal parts (Figure 1). In the right half, fluid turbulence is
generated by external forcing that is non-zero between the two
dashed lines shown in Figure 1. The turbulence thus generated
is moved toward the “boulder” by the action of a body force g in
the direction of the arrow shown in the figure. This body force is
responsible for generating a mean flow, which models the head-
wind faced by a boulder—the circular object at the left half of
the domain. The boundary layer around the boulder is fully
resolved by imposing non-penetrating and no-slip boundary
conditions using the immersed boundary method. After the
flow has reached a stationary state, we introduce Np = 2 × 104

particles into the right half of the domain as depicted in Figure 1.
The motion of these particles obeys the simple drag law,

dvp

dt
= 1

τp
(vp − U), (6)

with the characteristic drag time of the “dust particles” τp. As
noted before and as is clear from context, no such assumption
need be made for the boulder. The back-reaction from the dust
grains to the gas is ignored. When a dust grain collides with

Figure 2. Contour plot of vorticity in the upper half of our domain. The black
circle at the center of the domain is the circular object. The arrow shows the
time- and space-averaged direction of vwind.

(A color version of this figure is available in the online journal.)

the boulder it is removed from the simulation and a new dust
grain is introduced in the right half of the domain. We use
the Pencil Code5 in which the immersed boundary method
was implemented by Haugen & Kragset (2010).

2.2. Parameters

The characteristic large-scale velocity is the root-mean-
square velocity in the streamwise direction, vwind ≡ 〈v2

y〉1/2. We
always use the Reynolds number corresponding to the central
solid body, defined by

ReSB ≡ vwindRSB/ν. (7)

The Stokes number of the “dust particles” is defined by

St ≡ τp/τL, (8)

where τL = Ly/vwind, with Ly being the length of our domain
along the streamwise direction; from right to left in Figure 1.
By virtue of limiting our simulations to two dimensions, we
can access a larger range of particle Reynolds numbers ReSB,
from 30 to 1000 with resolutions ranging from 128 × 512 to
512 × 2048 grid points. The surface of the boulder is resolved
with 100–400 grid points.

3. RESULTS

A representative snapshot of the vorticity field is given in
Figure 2. A movie, available online at http://www.youtube.com/

5 http://pencil-code.googlecode.com/
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Figure 3. Plot showing how the boulder would grow if all collisions were
perfectly sticky. The arrow shows the direction of vwind. The growth for two
different runs (1) ReSB ≈ 29, St ≈ 0.5 (∗), and (2) ReSB ≈ 1000, St ≈
0.6 (�), for the same total time duration is shown. The inner semi-circle shows
the initial surface of the boulder.

(A color version of this figure is available in the online journal.)

watch?v=-Fr5Q2Kp0wo, shows that, although over a spa-
tiotemporal average there is a streamwise mean flow on the
boulder, there are large fluctuations. At a particular instant the
direction of the gas velocity at the boulder surface can devi-
ate significantly from the streamwise direction. Furthermore,
we observe that most of the collisions do not occur at the front
face of the boulder but there are a significant number of colli-
sions that deviate from centrality; see Figure 3. Note, however,
that there are almost no collisions on the backside of the boul-
der. A clear implication of this is that, for perfect sticking of
all collisions, an initially spherical boulder evolves into a non-
spheroidal body and hence may begin to tumble in the disk.

3.1. PDF of Collisional Velocities

The criterion for a collision is that the distance between a
dust grain and the boulder becomes less than a grid point. After
this collision, we remove the dust grain from the simulation.
For ReSB ≈ 1000 in Figure 4, we plot the PDF, P (vn), of the
component of the velocity of the dust grain normal to the surface
of the boulder, vn. At small vn, P (vn) ∼ v2

n (Figure 4(a)) and at
large vn the falloff is ∼ exp[−(vn/v0)2] (Figure 4(b)). However,
as shown in Figure 4(c), over the whole range it is difficult to fit
the PDF with a Maxwellian distribution.

Now we consider how the PDF changes as the Stokes and
Reynolds numbers of the flow change. We vary the Reynolds
number by changing the viscosity of the flow. Hence, a change
in Reynolds number also changes vwind, and this leads to a
change in the Stokes number.6 Therefore, in our approach to
the numerical treatment of the flow, it is not possible to perform
a systematic study of the Reynolds number dependence of the
PDF at the fixed Stokes number. However, in order to produce
an effective treatment of such a circumstance, we present in
Figure 5 the PDFs for different Reynolds numbers wherein the
Stokes numbers are not too different from each other. We see
that for small ReSB the peak of the PDF lies very close to vwind,
but as ReSB increases the peak moves to smaller velocities by

6 As we change viscosity holding all other variables, including the body force
g, constant, vwind also changes. This changes τL = Ly/vwind which
consequently changes St through Equation (8).

