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Abstract
In direct numerical simulations of strongly stratified turbulence we have previously studied the
development of large scale magnetic structures starting from a uniform background field. This
is caused by an instability resulting from a negative contribution of small-scale turbulence to
the effective (mean-field) magnetic pressure, and was qualitatively reproduced in mean-field
simulations (MFS) where this pressure reduction was modeled as a function of the mean
magnetic field normalized by the equipartition field. We now investigate the effect of mean
current density on the turbulent pressure reduction. In our MFS, such currents are associated
with sharp gradients of the growing structures. We find that an enhanced mean current density
increases the suppression of the turbulent pressure.

PACS numbers: 91.25.Cw, 92.60.hk, 94.05.Lk, 96.50.Tf, 96.60.qd

(Some figures may appear in color only in the online journal)

1. Introduction

The Sun’s magnetic field is generally believed to be due to
a turbulent dynamo operating in the convection zone, the
outer 30% by radius (Moffatt 1978, Parker 1979, Krause
and Rädler 1980, Zeldovich et al 1983, Brandenburg and
Subramanian 2005). Recent simulations performed by a
number of groups indicated that the magnetic field is
produced in the bulk of the convection zone. According
to the flux tube scenario, most of the toroidal magnetic
field resides at the bottom of the convection zone, or
possibly just beneath it (Gilman and Dikpati 2000, Parfrey
and Menou 2007). Another possibility is that most of the
toroidal field resides in the bulk of the convection zone,
but that its spatio-temporal properties are strongly affected
by the near-surface dynamics (Käpylä et al 2012a), or the
near-surface shear layer (Brandenburg 2005). In any case, the
question then emerges how one can explain the formation
of active regions out of which sunspots develop during the
lifetime of an active region.

In the past, this question was conveniently bypassed
by referring to the possible presence of a strong toroidal

flux belt at the bottom of the convection zone, where
they would be in a stable state, except that every now
and then they would become unstable, for example the
clamshell or tipping instabilities (Cally et al 2003). However,
if the magnetic field is continuously being destroyed and
regenerated by the turbulence in the convection zone proper,
the mechanism for producing active regions and eventually
sunspots must be one that is able to operate within a
turbulent environment. One such mechanism may be the
negative effective magnetic pressure instability (NEMPI)
which is based on the suppression of turbulent pressure
by a weak mean magnetic field, leading therefore to a
negative effective (or mean-field) magnetic pressure and,
under suitable conditions, to an instability (Kleeorin et al
1989, 1990, 1993, 1996, Kleeorin and Rogachevskii 1994,
Rogachevskii and Kleeorin 2007). This has been the subject
of intensive research in recent years (Brandenburg et al
2010, 2012, Käpylä et al 2012b, Kemel et al 2012a, 2012b,
2012c, Losada et al 2012), following the first detection of
such an instability in direct numerical simulations (DNS;
see Brandenburg et al 2011). Another mechanism that has
been discussed in connection with the production of magnetic
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flux concentrations is related to the suppression of the
turbulent convective heat flux (Kitchatinov and Mazur 2000).
Meanwhile, simulations of realistic solar convection have
demonstrated that large-scale magnetic flux inhomogeneities
can develop when horizontal magnetic flux is injected at the
bottom of the simulation domain (Stein and Nordlund 2012),
but it remains to be seen whether this is connected with any of
the two aforementioned mechanisms.

