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ABSTRACT

Context. In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable and spontaneously form local
flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism,
which is called negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios in which
most of the magnetic field resides in the bulk of the convection zone and not at the bottom, as is often assumed. Recent work using
mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers
as low as 0.1.
Aims. Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the
effective magnetic pressure. We also quantify the kinetic helicity resulting from direct numerical simulations (DNS) with Coriolis
numbers and strengths of stratification comparable to values near the solar surface and compare it with earlier work at smaller scale
separation ratios. Further, we estimate the expected observable signals of magnetic helicity at the solar surface.
Methods. To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using
the τ approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the
three-dimensional hydromagnetic equations in a Cartesian domain.
Results. We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided
the Coriolis number is below 0.06. In that case, kinetic and magnetic helicities are found to be weak and the rotational effect on
the effective magnetic pressure is negligible as long as the production of flux concentrations is not inhibited by rotation. For faster
rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own
is not yet possible, but the rotational suppression of NEMPI is being alleviated.
Conclusions. Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in
the uppermost layers of the Sun, where the convective turnover time is less than two hours.
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1. Introduction

In the Sun, magnetic fields are produced by a large-scale dy-
namo (see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler
1980; Zeldovich et al. 1983; Ossendrijver 2003; Brandenburg
& Subramanian 2005a). Although many details of this process
remain subject to debate, it seems relatively clear that rotation
enhances the efficiency of the dynamo if the Coriolis parameter
is not very large. In the absence of rotation and shear, only small-
scale magnetic fields are generated by what is often referred to
as small-scale dynamo action (see, e.g., Zeldovich et al. 1990;
Brandenburg & Subramanian 2005a). Rotation leads to an α ef-
fect (Steenbeck et al. 1966) if there is also stratification in den-
sity or turbulent intensity. The α effect can produce mean mag-
netic field and net magnetic flux.

Stratification leads to yet another effect that does not produce
magnetic flux but merely concentrates it locally by what is now
referred to as negative effective magnetic pressure instability
(NEMPI). Direct numerical simulations (DNS) of Brandenburg
et al. (2011a) have shown in surprising detail many aspects
of NEMPI that were previously seen in mean-field simulations

(MFS) of Brandenburg et al. (2010) and that have been an-
ticipated based on analytical studies for some time (Kleeorin
et al. 1989, 1990, 1993, 1996; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007).

The main physics of this effect is connected with the sup-
pression of turbulent pressure by a weak mean magnetic field
that is less than the equipartition field. At large Reynolds num-
bers, the resulting reduction of the turbulent pressure is larger
than the added magnetic pressure from the mean magnetic field
itself, so that the effective magnetic pressure that accounts for
turbulent and nonturbulent contributions becomes negative. In a
strongly stratified layer, i.e., a layer in which the density varies
much more rapidly with height than the magnetic field does,
this leads to an instability that is analogous to Parker’s mag-
netic buoyancy instability, except that there the magnetic field
varies more rapidly with height than the density does. Because
the effective magnetic pressure is negative, magnetic structures
are negatively buoyant and sink, which has been seen in the DNS
of Brandenburg et al. (2011a).

One of the main successes of recent comparative work be-
tween DNS and MFS is the demonstration of a high degree of
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predictive power of MFS. The examples include details regard-
ing the shape and evolution of structures, the dependence of their
depth on the magnetic field strength, and the dependence of the
growth rate on the scale separation ratio. Recent MFS of Losada
et al. (2012; hereafter LBKMR) have shown that in the pres-
ence of even just weak rotation the growth rate of NEMPI is
significantly reduced. Expressed in terms of the Coriolis num-
ber, Co = 2Ω/urmskf , where Ω is the angular velocity, urms is the
rms velocity of the turbulence, and kf is the wavenumber of the
energy-carrying eddies, the critical value of Co was predicted to
be as low as 0.03. Although this value does not preclude the op-
eration of NEMPI in the upper parts of the Sun, where Co is in-
deed small (about 10−4 at the surface), it does seem surprisingly
low, which raises questions regarding the accuracy of MFS in
this case. The purpose of the present paper is therefore to com-
pare MFS of LBKMR with DNS of the same setup. It turns out
that, while we do confirm the basic prediction of LBKMR, we
also resolve an earlier noticed discrepancy in the growth rates
between DNS and MFS in the absence of rotation (see the ap-
pendix of Kemel et al. 2012a). Indeed, in the particular case of
a magnetic Reynolds number of 18 and a scale separation ratio
of 30, the formation of structures is unusually strong and the av-
eraged stratification changes significantly to affect the determi-
nation of the effective magnetic pressure. However, by restrict-
ing the analysis to early times, we obtain coefficients that are not
only in better agreement with an earlier formula of Brandenburg
et al. (2012a) with a smaller scale separation ratio but also give
MFS results that agree better with our new DNS.

The DNS are used primarily to compute the growth rates
and magnetic field structures during the saturated state with-
out invoking the mean-field concept. By contrast, the τ ap-
proach (Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990;
Rogachevskii & Kleeorin 2004) is used to determine the depen-
dence of mean-field coefficients on the rotation rate. This can
also be done with DNS (Kemel et al. 2012a). Here we apply
those calculations to the case with rotation.

We recall that we adopt here an isothermal stratification
and an isothermal equation of state. This is done because the
effect that we are interested in exists even in this simplest
case, where temperature and pressure scale height are constant.
Nonisothermal setups have been studied at the mean-field level
both with (Käpylä et al. 2012, 2013) and without (Brandenburg
et al. 2010) entropy evolution included. In a stably stratified
layer, entropy evolution leads to an additional restoring force
and hence to internal gravity waves (Brunt-Väisälä oscillations)
that stabilize NEMPI (Käpylä et al. 2012). Thus, by using both
isothermal stratification and an isothermal equation of state, we
recover a situation that is similar to an adiabatic layer, except
that the temperature and hence the pressure scale height decrease
with height.

The system we are thus dealing with is governed by the com-
bined action of rotation and stratification. In principle, such sys-
tems have been studied many times before, for example, to deter-
mine the α effect in mean-field dynamo theory (Krause & Rädler
1980; Brandenburg & Subramanian 2005a). The difference to
earlier work is the big scale separation ratio, where the domain
is up to 30 times larger than the scale of the energy-carrying ed-
dies. As mentioned, stratification and rotation lead to kinetic he-
licity and an α effect. We therefore also quantify here the amount
of kinetic helicity produced and ascertain whether this leads to
observable effects in the resulting magnetic structures. We use
here the opportunity to explore the feasibility of determining the
magnetic helicity spectrum from measurements of the magnetic
correlation tensor along a longitudinal strip.

