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We consider the evolution of primordial magnetic fields generated during cosmological, electroweak, or

QCD phase transitions. We assume that the magnetic field generation can be described as an injection of

magnetic energy to cosmological plasma at a given scale determined by the moment of magnetic field

generation. A high Reynolds number ensures strong coupling between the magnetic field and fluid

motions. The subsequent evolution of the magnetic field is governed by decaying hydromagnetic

turbulence. Both our numerical simulations and a phenomenological description allow us to recover

‘‘universal’’ laws for the decay of magnetic energy and the growth of magnetic correlation length in the

turbulent (low-viscosity) regime. In particular, we show that during the radiation-dominated epoch, the

energy and correlation length of nonhelical magnetic fields scale as conformal time to the powers �1=2

and þ1=2, respectively. For helical magnetic fields, the energy and correlation length scale as conformal

time to the powers �1=3 and þ2=3, respectively. The universal decay law of the magnetic field implies

that the strength of the magnetic field generated during the QCD phase transition could reach �10�9 G

with the present-day correlation length �50 kpc. The fields generated at the electroweak phase transition

could be as strong as�10�10 G with correlation lengths reaching�0:3 kpc. These values of the magnetic

fields are consistent with the lower bounds of the extragalactic magnetic fields.

DOI: 10.1103/PhysRevD.87.083007 PACS numbers: 98.70.Vc, 98.80.�k

I. INTRODUCTION

Astronomical observations show that galaxies have
magnetic fields with a component that is coherent over
a large fraction of the galaxy with field strengths of the
order of 10�6 G; see Refs. [1–3] and references therein.
Understanding the origin of these fields is one of the
challenging questions of modern astrophysics. Generally
speaking, there are two popular scenarios. The first one
envisages the generation of magnetic fields through differ-
ent astrophysical mechanisms. More precisely, it is as-
sumed that an initially tiny magnetic field is produced
through a battery mechanism [4]. The correlation length
of such a field is limited by galactic length scales. The
second scenario to explain the origin of the magnetic field
in galaxies and clusters presumes that the observed mag-
netic fields were amplified from cosmological weak seed
magnetic fields [5]. In this case the correlation length of
such a seed field might be as large as the horizon scale
today if we admit that the field has been generated during

inflation. There are different possibilities for seed magnetic

field amplification, ranging from a magnetohydrodynamic

(MHD) dynamo to the adiabatic compression of magnetic

field lines during structure formation [6,7].
Galactic magnetic fields are usually measured through

the induced Faraday rotation effect [2,3] and, as mentioned

above, the field magnitude is of the order of a few 10�6 G
at typical scales of 10 kpc. The primordial magnetic energy

density contributes to the radiation field, and thus the big

bang nucleosynthesis (BBN) bound implies �Bh
2
0 �

2:4� 10�6 [8] if the magnetic field has been generated

prior to BBN. If the correlation length of the magnetic field

is much larger than �B * 1 Mpc, smaller limits on the

magnetic field energy density arise from the cosmological

data, making Bmax � a few10�9 G; see Ref. [9] and refer-
ences therein. A correlation length-dependent lower limit

on magnetic fields in the intergalactic medium (IGM)

could be derived from gamma-ray observations of blazars

[10–13]. In the limit of large correlation lengths, �B *
1 Mpc, the bound is at the level of 10�17 G (see also

Ref. [14] for a discussion on possible uncertainties in the

measurements of blazar spectra).
It is possible, in principle, that the IGM magnetic fields

are of primordial origin. Another possibility is that the

*tinatin@phys.ksu.edu
†aleko@tevza.org
‡brandenb@nordita.org
§Andrii.Neronov@unige.ch

PHYSICAL REVIEW D 87, 083007 (2013)

1550-7998=2013=87(8)=083007(10) 083007-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.083007


fields are spread through the IGM by outflows from

galaxies at late stages of the evolution of the Universe.