The purpose of the present paper is to investigate the
possibility that higher-order contributions (involving spatial
derivatives of the mean magnetic field) might play a role
in NEMPI. We do this by using DNS to measure the
resulting turbulent transport coefficients in cases where a
measurable mean current density develops in the DNS. Note
that even for an initially uniform mean magnetic field, a mean
current density develops as a consequence of NEMPI itself,
which redistributes an initially uniform magnetic field into a
structured one. Our mean-field simulations (MFS) show that
indeed the spatial variations of the magnetic field may become
quite large as the instability runs further into saturation. We
begin by first discussing the basic equations and turn then
to the simulation results. Note that throughout this work we
use an isothermal equation of state, which yields the simplest
possible system to investigate this process. It is interesting
that, while in mixing length theory turbulence is generally
thought of as destructive, here, in the presence of gravity and
a mean magnetic field, turbulence is found to actually drive a
large-scale constructive mechanism. The resulting instability
can be described in the general mean-field framework, with,
notably, very good agreement with the DNS results.

2. Basic equations

In this paper we use both DNS and MFS to study the effects of
non-uniformity of the magnetic field due to the development
of NEMPI. In the DNS a two-dimensional pattern emerges,
which can best be isolated using averaging over the
y-direction. By imposing a uniform magnetic field, we can
determine some of the turbulent transport coefficients that
characterize the dependence of the Reynolds and Maxwell
stress on the mean field. This is generally done by determining
the total mean stress

5i j = ρ UiU j + 1
2δi j B2

− Bi Bj . (1)

Here, the vacuum permeability is set to unity and overbars
indicate y averages. This total mean stress has contributions
from the fluctuations,

5
f
i j = ρ ui u j + 1

2δi j b
2
− bi b j , (2)

where u = U − U and b = B − B are the departures from
the averaged fields. Here U and B are the mean velocity
and magnetic fields, and p is the mean fluid pressure. This,
together with the contribution from the mean fields, namely

5
m
i j = ρ U iU j + δi j

(
p + 1

2 B
2
)

− Bi Bj − 2νρ Si j , (3)

yields the total mean stress tensor, i.e. 5i j = 5
m
i j + 5

f
i j .

The term 5
m
i j depends only on the mean field and is

therefore directly obtained in MFS, while 5
f
i j is caused by

the fluctuating velocity and magnetic fields and requires a
parameterization. It has a contribution independent of the

mean field, 5
f,0
i j , and one that depends on it, 15

f
i j (B).

Much of the recent work in this field focussed on the
parameterization

15
f
i j = −

1
2 qp(β) δi j B

2
+ qs(β) Bi Bj + qg(β) B

2
ĝi ĝ j , (4)

where ĝi = gi/g is the unit vector in the direction of gravity.

This difference in the mean stress, 15
f
i j (B), is caused solely

by the presence of the mean magnetic field B, where qp(β)

is found to be a positive function of β = |B|/Beq only, and,
for weak magnetic fields, qp(β) is well in excess of unity for
ReM � 1, thus overcoming the magnetic pressure from the
mean field itself. However the functions qs(β) and qg(β) were
found to be small for isothermal turbulence. The net result for
the sum 5

m
i j + 15

f
i j is

5i j ≈ 5
f,0
i j + δi j peff(B/Beq) − Bi Bj , (5)

where peff =
1
2 [1 − qp(β)] B

2
is the mean effective magnetic

pressure. It is negative for β < βcrit, where within the
parameter regime considered here βcrit ≈ 0.5. This results
in a large-scale instability (NEMPI) and the formation of
large-scale inhomogeneous magnetic structures.

In the nonlinear stage of NEMPI, the mean magnetic
field becomes strongly non-uniform. This implies that the

Maxwell–Reynolds stress tensor 15
f
i j may depend also on

spatial derivatives of the mean magnetic field, i.e.