(a)

(b)

(c)

Figure 4. PDF of collisional velocities for ReSB ≈ 1000, St ≈ 0.6. (a) Log–log
(base 10) plot for small vn; P (vn) ∼ (vn/vwind)2, the straight line has a slope
of 2. (b) Semi-log (base 10) at large vn. The straight line, which is a fit to the
points denoted by the symbol ∗, has slope −0.96. (c) The PDF with the two
approximations at small and larger vn plotted together.

(A color version of this figure is available in the online journal.)

only a very small amount. Although ReSB changes by almost a
factor of 20, the position of the peak (normalized by vwind) only
changes from 0.6 to 0.3. A more dramatic change is observed
in the PDF as the Stokes number is changed from 0.5 to 0.1
when Re ≈ 29 is held fixed, as shown in Figure 6. In particular,
the tail of the PDF at high vn is severely cutoff as the Stokes
number is decreased by a factor of five. One can understand this
as follows: when the Stokes number decreases, the dust grains
begin to follow streamlines and hence never collide with the
boulder. The implication of this is clearly that a smaller Stokes
number implies a smaller number of high-impact collisions.
Nevertheless, the most striking result for the problem at hand is
the insensitivity of the PDF to ReSB and St.
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Figure 5. Probability distribution function, P (vn), of the normal component
of collisional velocity vs. (vn/vwind)2 for four different runs: (a) ReSB ≈ 29,
St ≈ 0.5 (∗), (b) ReSB ≈ 69, St ≈ 1 (�), (c) ReSB ≈ 516, St ≈ 0.7 (
), and
(d) ReSB ≈ 1000, St ≈ 0.6 (♦).

(A color version of this figure is available in the online journal.)

3.2. From DNS to Disk Astrophysics

Our simulations take place in the reference frame of the
boulder. Although the boulder is also comoving with the
local gas with velocity vkepler, it is the head wind, which
corresponds to vwind in our simulations, that sets the velocity
scale. The radius of the boulder is taken to be ≈10 m. The
magnitude of the headwind in the disk is estimated to be
vwind ≈ 10−3vkepler ≈ 3 × 103 cm s−1 (see, e.g., Armitage
2010, p. 130). In the astrophysical literature it is common to
non-dimensionalize τp with Ωkepler, the Keplerian frequency,
to define the orbital Stokes number, Stkepler. Here, we use the
largest eddy timescale τL = Ly/vwind, to obtain St. These two
Stokes numbers are related by

Stkepler = St
τL

τorb
, (9)

where τorb is the characteristic timescale of the Keplerian orbit
defined by

τorb = Rorb

vkepler
, (10)

where Rorb is the orbital radius. Using the definition of the two
timescales τL and τorb, we obtain the ratio of the two Stokes
numbers to be

Stkepler

St
= Ly

Rorb

vkepler

vwind
≈ 10−5, (11)

where we have used Rorb = 1 AU, Ly = 50RSB ≈ 500 meter,
and vwind = ηvkepler with η = 10−3. We have used the Stokes
number ranging from St = 0.1 to 2 which in turn gives
Stkepler ≈ 10−6 to 2 × 10−5. We use the same conventions
used in the supplementary information of Johansen et al. (2007)
to convert the value of Stkepler to a radius of the dust grain;
this implies that our “dust particles” are of the size of tenths of
millimeters or smaller. Clearly, the “dust particles” are smaller
than hydrodynamic scales, and hence it is justified to consider
them as point objects whose motions are described by the
Epstein drag law.

3.3. Collisional Fusion

The PDFs of collisional velocities show that, irrespective of
the Reynolds number and the Stokes number within the range

Figure 6. Probability distribution function, P (vn), of normal component of
collisional velocity vs. [vn/vwind]2 for two different Stokes numbers; St ≈ 0.5
(∗), and St ≈ 0.1 (
), for ReSB ≈ 29.

(A color version of this figure is available in the online journal.)

considered by us, most collisions occur at velocities rather near
to vwind. To illustrate this, in Figure 5 we have drawn two vertical
dashed lines at (vn/vwind)2 = 0.2 and vn/vwind = 1.2. The area
under the PDF between the two lines includes approximately
95% of the total number of collisions. Translated to parameters
in the disk, this implies that, if there is a mechanism by which
dust grains with velocities ranging from 0.4 vwind to 1.1 vwind
would stick to a boulder, then we could consider 95% of
collisions to have a perfect sticking probability.

Roughly speaking, this implies a range of velocities
6–36 m s−1. These collisional velocities are far too high for
the bodies to fuse by attractive intermolecular forces. An alter-
native scenario by which the colliding bodies can fuse at high
speed has been suggested by Wettlaufer (2010). As discussed in
Section 1.3, the very high local pressures that occur during a col-
lision can lead to phase change. If, when the pressure begins to
relax during rebound the momentarily liquified (or disordered)
interfacial material re-freezes (or anneals) before particle sepa-
ration, then fusion can occur. The idea was demonstrated when
the colliding bodies are covered by ice, but the theory is gener-
ally applicable to all materials whose phase diagram is known
in detail. An example of the process in a high melting temper-
ature material (silicon) was noted in Wettlaufer (2010). Hence,
whether the range of collisional velocities over which such pro-
cess can occur in a material such as olivine matches with the
range we find here is a topic of ongoing research. Note that
here the particle Reynolds number ReSB varies linearly with the
particle radius but the range over which most of the collisions
occur does not depend sensitively on ReSB, and hence not on the
particle radius. Thus, runaway growth of the boulder through
the accretion of dust grains is a viable mechanism in areas of
the disk where collisional fusion can operate in the range we
obtain.