To distinguish between these two possibilities, it is impor-

tant to identify measurable characteristics of the IGM

magnetic fields which are different in the two cases and

to study the possibility of measuring such characteristics.
In this paper we consider the observational properties of

IGM magnetic fields expected if the fields originate from
cosmological phase transitions (PT) such as the electroweak
(EW) and QCD PTs [15,16]. Some scenarios of magnetic
field generation during electro weak phase transition
(EWPT) or QCDPT also produce magnetic helicity [17].
We follow the evolution of fields from the epoch right after
the magnetogenesis up to the present-day epoch. Our ap-
proach is different from that adopted in the previous studies,
which mostly concentrated on the analysis of the range of
possible field strengths at a predefined scale of interest (e.g.,
1 Mpc). Instead, we study the evolution of field character-
istics that are most relevant for measurements using radio
and gamma-ray astronomy. Specifically, we are interested
in the evolution of the magnetic energy density �B, which

determines the characteristic field strengthBðeffÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8��B

p
,

and the characteristic correlation scale (integral scale) �M at

which the field reaches the strength BðeffÞ.
The present-day integral scale depends on the tempera-

ture T? and the number of relativistic degrees of freedom
g? at the moment when the primordial magnetic field is
generated. These parameters determine the maximal al-
lowed value of the magnetic energy density injected in
the PT plasma, as well as the initial correlation length of
the magnetic field [18]. We do not separately consider the
effect of helicity transfer related to the chiral anomaly,
which might be important in the presence of strong mag-
netic fields at temperatures above 10–100 MeV [19]. Such
a transfer could be considered as part of the magneto-
genesis process which could persist all the way down to
the temperature scale of the QCD phase transition. We only
use fundamental physical laws, such as conservation of
energy, and the way the magnetic field interacts with the
cosmological plasma through MHD turbulence, and we do
not make any assumption about the physical processes
responsible for the primordial magnetic field generation.

In Sec. II we give an overview of the spatial and tem-
poral characteristics of the primordial magnetic field. The
results of our analysis are presented in Sec. III, where we
discuss the evolution of the magnetic field. Conclusions are
presented in Sec. IV. We employ natural units with ℏ ¼
1 ¼ c and Gaussian units for electromagnetic quantities.

II. MODEL DESCRIPTION

A. Effective magnetic field characteristics

We assume that the phase-transition-generated magnetic
fields satisfy the causality condition [16,20,21]. The maxi-
mal correlation length �max for a causally generated

primordial magnetic field cannot exceed the Hubble radius
at the time of generation,H�1

? . Hence � ¼ �max=H
�1
? � 1,

where � can be associated with the number of primordial
magnetic field bubbles within the Hubble radius, N / �3.
The comoving length (measured today) corresponding to
the Hubble radius at generation is inversely proportional
to the corresponding PT temperature T?,

�H?
¼ 5:8� 10�10 Mpc

�
100 GeV

T?

��
100

g?

�
1=6

; (1)

and is equal to 0.5 pc for the QCDPT (with g? ¼ 15
and T? ¼ 0:15 GeV) and 6� 10�4 pc for the EWPT
(with g? ¼ 100 and T? ¼ 100 GeV), and the comoving
primordial magnetic field correlation length �max � �H.
This inequality assumes only the expansion of the
Universe, without accounting for MHD turbulence (free
turbulence decay or an inverse cascade if a helical primor-
dial magnetic field is present). We also note that the
number of PT bubbles within the Hubble radius is around
6 (� ’ 0:15) for QCDPT and around 100 (� ’ 0:01) for
EWPT. So the maximal correlation length �max is equal to
0.08 pc for QCDPT and 6� 10�6 pc for EWPT.
The maximal value of the primordial magnetic field

energy density must satisfy the BBN bound, i.e., the total
energy density of the primordial magnetic field at nucleo-
synthesis �B [where a should not exceed 10% of the
radiation energy density �radðaNÞ]. In any case, the mag-
netic field is generated by the mechanical motion of
charged particles, so its energy density could constitute
only a fraction of the matter energy density, which is at
most comparable to the radiation energy density in the
radiation-dominated Universe. Note that the maximal
value of the effective magnetic field is independent of the
temperature at generation T�, and depends only very
weakly on the number of relativistic degrees of freedom
at the moment of generation.
In what follows, we are mostly interested in the evolu-

tion of the energy density of the magnetic field and the
length scale which gives the dominant contribution to the
energy density (the ‘‘integral scale’’) during the course of
cosmological evolution. Taking this into account, we adopt
the following idealizing approximation: We generate an
initial primordial magnetic field by solving the MHD
equations for a certain time during which an external
electromagnetic force is applied that is proportional to a
delta function that peaks at the characteristic scale k0 ¼
2�=��1

0 . This corresponds to a magnetic field with corre-

lation length �0. In this approximation, the characteristic

magnetic field strength at the scale �0 is B
ðeffÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8��B

p
.