We begin by discussing first the basic equations to determine
the effective magnetic pressure from DNS and the τ approach
(Sect. 2), compare growth rates for MFS and DNS (Sect. 4),
and turn then to the measurement of kinetic and magnetic he-
licity from surface measurements (Sect. 5) before concluding in
Sect. 6.

2. The model

We consider DNS of an isothermally stratified layer
(Brandenburg et al. 2011a; Kemel et al. 2012a) and solve
the equations for the velocity U, the magnetic vector poten-
tial A, and the density ρ in the presence of rotation Ω,

DU
Dt
= −2Ω × U − c2

s∇ ln ρ +
1
ρ

J × B + f + g + Fν, (1)

∂A
∂t
= U × B + η∇2 A, (2)

∂ρ

∂t
= −∇ · ρU, (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, ν is the
kinematic viscosity, η is the magnetic diffusivity due to Spitzer
conductivity of the plasma, B = B0+∇×A is the magnetic field,
B0 = (0, B0, 0) is the imposed uniform field, J = ∇×B/μ0 is the
current density, μ0 is the vacuum permeability, Fν = ∇ · (2νρS)
is the viscous force, Si j =

1
2 (∂ jUi + ∂iU j) − 1

3δi j∇ · U is the
traceless rate-of-strain tensor. The angular velocity vector Ω is
quantified by its scalar amplitude Ω and colatitude θ, such that
Ω = Ω (− sin θ, 0, cos θ). As in LBKMR, z corresponds to radius,
x to colatitude, and y to azimuth. The forcing function f con-
sists of random, white-in-time, plane, nonpolarized waves with
a certain average wavenumber kf . The turbulent rms velocity is
approximately independent of z with urms = 〈u2〉1/2 ≈ 0.1 cs.
The gravitational acceleration g = (0, 0,−g) is chosen such that
k1Hρ = 1, so the density contrast between bottom and top is
exp(2π) ≈ 535 in a domain −π ≤ k1z ≤ π. Here, Hρ = c2

s/g is the
density scale height and k1 = 2π/L is the smallest wavenumber
that fits into the cubic domain of size L3. In most of our cal-
culations, structures develop whose horizontal wavenumber kx

is close to k1. We adopt Cartesian coordinates (x, y, z), with
periodic boundary conditions in the x- and y-directions and
stress-free, perfectly conducting boundaries at the top and bot-
tom (z = ±Lz/2). In all cases, we use a scale separation ra-
tio kf/k1 of 30, a fluid Reynolds number Re ≡ urms/νkf of 36,
and a magnetic Prandtl number PrM = ν/η of 0.5. The mag-
netic Reynolds number is therefore ReM = PrMRe = 18. The
value of B0 is specified in units of the volume-averaged value
Beq0 =

√
μ0ρ0 urms, where ρ0 = 〈ρ〉 is the volume-averaged den-

sity, which is constant in time. As in earlier work, we also define
the local equipartition field strength Beq(z) =

√
μ0ρ urms. In our

units, k1 = cs = μ0 = ρ0 = 1. In addition to visualizations of the
actual magnetic field, we also monitor By, which is an average
over y and a certain time intervalΔt. Time is sometimes specified
in terms of turbulent-diffusive times t ηt0k2

1, where ηt0 = urms/3kf
is the estimated turbulent diffusivity.

The simulations are performed with the Pencil Code1, which
uses sixth-order explicit finite differences in space and a third-
order accurate time-stepping method. We use a numerical reso-
lution of 2563 mesh points.

1 http://pencil-code.googlecode.com
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We compare with and extend earlier MFS of LBKMR, where
we solve the evolution equations for mean velocity U, mean den-
sity ρ, and mean vector potential A, in the form

∂U
∂t
= −U · ∇U − 2Ω × U − c2

s∇ ln ρ + g + FMK, (4)

∂A
∂t
= U × B − (ηt + η)J , (5)

∂ρ

∂t
= −U · ∇ρ − ρ∇ · U, (6)

where FMK = FM + FK, with

ρFM = − 1
2∇

[
(1 − qp)B2

]
(7)

being the mean-field magnetic pressure force, and

FK = (νt + ν)
(
∇2U + 1

3∇∇ · U + 2S∇ ln ρ
)

(8)

is the total (turbulent plus microscopic) viscous force. Here,
Si j =

1
2 (Ui, j + U j,i) − 1

3δi j∇ · U is the traceless rate-of-strain
tensor of the mean flow and qp is approximated by (Kemel et al.
2012b)

qp(β) =
β2
�

β2
p + β2

, (9)

which is only a function of the ratio β ≡ |B|/Beq(z). Here, β�
and βp are coefficients that have been determined from previous
numerical simulations in the absence of rotation (Brandenburg
et al. 2012a). In Eq. (7) we have taken into account that the mean
magnetic field is independent of y, so the mean magnetic tension
vanishes.

The strength of gravitational stratification is characterized
by the nondimensional parameter Gr = g/c2

s kf ≡ (Hρkf)−1

(Brandenburg et al. 2012b). Another important nondimen-
sional parameter is the Coriolis number, Co = 2Ω/urmskf .
Alternatively, we normalize the growth rate of the instability by
a quantity

λ∗0 ≡ β�urms/Hρ, (10)

which is motivated by the analytic results of LBKMR and the
finding that NEMPI is suppressed when 2Ω >∼ λ∗0.

3. Effective magnetic pressure

In this section we study the effect of rotation on the func-
tion qp(β). We consider first the results of DNS and turn then
to an analytical treatment.

3.1. Numerical results

In the MFS of LBKMR, we assumed thatPeff(β) does not change
significantly with Co in the range considered. With DNS we
can compute Peff(β) by calculating the combined Reynolds and
Maxwell stress for a run with and a run without an imposed mag-
netic field. This allows us to compute qp(β) using Eq. (17) of
Brandenburg et al. (2012a):

qp = −2
[
ρ (u2

x − u2
0x) + 1

2 b2 − b2
x

]/
B2, (11)

where the subscripts 0 indicate values obtained from a reference
run with B0 = 0. This expression does not take into account

Fig. 1. Normalized effective magnetic pressure, Peff(β), for three values
of Co, compared with Eq. (9) for different combinations of β� and βp,
as discussed in the text.

small-scale dynamo action, which can produce finite background
magnetic fluctuations b0. The effective magnetic pressure is then
determined using the equation Peff(β) = 1

2 [1 − qp(β)]β2. The re-
sult is plotted in Fig. 1 for three values of Co during an early time
interval when structure formation is still weak, and the back-
ground stratification remains unchanged, so that the result is not
yet affected. We note that even in the Co = 0.13 case, in which
the instability is no longer so prominent, we have to restrict our-
selves to early times, since the negative effective magnetic pres-
sure affects the background stratification and hence the pressure
changes at later times. The resulting profiles of Peff(β) are vir-
tually the same for all three values of Co. We also compare the
resulting profiles with those from Eq. (9) for different combina-
tions of β� and βp. It turns out that the curves for different values
of Co are best reproduced for β� = 0.44 and βp = 0.058.