15
f
i j = −

1
2δi j qp B

2
+ qs Bi Bj + qg B

2
ĝi ĝ j + C1 Bi,m B j,m

+ C2 Bm,i Bm, j + C3 (Bi,m Bm, j + B j,m Bm,i ), (6)

where Bi, j = ∇ j Bi . We decompose Bi, j into symmetric and
antisymmetric parts:

Bi, j = (∂ B)i j −
1
2εi jm J m, (7)

where (∂ B)i j =
1
2 (Bi, j + B j,i ). Substituting equation (7) into

equation (6) we obtain

15
f
i j = −

1
2δi j qp B

2
+ qs Bi Bj + qg B

2
ĝi ĝ j

− qJ (J
2
δi j − J i J j ) − qF (∂ B)im(∂ B)mj

− qI
(
εiml(∂ B)mj + ε jml(∂ B)mi

)
J l . (8)

Let us consider a mean magnetic field of the form B =

(0, B y(x, z), 0), so (∂ B)xy = J z/2, (∂ B)yz = −J x/2 and

(∂ B)im(∂ B)mj =
1

4

 J
2
z 0 −J x J z

0 J
2

0

−J x J z 0 J
2
x

 , (9)

(
εiml(∂ B)mj + ε jml(∂ B)mi

)
J l

=
1

2

 J
2
z 0 −J x J z

0 −J
2

0

−J x J z 0 J
2
x

 . (10)
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Equations (8) and (9) yield

15
f
xx = − q̃J J

2
z −

1
2 qp B

2
, (11)

15
f
yy = q̃I J

2
+

(
qs −

1

2
qp

)
B

2
, (12)

15
f
zz = − q̃J J

2
x +

(
qg −

1

2
qp

)
B

2
, (13)

15
f
xz = q̃J J x J z, (14)

where q̃J(B
2
, J

2
) = qJ + qI/2 + qF/4, q̃I(B

2
, J

2
) = qI/2 − qJ

− qF/4, qp = qp(B
2
, J

2
), qs = qs(B

2
, J

2
) and qg =

qg(B
2
, J

2
). Unfortunately, we have only four equations,

but five unknowns, so we cannot obtain all the required
transport coefficients independently. In the following, we
can only draw some limited conclusions that will allow us to

motivate a numerical assessment of the nonlinear (B
2
, J

2
)

dependence of qp.

3. Results

3.1. DNS model

Following the earlier work of Brandenburg et al (2011) and
Kemel et al (2012b, 2012c), we solve the isothermal equations
for the velocity, U , the magnetic vector potential, A, and the
density, ρ

ρ
DU
Dt

= − c2
s ∇ρ + J × B + ρ( f + g) + ∇ · (2νρS), (15)

∂ A
∂t

= U × B + η∇
2 A, (16)

∂ρ

∂t
= − ∇ · ρU, (17)

where ν is the kinematic viscosity, η is the magnetic
diffusivity due to Spitzer conductivity of the plasma, B =

B0 + ∇ × A is the magnetic field, B0 = (0, B0, 0) is the
imposed uniform field, J = ∇ × B/µ0 is the current density,
µ0 is the vacuum permeability, Si j =

1
2 (Ui, j + U j,i ) −

1
3δi j∇ ·

U is the traceless rate-of-strain tensor. The forcing function,
f , consists of random, white-in-time, plane, non-polarized
waves with a certain average wavenumber, kf. The turbulent
rms velocity is approximately independent of z with urms =

〈u2
〉

1/2
≈ 0.1cs , where cs = const is the isothermal sound

speed. The gravitational acceleration, g = (0, 0, −g) is
chosen such that k1 Hρ = 1, so the density contrast between
bottom and top is exp(2π) ≈ 535. Here, Hρ = c2

s /g is
the density scale height and k1 = 2π/L is the smallest
wavenumber that fits into the cubic domain of size L3.
We consider a domain of size L x × L y × L z in Cartesian
coordinates (x, y, z), with periodic boundary conditions in
the x- and y-directions and stress-free, perfectly conducting
boundaries at the top and bottom (z = ±L z/2). In the
following we refer to kf/k1 as the scale separation ratio, for
which we choose the value 30 in all cases. For the fluid
Reynolds number we take Re ≡ urms/νk f = 18, and for the