We justify our assumption that �0 should be identified with
the size of the largest magnetic eddies by noting that the
primordial magnetic field is involved in MHD processes
driven by turbulence. It is natural to assume that the typical
length scale of the magnetic field generated during the
PTs is determined by the PT bubble size.
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The dynamical evolution of the coupled magnetic
field—matter system leads to a spread of magnetic field
over a range of scales. The resulting power spectrum of the
magnetic field at small wave numbers (or, equivalently,
large distance scales) has the form of a power law,
PMðkÞ ¼ EMðkÞ=ð4�k2Þ ¼ AknB , with a normalization
constant A and a slope1 nB. In particular, a white noise
power spectrum corresponds to nB ¼ 0 [20], while the
Batchelor spectrum corresponds to nB ¼ 2 [21]. The
power-law spectrum extends up to a time-dependent inte-
gral scale �M, above which the power contained in the
magnetic field decreases rapidly due to turbulent decay
and/or viscosity damping.

Several previous studies (see Ref. [23] and references
therein) describe the primordial magnetic field in terms of
a smoothed (over length scale �) magnetic field B� with

B2
� ¼ hBiðxÞBiðxÞij�. Knowing BðeffÞ and the slope of

the power spectrum, one can calculate the strength of the
smoothed magnetic field at any scale of interest � [18]:

B� ¼ BðeffÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðnB=2þ 5=2Þp

ð�=�MÞðnBþ3Þ=2 : (3)

The smoothed magnetic field might be of interest in the
context of certain problems. For example, the strength of a
magnetic field smoothed over a scale �� 1 Mpc is con-
sidered to be relevant in the context of seed magnetic fields
for galactic dynamos. It is, however, important to note that
B� is strongly nB dependent for a given value of �. In
particular, for causally generated magnetic fields with
nB � 0 there is significant ‘‘magnetic power’’ only at small
scales, and for � ’ 1 Mpc the value of B1 Mpc is extremely

small [24]. At the same time, it does not imply that the
magnetic field itself is weak. In fact, it could be as strong

as BðeffÞ ’ 10�6–10�7 G, close to the bound imposed by
the BBN [18]. Only in the case of a scale-invariant mag-
netic field with nB ! �3, generated, for example, during
inflation [25], B� is independent of � and nB, and is equal

to BðeffÞ. Note that sometimes [see, e.g., Eq. (8) in

Ref. [26]], instead of calculating B� through BðeffÞ, the
smoothed value of the magnetic field is determined through
the normalization constant A of the power spectrum as

B2
� ¼ A�ðnB=2þ 3=2Þ=ð�MÞðnBþ3Þ=ð2�Þ2.

B. Phenomenological description of the magnetic
field decay in the free turbulence regime

After generation, the evolution of the primordial mag-
netic field is a complex process affected byMHD as well as
by the expansion of the Universe [27–35]. In our descrip-
tion, to account for the expansion of the Universe we make
use of the fact that conformal invariance allows for a
description of MHD processes in the early Universe by
simply rescaling all physical quantities in terms of their
comoving values and using the conformal time � [16].
After this procedure, the MHD equations include the ef-
fects of the expansion while retaining their conventional
flat spacetime form.
The magnetic evolution process strongly depends on

initial conditions, as well as on the physical conditions of
the primordial plasma. We need to determine the scaling
laws for the following magnetic field characteristics:
(i) magnetic energy density, (ii) correlation length, and
(iii) magnetic helicity. The magnetic energy and magnetic
helicity spectra are related through the realizability
condition, jHMðk; �Þj � 2EMðk; �Þ=k [29]. For the total
magnetic energy EMðtÞ ¼

R
EMðk; �Þdk and helicity

HMð�Þ ¼
R
HMðk; �Þdk, we get

HMð�Þ � 2�Mð�ÞEMð�Þ; (4)

where

�Mð�Þ � E�1
M ð�Þ

Z
EMðk; �Þk�1dk (5)

is the comoving magnetic eddy correlation length (which
corresponds to the physical integral scale �M), initially set
by the temperature at the magnetic field generation mo-
ment �M;in ¼ �0 ¼ ��H?