3.2. Theoretical predictions

We now compare the values with theoretical predictions
for qp(β). We take into account the feedback of the magnetic
field on the turbulent fluid flow. We use a mean-field approach,
whereby velocity, pressure, and magnetic field are separated into
mean and fluctuating parts. We also assume vanishing mean
motion. The strategy of our analytic derivation is to determine
the Ω dependencies of the second moments for the velocity
ui(t, x) u j(t, x), the magnetic field bi(t, x) b j(t, x), and the cross-
helicity tensor bi(t, x) u j(t, x), where b are fluctuations of mag-
netic field produced by tangling of the large-scale field. To this
end we use the equations for fluctuations of velocity and mag-
netic field in rotating turbulence, which are obtained by subtract-
ing equations for the mean fields from the corresponding equa-
tions for the actual (mean plus fluctuating) fields.

3.2.1. Governing equations

The equations for the fluctuations of velocity and magnetic fields
are given by

∂u(x, t)
∂t

=
1
ρ

(
B · ∇b + b · ∇B − ∇p

)
+ 2u ×Ω + N̂u, (12)

∂b(x, t)
∂t

= B · ∇u − u · ∇B + N̂b, (13)
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where Eq. (12) is written in a reference frame rotating with con-
stant angular velocityΩ, p = p′ + (B · b) are the fluctuations of
total pressure, p′ are the fluctuations of fluid pressure, B is the
mean magnetic field, and ρ is the mean fluid density. For simplic-
ity we neglect effects of compressibility. The terms N̂u and N̂b,
which include nonlinear and molecular viscous and dissipative
terms, are given by

N̂u = u · ∇u − u · ∇u +
1
ρ

(
j × b − j × b

)
+ fν(u), (14)

N̂b =∇ ×
(
u × b − u × b − η∇ × b

)
, (15)

where ρ fν(u) is the molecular viscous force and j = ∇ × b/μ0
is the fluctuating current density. To eliminate the pressure term
from the equation of motion (12), we calculate∇×(∇ × u). Then
we rewrite the obtained equation and Eq. (13) in Fourier space.

3.2.2. Two-scale approach

We apply the two-scale approach and express two-point correla-
tion functions in the following form:

ui(x)u j(y)=
∫

dk1 dk2 ui(k1)u j(k2) exp{i(k1 · x + k2 · y)}

=

∫
dk dK fi j(k,K) exp(ik · r + iK · R)

=

∫
dk fi j(k,R) exp(ik · r) (16)

(see, e.g., Roberts & Soward 1975). Here and elsewhere, we drop
the common argument t in the correlation functions, fi j(k,R) =
L̂(ui; u j), where

L̂(a; c) =
∫

a(k + K/2)c(−k + K/2) exp (iK · R) dK,

with the new variables R = (x + y)/2, r = x − y, K = k1 + k2,
k = (k1 − k2)/2. The variables R and K correspond to the large
scales, while r and k correspond to the small scales. This implies
that we have assumed that there exists a separation of scales,
that is, the turbulent forcing scale �f is much smaller than the
characteristic scale LB of inhomogeneity of the mean magnetic
field.

3.2.3. Equations for the second moments

We derive equations for the following correlation functions:
fi j(k,R) = L̂(ui; u j), hi j(k,R) = ρ−1 L̂(bi; b j), and gi j(k,R) =
L̂(bi; u j). The equations for these correlation functions are given
by

∂ fi j(k)

∂t
= i(k · B)Φi j + LΩi jmn fmn + I f

i j + N̂ f
i j, (17)

∂hi j(k)

∂t
= −i(k · B)Φi j + Ih

i j + N̂h
i j, (18)

∂gi j(k)

∂t
= i(k · B)[ fi j(k) − hi j(k) − h(H)

i j ]

+ DΩjm(k2)gim(k) + Igi j + N̂g
i j, (19)

where

Φi j(k) = ρ−1 [gi j(k) − g ji(−k)],

DΩi j(k) = 2εi jmΩnkmn,

LΩi jmn = DΩim(k1) δ jn + DΩjn(k2) δim.

Hereafter we have omitted the R-argument in the correlation
functions and neglected terms ∼O(∇2

R), and εi jn is the fully anti-
symmetric Levi-Civita tensor. In Eqs. (17)–(19), the terms N̂ f ,
N̂h, and N̂g are determined by the third moments appearing due
to the nonlinear terms; the source terms I f

i j, Ih
i j, and Igi j, which

contain the large-scale spatial derivatives of the mean magnetic
and velocity fields, are given by Eqs. (A3)–(A6) in Rogachevskii
& Kleeorin (2004). These terms determine turbulent magnetic
diffusion and effects of nonuniform mean velocity on the mean
electromotive force.

For the derivation of Eqs. (17)–(19) we use an approach that
is similar to that applied in Rogachevskii & Kleeorin (2004). We
take into account that in Eq. (19) the terms with tensors that are
symmetric in i and j do not contribute to the mean electromotive
force because Em = εm ji gi j. We split all tensors into nonhelical,
hi j, and helical, h(H)

i j , parts. The helical part of the tensor of mag-

netic fluctuations h(H)
i j depends on the magnetic helicity, and the

equation for h(H)
i j follows from magnetic helicity conservation ar-

guments (see, e.g., Kleeorin & Rogachevskii 1999; Brandenburg
& Subramanian 2005a, and references therein).