Figure 1. Representations of B y , Peff, and the two components of
J in the xz plane from a DNS with ReM = 18. For the magnetic
field, blue indicates a zero field and white means twice the imposed
field or higher, in the effective magnetic pressure and current plots,
blue is negative and yellow positive.

magnetic Prandtl number PrM = ν/η = 0.5. The magnetic
Reynolds number is ReM = PrM Re. In our units, µ0 = 1
and cs = 1. The simulations are performed with the Pencil
Code4 which uses sixth-order explicit finite differences in
space and a third-order accurate time stepping method. We
use a numerical resolution of 2563 mesh points. In the
MFS we also use 128 meshpoints, but because the MFS
are two-dimensional, our resolution is 1282 mesh points. In
the model presented below, the z extent is however slightly
bigger: z/Hρ is 8 instead of 2π .

3.2. DNS results

In all cases, we consider a weak imposed magnetic field in
the y-direction. In figure 1 we show y-averaged visualizations
of the normal component of the magnetic field, B y , together
with the two components of the mean current density, J x =

−∂ B y/∂z and J z = ∂ B y/∂x , and the normalized effective

magnetic pressure, Peff = ( 1
2 B

2
+ 15

f
xx )/B2

eq.
As a result of NEMPI, the field in the xz plane gets

concentrated in one position and diluted in another; see the
first panel of figure 1. This leads to a balance in which the
resulting reduction of the turbulent pressure is offset by a
corresponding increase in the gas pressure and therefore a
corresponding increase in the density. The non-uniformity of
the magnetic field implies a non-vanishing current density
which is best seen in J z (lower right panel of figure 1), but
this is mainly because of enhanced fluctuations resulting from
variations in the z-direction.

In figure 2 we show three diagonal components of the
contribution to the mean turbulent pressure tensor by the

mean magnetic field 15
f
xx , 15

f
yy and 15

f
zz , normalized by

4 http://pencil-code.googlecode.com.
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Figure 2. The three diagonal components of the contribution to the

mean turbulent pressure tensor by the mean magnetic field 15
f
xx

(solid, black), 15
f
yy (dashed, blue), and 15

f
zz (dotted, red),

normalized by B2
eq with a zero current density.

Figure 3. Normalized diagonal components 15
f
xx and 15

f
yy as a

function of β, for vanishing mean current density (black, solid line),

for points with low (dashed, blue, 0.25 > J
2
H 2

ρ /B2
0 > 0.1) and

higher current densities (dotted, red, 0.25 < J 2/H 2
ρ B2

0 ).

B2
eq in turbulence with a zero mean current density. Figure 2

demonstrates that the tensor 15
f
yy in the direction of the mean

magnetic field is different from the tensors 15
f
xx and 15

f
zz

in the directions perpendicular to the mean magnetic field,
indicating a non-zero but small value of qs.

In the following we want to study the possible effects
of current density on the resulting mean-field (or effective)

magnetic pressure. We find that 15
f
xz vanishes, which

implies that q̃J = 0; see equation (14). On the other hand,

since 15
f
xx ≈ 15

f
zz , the coefficient qg vanishes or is small.

In figure 3 we show two diagonal components 15
f
xx

and 15
f
yy , normalized by B2

eq for different mean current

Figure 4. Like figure 3, but compensated by 1/(1 + J
2
/k2

J B2
eq) for

kJ Hρ = 4.

densities. Inspection of figure 3 shows that the mean current
density increases the negative minimum of the effective

magnetic pressure characterized by 15
f
xx . This implies that

an enhanced current density increases the effect of negative
effective magnetic pressure, i.e. they intensify the formation
of magnetic structures. Therefore, equation (11) allows us

to determine qp = −215
f
xx/B

2
and the mean effective

magnetic pressure peff =
1
2

[
1 − qp(β)