[see Eq. (1)], and is independent

of the presence of magnetic helicity.
Both helical and nonhelical magnetic fields experience

large-scale MHD decay, resulting in an increase of the
correlation length with a corresponding decrease in the
magnetic energy density at large scales; for a review, see
Refs. [29,36]. The time rate of this process depends strongly
on the presence of magnetic helicity [27,28]. Taking this
into account, we consider the cases of helical and nonhelical
magnetic fields separately.
As noted above, the initial magnetic field configuration

is given by a sharply peaked spectral energy density. The
coupling between the primordial magnetic field and
plasma, which ensures the spreading of the fixed-scale
primordial magnetic field over a wide range of length
scales, forms a modified magnetic field spectrum within
a few turnover times (see Ref. [37] for more details). The
final realization of the spectrum is given by the Batchelor
spectrum, nB ¼ 2. Our numerical simulation results are in
perfect agreement with the ‘‘causality constraint’’ that in
the cosmological context has been discussed in Ref. [16]

1In general, the magnetic field spectrum is determined through
the Fourier transform FM

ij ðkÞ of the two-point correlation func-

tion of the magnetic field, hBiðxÞBjðxþ rÞi, with the spectral
function [22]

FM
ij ðkÞ ¼ PijðkÞE

MðkÞ
4�k2

þ i"ijlkl
HMðkÞ
8�k2

: (2)

Here, PijðkÞ ¼ �ij � kikj=k
2, "ijl is the antisymmetric tensor,

and EMðkÞ and HMðkÞ are the magnetic energy and helicity
spectra.
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and studied through an analytical approach in Ref. [21],2

so that the power contained in the large-scale modes is
very small, while the total magnetic energy density is
sufficiently large. MHD processes are also responsible
for the generation of fluid perturbations when an initial
magnetic field is present. These processes finally result
in equipartition between magnetic and kinetic energy
densities [34,39]. In contrast to the magnetic field, the
velocity field has a white noise spectrum, i.e., PK ¼
EK=ð4�k2Þ ¼ AKk

nK , with nK ¼ 0 due to the possible
presence of longitudinal modes. To describe adequately
the evolution of fluid motions coupled to the magnetic
field, we need to solve the complete set of MHD equa-
tions; see below.

Below we present a phenomenological description
of the MHD decay laws at large scales. In the case of
helical fields, we mostly follow the description presented
in Secs. 4.2.3 and 5.3.2 of Ref. [29] and Sec. 7.3.4 of
Ref. [40]. On scales below �M, magnetic power is trans-
ferred to smaller scales via the so-called direct cascade
by turbulence until it is finally damped at the smallest
scale �d. In MHD, the magnetic field damping is usually

determined through the Reynolds number as �d=�M ¼
Re�3=4 [36]. The kinetic and magnetic Reynolds numbers
in the early Universe can be extremely high, and thus
one may expect that �d � �M. In both helical and
nonhelical cases, the dissipative region of the energy
density spectrum is given by a Kolmogorov-type

spectrum3 EM ¼ CK"
2=3
M k�5=3, where CK is a constant of

order unity (1.6–1.7 for a wide range of Reynolds
numbers), "M is the magnetic energy dissipation rate per

unit mass, given by "M ¼ 2�
RkD
k0
k2EMðkÞ, with � being

the magnetic diffusivity. At large scales above �M, the
magnetic field decay is strongly dependent on the pres-
ence of magnetic helicity. The high conductivity of
plasma ensures magnetic helicity conservation that is
responsible for the transfer of spectral energy from small
to large scales via a so-called inverse cascade. In the
nonhelical case, the process is more complicated. As we
will see below, magnetic helicity conservation leads to
a faster growth of the correlation length and a slower
decay of total magnetic energy.