4. DISCUSSION AND CONCLUSION

To describe the motion of micron-sized dust grains in a
protoplanetary disk the simple drag law of Equation (6) is
sufficient. Theoretical estimates (see, e.g., Armitage 2010,
p. 120) suggest that micron-sized dust particles in the inner disk
(about 5 AU) can grow up to a size of tens of centimeters if we
assume that the presence of turbulence increases the number of
collisions and that almost all collisions result in coagulation by
long-ranged intermolecular forces. But the process that allows
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them to continue to grow to the size of planetesimals is not well
understood. As the dust grains grow, at some stage they become
boulders and their local Reynolds number exceeds unity. At this
stage we need a more accurate description of their interaction
with the gas than the one provided by Equation (3). Here we
provide such a description of a boulder colliding with dust grains
by using the immersed boundary method of Peskin (2002).
Remarkably, we find that the PDF of collisional velocities
depends weakly on ReSB and St. In particular, we find that,
if collisional fusion between dust grains is possible in the range
of collisional velocities ΔVc between 0.4 and 1.1 vwind, then
approximately 95% of the collisions exhibit perfect sticking
and runaway growth of a boulder to a planetesimal is possible.
Whether collisional fusion can occur in this range is a problem
of material science under extreme conditions and is the subject
of ongoing research in a future paper.

Recent studies (Garaud et al. 2013; Windmark et al. 2012)
have pointed out that the PDF of collisional velocities is a
crucial ingredient to the coagulation-fragmentation models. In
particular, Windmark et al. (2012) have assumed the PDF of
collisional velocities to be Maxwellian, and have concluded
that, by virtue of considering a PDF that is continuous at small
values of its argument, growth by sticking is possible even if the
sticking efficiency is determined by long-ranged intermolecular
forces (sticking with efficiency unity if the relative velocity of
collisions is less than 5 cm s−1). Here, we determine numerically
the PDFs for the classes of collisions between boulders and
dust grains and find that it cannot be simply described by a
Maxwellian distribution—although it does have an exponential
tail. It is well known that in turbulent flows the PDF of the
velocities of a tracer particle is Gaussian. We do not know
of any study of the PDF of the velocity of inertial particles
(particles that obey Equation (6)) in turbulent flows, but it is
reasonable to assume that it would also be Gaussian. If such
an assumption holds, then we expect the PDF of collisional
velocities to have an exponential tail, so long as the size of
particles is not comparable. Were the colliding particles to be of
roughly the same size, the PDF may indeed have a power-law
tail by virtue of intermittency.

In an earlier paper, Sekiya & Takeda (2003) found that dust
monomers advected by a steady laminar flow do not collide
with a spherical solid body with a radius much larger than
the hydrodynamic length scale. The crucial limitation in their
work was to assume the flow to be laminar. Here, we have
considered turbulent flow and have obtained a different result,
i.e., a significant percentage of the dust particles do hit the solid
body with the PDF of collisional velocities peaking around the
speed of the head wind.

There exists an alternative scenario of planetesimal formation
(Johansen et al. 2007) in which the boulders are described by
the simple drag law (Equation (3)) but their back-reaction on the
gas is accounted for. This is predicted to give rise to “streaming
instabilities” which form boulder clusters around high pressure
regions. Such clusters are then expected to coagulate by mutual
gravitational interaction. In the light of the arguments presented
in the present paper, this streaming instability scenario requires
further investigation. This is because basic physical principles
tell us that the description of the motion of the boulder is
inadequately described by Equation (3). While the immersed

boundary method can potentially solve this problem, we need
to have massive computational resources to examine the fate of
many boulders.

We conclude by pointing out the limitations of our study.
First, here we confine ourselves to two dimensions. On the
one hand, this has the virtue of permitting a larger range of
ReSB that can be easily accessed numerically. On the other
hand, we cannot capture the richness of particle fusion in
the remaining dimension. However, we believe that this may
imply that the growth of the particle we have studied to be a
lower bound. Second, when collisional fusion starts operating
the initial spherical object we study will not remain spherical.
This may quantitatively affect further growth in a manner that
depends on how the boulder tumbles through the disk. Third,
the turbulence in our flow is generated by external forcing.
It would be appropriate to use shearing-box simulations in
three dimensions where the flow is driven by magneto-rotational
instability. We believe that these rather clear limitations do not
detract from the robust results obtained in this study, which
clarify the microphysical questions for a range of colliding
materials and the computational fluid dynamics issues that
will advance a sober assessment of planetesimal formation
processes.
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