3.2.4. The τ-approach

The second-moment Eqs. (17)–(19) include the first-order
spatial differential operators applied to the third-order mo-
ments M(III). To close the system, we express the set of the third-
order terms N̂M ≡ N̂M(III) through the lower moments M(II) .
We use the spectral τ approximation, which postulates that the
deviations of the third-moment terms, N̂M(III)(k), from the con-
tributions to these terms afforded by the background turbu-
lence, N̂M(III,0)(k), are expressed through similar deviations of
the second moments:

N̂M(III)(k) − N̂M(III,0)(k) = −M(II)(k) − M(II,0)(k)
τ(k)

(20)

(Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990;
Rogachevskii & Kleeorin 2004), where τ(k) is the scale-
dependent relaxation time, which can be identified with the cor-
relation time of the turbulent velocity field for large Reynolds
numbers. The quantities with the superscript (0) correspond to
the background turbulence (see below). We apply the spectral τ
approximation only for the nonhelical part hi j of the tensor of
magnetic fluctuations. A justification for the τ approximation in
different situations has been offered through numerical simula-
tions and analytical studies (see, e.g., Brandenburg et al. 2004;
Brandenburg & Subramanian 2005b, 2007; Rogachevskii et al.
2011).

3.2.5. Solution of equations for the second moments

We solve Eqs. (17)–(19) neglecting the sources I f
i j, I

h
i j, I

g
i j with

the large-scale spatial derivatives. The terms with the large-scale
spatial derivatives, which determine the turbulent magnetic dif-
fusion, can be taken into account by perturbations. We subtract
from Eqs. (17)–(19) the corresponding equations written for the
background turbulence using the spectral τ approximation. We
assume that the characteristic time of variation of the second
moments is substantially larger than the correlation time τ(k)
for all turbulence scales. This allows us to get a stationary so-
lution for the equations for the second-order moments, M(II) .
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Thus, we arrive at the following steady-state solution of
Eqs. (17)–(19):

fi j(k) = L−1
i jmn

[
f (0)
mn (k) + iτ(k · B)Φmn(k)

]
, (21)

hi j(k) = −iτ(k · B)Φi j(k), (22)

gi j(k) = iτ(k · B)D−1
im

[
fm j(k) − hm j(k)

]
. (23)

We have assumed that there is no small-scale dynamo in the
background turbulence. Here, the operator D−1

i j is the inverse of

the operator δi j − τDΩi j (Rädler et al. 2003) and the operator L−1
i jmn

is the inverse of the operator δimδ jn−τ LΩi jmn (Elperin et al. 2005).
These operators are given by

D−1
i j = χ(ψ) (δi j + ψ εi jm k̂m + ψ

2 ki j)

= δi j + ψ εi jm k̂m − ψ2 Pi j + O(ψ3), (24)

L−1
i jmn(Ω) = 1

2 [B1 δimδ jn + B2 ki jmn + B3 (εimpδ jn

+ ε jnpδim)k̂p + B4 (δimk jn + δ jnkim)

+ B5 εipmε jqnkpq + B6 (εimpk jpn + ε jnpkipm)]

= δimδ jn + ψ (εimpδ jn + ε jnpδim)k̂p − ψ2(δimP jn

+ δ jnPim − 2εimpε jqnkpq) + O(ψ3), (25)

where k̂i = ki/k, χ(ψ) = 1/(1 + ψ2), ψ = 2τ(k) (k · Ω)/k, B1 =
1+χ(2ψ), B2 = B1+2−4χ(ψ), B3 = 2ψχ(2ψ), B4 = 2χ(ψ)−B1,
B5 = 2 − B1 and B6 = 2ψ [χ(ψ) − χ(2ψ)], Pi j(k) = δi j − kik j/k2,
δi j is the Kronecker tensor.

We use the following model for the homogeneous and
isotropic background turbulence: f (0)

i j (k) = 〈u2〉 Pi j(k) W(k),

where W(k) = E(k)/8πk2, the energy spectrum is E(k) = (q −
1)k−1

0 (k/k0)−q, k0 = 1/�f, and the length �f is the maximum scale
of turbulent motions. The turbulent correlation time is τ(k) =
C τ0 (k/k0)−μ, where the coefficient C = (q− 1+ μ)/(q− 1). This
value of the coefficient C corresponds to the standard form of
the turbulent diffusion coefficient in the isotropic case, i.e., ηT =

〈u2〉 ∫ τ(k) E(k) dk = τ0 〈u2〉/3. Here the time τ0 = �f/
√〈u2〉

and
√〈u2〉 is the characteristic turbulent velocity in the scale �f .

For the Kolmogorov’s type background turbulence (i.e., for a
turbulence with a constant energy flux over the spectrum), the
exponent μ = q − 1 and the coefficient C = 2. In the case of a
turbulence with a scale-independent correlation time, the expo-
nent μ = 0 and the coefficient C = 1. Motions in the background
turbulence are assumed to be nonhelical.

Equations (21)–(25) yield

fi j(k) = f (0)
i j (k) − hi j(k), (26)

hi j(k) =
Ψ

1 + 2Ψ

(
1 − ψ2 2 + Ψ

2(1 + 2Ψ)

)
f (0)
i j (k), (27)

where Ψ = 2τ2(k · cA)2, cA = B/
√
ρ, and we have taken into

account that L−1
i jmnPmn(k) = Pi j(k). After the integration in k

space, we obtain the magnetic tensor hi j in physical space:

hi j(β) = q1(β)δi j + q2(β)βi j, (28)

where β = B/Beq, and the functions q1(β) and q2(β) are given
in Appendix A. We consider the case in which angular velocity
is perpendicular to the mean magnetic field. The results can eas-
ily be generalized to the case of the arbitrary angle between the
angular velocity and the mean magnetic field.

Fig. 2. Dependence of λ/λ∗0 on 2Ω/λ∗0 for DNS (red dashed line), com-
pared with MFS (i) where qp0 = 20 and βp = 0.167 (black solid line),
and MFS (ii) where qp0 = 32 and βp = 0.058 (blue dash-dotted line).
In this case no growth was found for Co ≥ 0.03. In all cases we have
B0/Beq0 = 0.05.

The contribution of turbulence to the mean-field magnetic
pressure is given by the function qp(β) =

[
q1(β) − q2(β)

]
/β2:

qp(β) =
1

12β2

[
A(0)

1 (0) − A(0)
1 (4β) − A(0)

2 (4β)

− 2(Ωτ0)2
(
A(2)

1 (0) − 4C(2)
1 (0) − 10A(2)

1 (4β)

+ 40C(2)
1 (4β) +

9
2π

[
Ā1(16β2) − 4C̄1(16β2)

] )]
, (29)

where the functions A( j)
i (x), C( j)

i (x), Āi(y), C̄i(y), and their
asymptotics are given in Appendix A. Following earlier work
(Brandenburg et al. 2012a), we now define a magnetic Reynolds
number based on the scale �f = 2π/kf, which is related to the
ReM defined earlier via Rm = 2πReM . For B� Beq/4Rm1/4, the
function qp(β) is given by

qp(β) =
4
5

ln Rm − 8
35

Co2, (30)

and for Beq/4Rm1/4 � B� Beq/4 the function qp(β) is given by

qp(β) =
16
25

(
1 + 5| ln(4β)| + 32 β2

)
− 8

35
Co2, (31)

where Co = 2Ωτ0. This shows that for the values of Co of inter-
est (Co ≤ 0.06), the correction to qp is negligible (below 10−3),
which is in agreement with the numerical findings in Fig. 1.