1. Nonhelical magnetic fields

As we already stated above, causality requires that
EMðkÞ / k4, and this is a consequence of the divergence-
free condition for the magnetic field [21]. On the other
hand, there is no zero-divergence requirement for the
velocity field, and this allows for the possibility of having
a white noise spectrum for the velocity field, i.e., EKðkÞ /
k2; see Ref. [20]. We would like to note that our numerical
simulations allowing the longitudinal forcing (see
Refs. [34,39]) show a white noise spectrum for the
velocity field as a final configuration. Under these
conditions, the power of magnetic field modes on the
large scales is much smaller than the power of plasma
motions. Thus, potentially the magnetic field might be
amplified via a transfer of energy from plasma motions at
large scales. The time scale � on which the field can be
amplified at large scales can be deduced from the induc-
tion equation

@B

@t
� vKðLÞB

L
! �� L=vL; (6)

i.e., the characteristic field amplification time scale is
approximately the plasma eddy turnover time. On this
time scale, an equipartition between kinetic and magnetic
energies could be reached over the distance range L. In
the final configuration the equipartition between magnetic
and kinetic energies is a consequence of the coupling
between magnetic and velocity fields.4 The growth of
the magnetic field up to equipartition with the fluid on
large scales is somewhat similar to the phenomenon of
an ‘‘inverse cascade’’ of the magnetic power spectrum.
Note, however, that the source of power in the inverse
transfer of nonhelical magnetic fields is different from
the power source in the case of helical fields. In the case
of nonhelical fields, the power in the large-wavelength
modes increases due to the presence of a large power
reservoir in the form of the turbulent motions of the
plasma in the same wavelength range. By contrast, in
the case of helical fields, the power on large scales grows
due to the transfer of power from the shorter-wavelength
modes.
Apart from the transfer of power from the plasma

motions to the magnetic field at large scales, another effect
of the evolution of plasma and magnetic field perturbations
is the turbulent decay of the power at short length scales
due to the phenomenon of the direct turbulent cascade. At a
given moment of time �, this phenomenon leads to the

2A recent study based on semianalytical calculations [38]
showed the same shape for phase-transition-generated magnetic
fields. In laboratory plasma as well as in numerical simulations,
the resulting magnetic field spectrum at large scales can be given
by a white noise spectrum, nB ¼ 0 [20], or even by a flatter
Kazantsev spectrum, nB ¼ �1=2 [29]. However, here we con-
sider the case of a cosmological magnetic field for which the
correlation length is strongly limited by the Hubble horizon.

3By a Kolmogorov-type spectrum, we simply mean a k�5=3

spectrum, ignoring anisotropies that are known to exist in non-
helical MHD [41]. Such a spectrum can be derived from a
phenomenological approach too; see Sec. 5.3.2. of Ref. [29].
Our numerical simulations [37,42] confirmed the Kolmogorov-
type spectrum for a wide range of magnetic Prandtl numbers.

4In fact, the two Reynolds numbers in the Universe are high
enough to ensure the validity of the Kolmogorov-type phenome-
nological approach [30], according to which there is self-
similarity between the kinetic and magnetic energy densities’
evolution (see Sec. 7.3.4 of Ref. [40]), i.e.,

EM � EK � E: (7)
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suppression of power in velocity and magnetic field modes
on scales smaller than the size of the largest processed
eddy. The size of the largest processed eddy is determined
by the condition

�K � �M � vKð�KÞ�; (8)

where vLð�Þ is the characteristic velocity of the plasma
motions on the scale �. From the definition of the kinetic
energy power spectrum through the velocity two-point
correlation PKðkÞ � jvkj2 � jvKðL� 1=kÞj2=k2, one finds
that the characteristic velocity vK on the distance scale
L� k�1 is v2

K � k2PK. Since the power spectrum of
plasma perturbations is PK � k0, we have vK � k� ��1,
so the above equation has the solution

�K � �M � �1=2: (9)

The energy of plasma perturbations on the scale �K is EK ¼
4�k2PK � k2 � ��2

K � ��1. Since the magnetic field on
the scale �K � �M is in equipartition with the plasma, the
energy density of the magnetic field evolves with time as