]
B

2
= 15

f
xx + 1

2 B
2
. In

agreement with earlier studies Brandenburg et al (2012),
we find a clear negative minimum in Peff(β) at β ≈ 0.25.
However, as the current density increases, the minimum of
Peff(β) deepens, suggesting that NEMPI might turn out to be
stronger than originally anticipated based on the dependence
Peff(β) that does not distinguish between strong and weak
current densities. A reasonable fit to such a behavior would
be of the form

5xx = −
1
2 (1 + J

2
/k2

J B2
eq)qp(β) B

2
, (18)

where kJ is a free parameter. In figure 4 we show that we
can get a good fit to the data for kJ Hρ = 4. Note further that
equation (12) has two unknowns q̃I and qs which cannot be
determined independently for such a simple configuration of
the mean magnetic field, B = (0, B y(x, z), 0).

3.3. Gravity effects in DNS

We mention in passing the effect of changing gravity. It is
clear that increasing gravity enhances the anisotropy of the
turbulence, which seems to have a reducing effect on the
negative effective magnetic pressure; see figure 5. The reason
for this is at the moment not well understood. We emphasize
that this effect is connected with qp, and not with qg that was
introduced in equation (4).

3.4. MFS

Next, let us investigate the spatial variations of Peff in
a corresponding MFS. We use the parameters β? and βp

that are appropriate in the regime investigated in the DNS
above, namely ηt0/urms Hρ = 10−2, corresponding to kf Hρ ≈

30, B0/Beq0 = 0.4, β? = 0.32 and βp = 0.05. The result is
shown in figure 6, where we plot in the upper panel the
xz dependence of Peff. Since the domain is periodic in the
x-direction, we were able to shift the position of the minimum

4
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Figure 5. Dependence of 15
f
xx (β) on the value of g (in units of

k1c2
s ). Note that the depth of the minimum decreases with increasing

gravity.

Figure 6. Representation of Peff in the xz plane using a MFS with
ηt0/urms Hρ = 10−2, corresponding to kf Hρ ≈ 30, B0/Beq0 = 0.4,
β? = 0.32 and βp = 0.05. For the contour plot, as in figure 1, blue is
negative and yellow positive.

such that it lies approximately at x = 0. The white vertical line
near x = 0 and the horizontal white line near z/Hρ = −4.3

indicate positions along which we plot in the next two panels
Peff at three different times.

Initially, the minimum of Peff(β) occurs at the height
z/Hρ ≈ −2.5, but at later times the minimum broadens and
we have Peff ≈ −0.035 in the range −5.5 < z/Hρ < 2.5. In
the last panel of figure 6 we show that the horizontal extent
of the structure becomes narrower and more concentrated as
time goes on.

4. Conclusions

The present results have shown that NEMPI tends to
develop sharp structures in the course of its nonlinear
evolution. This becomes particularly clear from the MFS
presented in section 3.4. The results of section 3.2 suggest
that this might have consequences of an intensification of
NEMPI with increasing |J |, as was demonstrated using
DNS. At present it is not clear what is the appropriate
parameterization of this effect. One possibility is that the J
dependence enters in the same way as the B dependence,

i.e. 5xx = −
1
2 (1 + J

2
/k2

J B2
eq)qp(β) B

2
, where we treat kJ as

a free parameter, although this might be a naive expectation
given the small number of data points and experiments
performed.

The present results are just a first attempt in going
beyond the simple representation of the turbulent stress
in terms of the mean field alone. Other important terms
include combinations with gravity as well as anisotropies of
the form J i J j . Furthermore, if there is helicity, one could
construct contributions to the stress tensor using products
of the pseudo-tensors J i Bj and J j Bi with the kinetic or
magnetic helicity. Such a construction obeys the fact that
the Reynolds and Maxwell tensors are proper tensors. Such
pseudo-tensors might play a role in the solar dynamo where
the α effect is believed to play an important role. However,
nothing is known about the importance or the sign of such
effects. It would thus be desirable to have an accurate method
that allows one to determine the relevant turbulent transport
coefficients.
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