4. Coriolis effects of NEMPI in DNS and MFS

4.1. DNS and comparison with MFS

We have performed DNS for different values of Co and calcu-
lated the growth rate λ; see Fig. 2. It turns out that λ shows a
decline with increasing values of Co that is similar to the one
seen in the MFS of LBKMR, who used qp0 = 20 and βp = 0.167
(corresponding to β� = 0.75). While some growth is still possi-
ble for Co = 0.13 and 0.66, the field begins to attain systematic
variations in the z direction that are more similar to those in a
dynamo. In that case, we would have to deal with a coupled sys-
tem, and a direct comparison with the NEMPI growth rate would
not be possible. We return to this issue later in Sect. 5.1.

In Fig. 2 we compare the growth rate with the MFS of
LBKMR, who used qp0 = 20 and βp = 0.167 (correspond-
ing to β� = 0.75). This set of parameters is based on a fit by
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Fig. 3. yt-averaged By for Co = 0.006 (left), 0.03 (middle), and 0.06 (right) at different times.

Kemel et al. (2012a) for kf/k1 = 30 and ReM = 18. We note that
the growth rates for the MFS are about three times larger than
those of the DNS. As explained in the introduction, this might be
caused by an inaccurate estimate of the mean-field coefficients
for these particular values of kf/k1 and ReM . Indeed, according
to Eq. (22) of Brandenburg et al. (2012a), who used kf/k1 = 5,
these parameters should be qp0 = 32 and βp = 0.058 (corre-
sponding to β� = 0.33) for ReM = 18. This assumes that these
parameters are independent of the value of kf , which is not true
either; see Kemel et al. (2012a). To clarify this question, we now
perform 3D MFS with this new set of parameters. Those results
are also shown in Fig. 2. It turns out that with these parameters
the resulting growth rates are indeed much closer to those of the
DNS, suggesting that the former set of mean-field coefficients
might indeed have been inaccurate. As alluded to in the introduc-
tion, this could be because NEMPI is very strong for kf/k1 = 30
and leads to inhomogeneous magnetic fields. For these fields,
the usual determination of mean-field coefficients, as used by
Brandenburg et al. (2012a), is no longer valid because for in-
homogeneous magnetic fields there would be additional terms
in the parametrization for the mean Reynolds-Maxwell stress
(cf. Kemel et al. 2012c). We note that for this comparison we
have kept the value of λ∗0 in the normalization of both axes un-
changed. However, if we accept that the correct value of β� is not
0.75, but 0.33, the graphs for DNS and MFS (ii) would almost
coincide with that for DNS (i).

In Fig. 3 we show the yt-averaged By for Co = 0.006, 0.03,
and 0.06 at different times. When comparing results for different
rotation rates, one should take into account that the growth rates

Fig. 4. Evolution of B1/Beq for runs of which three are shown in
Fig. 3. The three horizontal lines correspond to the approximate values
of B1/Beq in the three rows of Fig. 3.

become strongly reduced. Indeed, in the last row of Fig. 3 we
chose the times such that the amplitude of NEMPI is compara-
ble for Co = 0.006 and 0.03. However, for Co = 0.06 we ran
much longer and the amplitude of NEMPI is here even larger;
see Fig. 4, where we show B1/Beq, which is the normalized
magnetic field strength for the horizontal wavenumber k = k1
in the top layers with 2 ≤ k1z ≤ 3. It is clear that the forma-
tion of structures through NEMPI remains more strongly con-
fined to the uppermost layers as we increase the value of Co.
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Fig. 5. By at the periphery of the computational domain for Co = 0.006 (left), 0.03 (middle), and 0.06 (right) at the same times as in Fig. 3.
The x, y, z coordinates are indicated in the middle frame. We note the strong surface effect for Co = 0.03 in the last time frame.

Even for Co = 0.13, there is still noticeable growth of structures,
which is different from what is seen in MFS; see Fig. 2.

These figures show the generation of structures that begin
to sink subsequently. However, for Co = 0.03 and larger, this
sinking is much less prominent. Instead, the structures remain
confined to the surface layers, which is seen more clearly in vi-
sualizations of By at the periphery of the computational domain
for Co = 0.03; see Fig. 5, which is for approximately the same
times as Fig. 3.

To our surprise, the large-scale structures still remain inde-
pendent of the y-direction, which is clearly at variance with re-
sults of the corresponding MFS. In Fig. 6 we reproduce a result
similar to that of LBKMR for Co = ±0.03. Even at other angles
such as θ = 45◦ and 90◦, no variation in the y-direction is seen;
see Fig. 7. The reason for this discrepancy between DNS and
the corresponding MFS is not yet understood. Furthermore, the
confinement of structures to the surface layers, which is seen so
clearly in DNS, seems to be absent in the corresponding MFS.

4.2. Comparison of the 2D and 3D data of LBKMR

The apparent lack of y dependence of the large-scale magnetic
field in the DNS shows that this contribution to the magnetic

Fig. 6. Results of MFS of LBKMR showing By at the periphery of the
computational domain for Co = +0.03 in the LBKMR case (left) and
with the new set of parameters (right) at the same time. (The range
in By/B0 shown here is larger than that shown in LBKMR.)

field is essentially two-dimensional. In the lower panel of Fig. 5
of LBKMR, a comparison between 2D and 3D MFS was shown
for Co ≈ 0.01 as a function of latitude. At the pole, the nor-
malized growth rates were λ/λ∗0 ≈ 0.07 and 0.14 for 2D and
3D MFS, respectively. This difference is smaller for smaller val-
ues of Co, but it increases with increasing values of Co; see
Fig. 8. We note that the 2D result in this figure supersedes that
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Fig. 7. By at the periphery of the computational domain for Co = 0.006 and θ = 45◦ (upper row) and 90◦ (lower row), at three different times (from
left to right). The x, y, z coordinates are indicated in the middle frame.

Fig. 8. Dependence of λ/λ∗0 on 2Ω/λ∗0 in the 3D and 2D cases for θ =
0◦ (corresponding to the pole).

of Fig. 3 of LBKMR, here λ was determined from the amplifi-
cation of the total magnetic field (which includes the imposed
field) rather than from the deviations of the magnetic field from
the imposed one. This resulted in a four times smaller estimate
of λ. Furthermore, the critical value of Co, above which NEMPI
shuts off, is now delayed by a factor of about 2–3.