EM � EK � ��1; (10)

so that the strength of magnetic field evolves as

BðeffÞ � ffiffiffiffiffiffiffi
EM

p � ��1=2: (11)

Below, we demonstrate numerically (see Sec. III) that

the evolution laws �M � �1=2, EM � ��1 are indeed real-
ized in the free turbulence decay regime. It should be noted

that the ‘‘universality’’ of the decay law �M / �1=2 would
not be realized if we were to consider the magnetic field
evolution separately from the velocity field evolution [29];
see also Refs. [32,33] for the magnetic field decay laws in
the cosmological context. Accounting for the Loitsianskii
invariant for turbulence leads to the decay laws being
dependent on the spectral shape; see Ref. [43] and refer-
ences therein. It has also been claimed that the decay laws
in the case of nonhelical magnetic fields strongly depend
on the initial conditions and can be different even when the
helicity is extremely small [29].

2. Helical fields

In the case of helical fields, the evolution of EM and
�M is determined directly by the condition of the conser-
vation of magnetic helicity,

R
A 	 Bd3x. High Reynolds

numbers allow us to follow the Kolmogorov-type phe-
nomenological approach given above; see Sec. 4.2.3 of
Ref. [29]. Accounting for magnetic helicity conservation

EM�M ¼ const,5 and combining Eq. (7) and �M � E3=2=",
which follows from the dimensionless analysis (based on
the Kolmogorov-type approach), we get [30]

�dEM

d�
� E�5=2

M ; (12)

which leads to the decay laws EM / ��2=3 and �M / �2=3.
Below, we demonstrate numerically (see Sec. III B) the

appearance of the �M � t2=3, EM � t�2=3 laws in the evo-
lution of helical magnetic fields in the free decay regime.

C. Simulation setup

To model the evolution of the magnetic field and fluid
perturbations, we solve the compressible equations with
the pressure given by p ¼ �c2s , where � is the gas density

and cs ¼ 1=
ffiffiffi
3

p
is the sound speed for an ultrarelativistic

gas. Following our earlier work [34], we solve the govern-
ing equations for the logarithmic density ln�, the velocity
v, and the magnetic vector potential A, in the form

D ln�

D�
¼ �r 	 v; (13)

v

�
¼ J� B

�
� c2sr ln�þ fvisc (14)

@A

@�
¼ v� Bþ fM þ �r2A; (15)

where D=D� ¼ @=@�þ v 	 r is the advective derivative
and fvisc ¼ �ðr2vþ 1

3rr 	 vþ GÞ is the viscous force in
the compressible case, with constant kinematic viscosity �
and Gi ¼ 2Sijrj ln�, as well as Sij ¼ 1

2 ðvi;j þ vj;iÞ �
1
3�ijvk;k, which is the trace-free rate-of-strain tensor.

Furthermore, J ¼ r�B=4� is the current density.
We use the PENCIL CODE [44] with a resolution of 5123

meshpoints. An important difference between our simula-
tion setup and those of previous studies is in the treatment
of the backreaction of fluid perturbations onto the magnetic
field. Such treatment is important, especially on large
length scales, because the spectrum of velocity perturba-
tions follows a white noise (EK / k2) spectrum to large
scales [20]. Large-scale fluid perturbations affect the mag-
netic field evolution at the largest scales and could lead to a
transfer of power to the large-scale modes of the magnetic
field, an effect similar to the inverse cascade developing
even in the case of nonhelical fields; see also Sec. III.
Prior to the simulation of the magnetic field decay, we

inject magnetic energy into the computational domain at
scales corresponding to the phase-transition eddy size (see
Ref. [34] for more details). We approximate the magnetic
field injection by a delta function in wave number space,
allowing it to interact through MHD processes with a rest
plasma. After several turnover times, the initial sharp peak
of the magnetic field starts to disappear and the magnetic
field begins to spread over a wide range of the wave
numbers; see Fig. 4 of Ref. [34]. In a few turnover times,
the spectrum becomes established with a cutoff at small
length scales and a well-defined Kolmogorov-like integral

5Accounting for magnetic helicity conservation and assuming
that the magnetic spectral energy is sharply peaked at �M, a very

rough estimate implies that Beff / ��1=2
M .
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scale kM, and a k4 spectral shape at large length scales. In
contrast to the studies of Refs. [32,33], we recover the
spectral shape of the magnetic field at large scales.6 This
is in perfect agreement with the previous analytical results
of Ref. [21] based on causality and divergence-free field
arguments.