The plot in Fig. 8 has been done for the more optimistic set
of mean-field parameters (qp0 = 20 and βp = 0.167), but the
essential conclusions that the growth rates in 2D and 3D are
similar should not depend on this. The remaining differences be-
tween DNS and MFS regarding the lack of y dependence of the
mean field and the confinement of structures to the surface lay-
ers might be related to the absence of mean-field transport co-
efficients other than qp, ηt, and νt. By and large, however, the
agreement between DNS and MFS is remarkably good in that
the predicted decline of NEMPI at rather modest rotation rates
is fully confirmed by DNS.

5. Kinetic and magnetic helicity

By adding rotation to our strongly stratified simulations, we au-
tomatically also produce kinetic helicity. In this section we quan-
tify this, compare the helicity with earlier work, and address the
question whether this might lead to observable effects. All re-
sults presented in this section are based on time series, with error
bars being estimated as the largest departure from any one-third
of the full time series.

5.1. Helicity production

In turbulence, the presence of rotation and stratification gives
rise to kinetic helicity and an α effect (Krause & Rädler 1980;
Brandenburg et al. 2013). As a measure of kinetic helicity, we
determine the normalized helicity as

εf = ω · u/kfu
2
rms. (32)

In Fig. 9 we compare our present runs at kf/k1 = 30 with those
of Brandenburg et al. (2012b) at kf/k1 = 5 showing εf versus
Gr Co. For our present runs (red filled symbols), kinetic helic-
ity is clearly very small, which is a consequence of the small
value of Co. Compared with earlier runs at kf/k1 = 5, which
gave εf ≈ 2 Gr Co, the present ones show about twice as much
helicity. Interestingly, for rapid rotation the relative kinetic he-
licity declines when the product Gr Co is larger than about 0.5.
The maximum value of εf that can be reached is about 0.3. In a
fully periodic domain, dynamo action would be possible when
εf > (kf/k1)−1, which is 0.2 in this case. However, because of
stratification and boundaries, the onset is delayed and no dynamo
action has been found in the simulations of Brandenburg et al.
(2012b). However, in the present case, dynamo action is possible
for εf > 1/30, which leads to a Beltrami-like magnetic field with
variation in the z direction. Dynamo action is demonstrated in
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Fig. 9. Relative kinetic helicity spectrum as a function of Gr Co for
Gr = 0.03 with Co = 0.03, 0.06, 0.13, 0.49, and 0.66 (red and blue sym-
bols) compared with results from earlier simulations of Brandenburg
et al. (2012b) for Gr = 0.16 (small dots connected by a dotted line).
The solid line corresponds to εf = 2Gr Co. The two horizontal dash-
dotted lines indicate the values of ε∗f ≡ k1/kf for which dynamo action
is possible for kf/k1 = 5 and 30. Runs without an imposed field (blue
filled symbols) demonstrate dynamo action in two cases. The blue open
symbol denotes a case where the dynamo is close to marginal.

Fig. 10. Visualization of Bx and By for the run with Co = 0.5 showing
dynamo action. We note the clear signature of a Beltrami field showing
variation in the z direction.

the absence of an imposed field, which leads to slightly smaller
values of εf for the same value of Gr Co (see blue symbols in
Fig. 9). The case Co = 0.33 is close to marginal and the field is
slowly decaying, which is in agreement with the expected posi-
tion of the marginal line.

In Fig. 10 we show visualizations of Bx and By for a run
with Co = 0.5 showing dynamo action. We note the approxi-
mate phase shift of 90◦ between Bx and By, which has been seen
in earlier simulations of α2-type dynamo action from forced tur-
bulence (Brandenburg 2001). As alluded to in Sect. 4.1, the pos-
sibility of dynamo action might be responsible for the contin-
ued growth found in DNS for Co ≥ 0.13. Visualizations of the
yt-averaged By for Co = 0.13 and 0.31 show that structures with
variation in the x direction still emerge in front of a new com-
ponent that varies strongly in the z direction and that becomes
stronger as the value of Co is increased.

Our results for Co = 0.13 and 0.31 might be examples of
a dynamo coupled to NEMPI. Such coupled systems are ex-
pected to have an overall enhancement of growth. This possi-
bility, which is not included in the present mean-field model,
has recently been demonstrated in spherical geometry (Jabbari
et al. 2013) by coupling an α2 dynamo to NEMPI. Looking at
Fig. 2, we conclude that for Co ≥ 0.13 the coupled system with
NEMPI and dynamo instability is excited in a case where the dy-
namo alone would not be excited and that the growth rate begins

Fig. 11. Comparison of yt-averaged By for Co = 0.13 and 0.31.

to be larger than that of NEMPI alone. Obviously, more work in
that direction is necessary.

5.2. Surface diagnostics

As a consequence of the production of kinetic helicity, the mag-
netic field should also be helical. However, since magnetic he-
licity is conserved, and was zero initially, it should remain zero,
at least on a dynamical time scale (Berger 1984). This condition
can be obeyed if the magnetic field is bi-helical, i.e., with oppo-
site signs of magnetic helicity at large and small wavenumbers
(Seehafer 1996; Ji 1999). We now ask whether signatures of this
could in principle be detected at the solar surface. To address this
question, we use our simulation at intermediate rotation speed
with Co = 0.03, where magnetic flux concentrations are well
developed at the surface of the domain, and compare the helicity
with a larger value of 0.13.

Measuring magnetic helicity is notoriously difficult because
it involves the magnetic vector potential, which is gauge de-
pendent. However, under the assumption of homogeneity and
isotropy, the Fourier transform of the magnetic correlation ten-
sor is

Mi j(k) = (δi j − k̂ik̂ j)
μ0EM(k)

4πk2
− εi jk

ikkHM(k)
8πk2

, (33)

where k̂ = k/k is the unit vector of k and EM(k) and HM(k)
are magnetic energy and magnetic helicity spectra, which obey
the realizability condition 2μ0EM(k) ≥ k|HM(k)|. Here, the fac-
tor 2 in front of EM(k) is just a consequence of the factor 1/2 in
the definition of energy. Matthaeus et al. (1982) used the solar
wind data from Voyager II to determine HM(k) from the in situ
measurements of B, while Brandenburg et al. (2011b) applied
the technique to measuring HM(k) at high heliographic latitudes,
where HM(k) is finite and turned out to be bi-helical. We now
adopt the same method using Fourier transforms in the y direc-
tion. In the Sun, this corresponds to measuring B along a 2π ring
at a fixed polar latitude, where one might have a chance to ob-
serve the full circumference at the same time. In Fig. 12 we show
the result for three values of Co.

It turns out that HM(k) is compatible with zero for our inter-
mediate value of Co. For faster rotation (Co = 0.13), HM(k)
is negative at large wavenumbers (k � kf ) and positive (but
still compatible with zero within error bars) at intermediate
wavenumbers (0.15 < k/kf < 0.6). For k/kf < 0.15, the magnetic
helicity is again negative. However, the error bars are large and
rotation is already so fast that structure formation via NEMPI is
impossible. It is therefore unclear whether meaningful conclu-
sions can be drawn from our results.

In the northern hemisphere of the Sun, a bi-helical spectrum
is expected where magnetic helicity is negative on all scales ex-
cept the largest ones, where the α effect operates. This sense
is reversed in the solar wind far from the Sun (Brandenburg
et al. 2011b). This has also been seen in simulations of mag-
netic ejecta from a dynamo-active sphere (Warnecke et al. 2011),
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Fig. 12. Normalized magnetic helicity spectra for different values of
the Coriolis number, Co. In all panels, the same range is shown,
but for Co = 0.66 the normalized helicity exceeds this range and
reaches −0.05.

Fig. 13. Kinetic and magnetic energy and helicity spectra computed
from the full 3D data set for Co = 0.03. Positive (negative) values
of spectral helicity are indicated with filled (open) symbols. We note
the enhancement of spectral power at the smallest wavenumber of the
domain, k1.

which may be explained by a diffusive magnetic helicity trans-
port (Warnecke et al. 2012).

5.3. Energy and helicity spectra

To put the above considerations in relation to the actual helicity
content, we now compare with the magnetic and kinetic energy
and helicity spectra computed from the fully 3D data set; see
Fig. 13. The magnetic and kinetic helicity spectra are normal-
ized by k/2 and 1/2k, respectively, so that one can estimate how

much the absolute values of these spectra are below their max-
imum possible values given by the corresponding realizability
conditions, |HM|k/2 ≤ EM and |HK|/2k ≤ EK, respectively.

The spectra show that, while the velocity and magnetic fields
have significant helicity only at the largest scale, they remain
clearly below their maximum possible values. At large scales
(small k), both helicities are negative (indicated by open sym-
bols), but the magnetic helicity is predominantly positive at
wavenumbers slightly below kf . This is consistent with Fig. 12,
which also shows positive values, although only in the case of
faster rotation (Co = 0.13). Below the forcing scale, both en-
ergy spectra show a k3/2 spectrum, which is shallower than the
white noise spectrum (k2) and similar to what has been seen in
helically driven dynamos (Brandenburg 2001). We also note the
uprise of magnetic and kinetic power at the smallest wavenum-
ber (k = k1), which is again similar to helically driven dynamos.
However, it is here not as strong as in the dynamo case.

6. Conclusions and discussion

The present work has confirmed the rather stringent restrictions
of LBKMR, showing that NEMPI is already suppressed for
rather weak rotation (Co >∼ 0.03). This demonstrates the pre-
dictive power of those earlier MFS. On the other hand, it also
shows that the consideration of the mere existence of a negative
effective magnetic pressure is not sufficient. We knew already
that sufficiently strong stratification and scale separation are two
important necessary conditions. In this sense, the existence of
NEMPI might be a more fragile phenomenon that the existence
of a negative magnetic pressure, which is fairly robust and can
be verified even in absence of stratification (Brandenburg et al.
2010). For the rather small Coriolis numbers considered here, no
measurable change of qp was seen in the simulations, which is
in agreement with our theory predicting that the change is of the
order Co2.

Applied to the Sun with Ω = 2 × 10−6 s−1, the strong sensi-
tivity of the instability to weak rotation implies that NEMPI can
only play a role in the uppermost layers, where the correlation
time is shorter than Co/2Ω ≈ 2 hours. Although this value might
change with a changing degree of stratification, this would be
surprising as it would exclude even the lower parts of the super-
granulation layer, where τ is of the order of one day. On the other
hand, we have to keep in mind that our conclusions, which are
based on isothermal models, should be taken with care. It would
therefore be useful to extend the present studies to polytropic
layers where the scale height varies with depth. We also note that
weak rotation (Co = 0.03) enhances the surface appearance. At
the same time, as we argued in Sect. 4.1, the sinking of structures
becomes less prominent, which suggests that they might remain
confined to the surface layers. However, preliminary MFS do not
indicate a significant dependence of the eigenfunction on Co for
values below 0.1. Our interpretation, if correct, would therefore
need to be a result of nonlinearity.

If we were to apply NEMPI to the formation of active regions
in the Sun, we should keep in mind that the scale of structures
would be 6–8 pressure scale heights (Kemel et al. 2012a). At
the depth where the turnover time is about two hours, we esti-
mate the rms velocity to be about 500 m/s, so the scale height
would be about 3 Mm, corresponding to a NEMPI scale of at
least 20 Mm. This might still be of interest for explaining plage
regions in the Sun. Clearly, more work using realistic models
would be required for making more conclusive statements.

Regarding the production of kinetic helicity and the possible
detection of a magnetic helicity spectrum, our results suggest
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that the relative magnetic helicity cannot be expected to be
more than about 0.01. This is a consequence of correspondingly
low values of kinetic helicity. We find that the normalized ki-
netic helicity is given by εf ≈ 2Gr Co. For the Sun, we ex-
pect Gr = (kfHρ)−1 ≈ 0.16, which agrees with what is used
in our simulations; thus there is not much room for more op-
timistic estimates. In this connection we should note that in
Kemel et al. (2012a) the value of kfHρ (= Gr−1) was estimated
based on stellar mixing length theory, using �mix = αmixHp for
the mixing length with αmix ≈ 1.6 being an empirical param-
eter. For isentropic stratification, the pressure scale height Hp
is related to Hρ via γHp ≈ Hρ. With kf = 2π/�mix we obtain
kfHρ = 2π γ/αmix ≈ 2π, so Gr = (kfHρ)−1 ≈ 0.16. We note here
that, owing to a mistake, we underestimated the value of kf Hρ

by a factor of 2.6. This factor also has an enhancing effect on the
growth rate of NEMPI. The correct value should then be larger
and would now be clearly faster than the turbulent–diffusive rate.
Furthermore, as we have shown here, at the point where NEMPI
begins to be suppressed by rotation, effects related to dynamo
action reinforce the concentration of flux, even though the dy-
namo alone would not yet be excited. In this sense, the stringent
restrictions of LBKMR from MFS appear now less stringent in
DNS. It might be hoped that this new feature can eventually be
reproduced by MFS, such as those of Jabbari et al. (2013) that
take the α effect into account.
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Appendix A: The identities used in Sect. 3.2
for the integration in k-space

To integrate over the angles in k-space in Sect. 3.2, we used the
following identities (Rogachevskii & Kleeorin 2004, 2007):

K̄i j =

∫
ki j sin θ

1 + a cos2 θ
dθ dϕ = Ā1δi j + Ā2βi j, (A.1)

K̄i jmn =

∫
ki jmn sin θ

1 + a cos2 θ
dθ dϕ = C̄1(δi jδmn + δimδ jn

+ δinδ jm) + C̄2βi jmn + C̄3(δi jβmn + δimβ jn + δinβ jm

+ δ jmβin + δ jnβim + δmnβi j), (A.2)

H̄i jmn(a) =
∫

ki jmn sin θ

(1 + a cos2 θ)2
dθ dϕ

= −
( ∂
∂b

∫
ki jmn sin θ

b + a cos2 θ
dθ dϕ

)
b=1

= K̄i jmn(a) + a
∂

∂a
K̄i jmn(a), (A.3)

where β = B/Beq, β̂i = βi/β, βi j = β̂iβ̂ j, and

Ā1 =
2π
a

[
(a + 1)

arctan(
√

a)√
a

− 1
]
,

Ā2 = −2π
a

[
(a + 3)

arctan(
√

a)√
a

− 3
]
,

C̄1 =
π

2a2

[
(a + 1)2 arctan(

√
a)√

a
− 5a

3
− 1

]
,

C̄2 = Ā2 − 7Ā1 + 35C̄1,

C̄3 = Ā1 − 5C̄1. (A.4)

In the case of a� 1 these functions are given by

Ā1(a) ∼ 4π
3

(
1 − 1

5
a
)
, Ā2(a) ∼ −8π

15
a,

C̄1(a) ∼ 4π
15

(
1 − 1

7
a
)
·

In the case of a� 1 these functions are given by

Ā1(a) ∼ π2

√
a
− 4π

a
, Ā2(a) ∼ − π

2

√
a
+

8π
a
,

C̄1(a) ∼ π2

4
√

a
− 4π

3a
·

The functions A(m)
n (β̃) are given by

A(0)
n (β̃) =

3β̃2

π

∫ β̃Rm1/4

β̃

Ān(X2)
X3

dX, (A.5)

A(2)
n (β̃) =

3β̃6

π

∫ β̃Rm1/4

β̃

Ān(X2)
X7

dX, (A.6)

∫ 1

0
Ān(a(τ̄))τ̄m dτ̄ =

2π
3

A(m)
n (β̃), (A.7)

and similarly for C(m)
n (β̃), where a = [β̃u0kτ(k)/2]2, β̃ =√

8 B/Beq, and X2 = β̃2(k/k0)2/3 = β̃2/τ̄ = a. The explicit form
of the functions A(m)

n (β̃) and C(m)
n (β̃) for m = 0; 2 are given by

A(0)
1 (β̃) =

1
5

[
2 + 2

arctan β̃

β̃3
(3 + 5β̃2) − 6

β̃2
− β̃2 ln Rm

−2β̃2 ln
( 1 + β̃2

1 + β̃2
√

Rm

)]
, (A.8)

A(0)
2 (β̃) =

2
5

[
2 − arctan β̃

β̃3
(9 + 5β̃2) +

9

β̃2
− β̃2 ln Rm

−2β̃2 ln
( 1 + β̃2

1 + β̃2
√

Rm

)]
, (A.9)

A(2)
1 (β̃) =

2
63

[
1 + 3

arctan β̃

β̃3
(7 + 9β̃2) − 21

β̃2
− 3β̃2

2
M(β̃)

]
, (A.10)

C(2)
1 (β̃) =

1
33

[ 2
21
+

arctan β̃

β̃5

(99
14
β̃4 + 11β̃2 +

9
2

)

− 19

2β̃2
− 9

2β̃4
− β̃

2

7
M(β̃)

]
, (A.11)
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where M(β̃) = 1−2β̃2+2β̃4 ln(1+ β̃−2). Here we have taken into
account that Rm � 1. For B� Beq/4 Rm1/4, these functions are
given by

A(0)
1 (β̃) ∼ 2 − 1

5
β̃2 ln Rm,

A(0)
2 (β̃) ∼ −2

5
β̃2

[
ln Rm +

2
15

]
,

A(2)
1 (β̃) ∼ 2

3

(
1 − 3

10
β̃2

)
, A(2)

2 (β̃) ∼ −2
5
β̃2,

C(2)
1 (β̃) ∼ 2

15

(
1 − 3

14
β̃2

)
·

For Beq/4Rm1/4 � B� Beq/4, these functions are given by

A(0)
1 (β̃) ∼ 2 +

2
5
β̃2

[
2 ln β̃ − 16

15
+

4
7
β̃2

]
,

A(0)
2 (β̃) ∼ 2

5
β̃2

[
4 ln β̃ − 2

15
− 3β̃2

]
·

Other functions in this case have the same asymptotics as in the
case of B � Beq/4Rm1/4. For B � Beq/4, these functions are
given by

A(0)
1 (β̃) ∼ π

β̃
− 3

β̃2
, A(0)

2 (β̃) ∼ −π
β̃
+

6

β̃2
,

A(2)
1 (β̃) ∼ 3π

7β̃
− 3

2β̃2
, A(2)

2 (β̃) ∼ −3π

7β̃
+

3

β̃2
,

C(2)
1 (β̃) ∼ 3π

28β̃
− 1

2β̃2
·

The functions q1(β) and q2(β) are given by

q1(β) =
1

12

[
A(0)

1 (0) − A(0)
1 (4β) − 1

2 A(0)
2 (4β)

− (Ωτ0)2
(
A(2)

1 (0) − 2C(2)
1 (0) − 10A(2)

1 (4β)

+ 20C(2)
1 (4β) +

9
2π

[
Ā1(16β2) − 2C̄1(16β2)

] )]
, (A.12)

q2(β) =
1

12

[
1
2 A(0)

2 (4β) + (Ωτ0)2
(
A(2)

1 (0) − 6C(2)
1 (0)

− 10A(2)
1 (4β) + 60C(2)

1 (4β) +
9

2π
[
Ā1(16β2)

− 6C̄1(16β2)
])]
. (A.13)
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