We use simple power-law models for the decay of
turbulence and scale the magnetic correlation length and
magnetic field with temperature as follows:

�M

�0

¼
�
T

T?

��n�
; (16)

BðeffÞ

B?

¼
�
T

T?

��nE
; (17)

where B? and T? are the effective values of the magnetic
field at the moment of generation and the temperature of
the phase transition, respectively. Hence, the values of the
parameters n� and nE describe the turbulent decay laws

that differ from each other in the nonhelical and helical
cases.

Qualitative arguments presented above show that the
expected values for ðn�; nEÞ for nonhelical and helical

fields are (1=2, �1=2) and (2=3, �1=3), respectively.
Below, we show that this is indeed the case.

III. SIMULATION RESULTS

In Sec. II, we have presented a phenomenological de-
scription of the scaling laws for the magnetic correlation
length and the magnetic energy in the free turbulence
decay regime. Below, we address the same scaling laws
based on our simulations. We also briefly review the results
of previous works.

A. Nonhelical magnetic field evolution

The scaling laws for the nonhelical magnetic field evo-
lution have been studied through different simulations by
different groups; see Refs. [27,28,30,32,45] and references
therein. As is stated in Ref. [29], the magnetic decay laws
for the nonhelical case strongly depend on initial condi-
tions, and result in exponents n in the decay law EMð�Þ /
��n that vary in the range 1:3> n> 0:65. Note that the
numerical and phenomenological studies performed in
Refs. [32,33] lead to �Mð�Þ / �0:4 and EMð�Þ / ��1:2

for a white noise spectrum, and this is in good agreement
with the grid turbulence description of hydrodynamic tur-
bulence [36]. On the other hand, the 3D MHD simulations
of Refs. [27,34] and the phenomenological study of
Ref. [31] show a slightly faster growth of the correlation

length �Mð�Þ / �1=2 with a magnetic energy decaying as
EM / t�1. The difference between the two different scaling

laws is probably due to different initial conditions.
In particular, the initial velocity field has traditionally
been taken to be zero. By contrast, here we have taken as
initial condition the result of a self-consistent magnetically
driven turbulence simulation. The numerical simulations
of Ref. [42] show that the growth of the correlation length

FIG. 1 (color online). �Mð�Þ for helical (thin, red) and non-
helical (thick, blue) cases.

FIG. 2 (color online). EMð�Þ (solid) and EKð�Þ (dashed) for the
helical (thin, red) and nonhelical (thick, blue) cases.

FIG. 3 (color online). Evolution of EMðk; �Þ (solid) and
EKðk; �Þ (dashed) versus k for � ¼ 5, 10, 20, 50, and 100 for
the nonhelical run. Thick lines are for � ¼ 10. The red dash-
dotted lines give the k2 and k4 scalings for comparison. All
spectra are normalized by

R
EMðk; 0Þdk=k0.

6Note that in Ref. [34], the spectral index is between 3 and 4
due to a different choice of the system parameters and run time.
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is almost independent of the magnetic Prandtl number with

�M / �1=2 (Fig. 1), while the exponent of the total mag-
netic energy density decay is compatible with �1 (here
closest to �0:9; Fig. 2). Accounting for T / a�1 and
/ ��1 during the radiation-dominated epoch, and the mag-

netic field strength BðeffÞ ¼ ffiffiffiffiffiffiffiffiffiffi
8�E

p
M, we get the scaling

indices for the decay of nonhelical turbulence: n� ¼ 1=2
and nE ¼ �1=2. As expected, for k � k0 early times, we
find EMðk; �Þ / k4 and EKðk; �Þ / k2; see Fig. 3.
Furthermore, even in this nonhelical case the spectral en-
ergies increase with time for k � k0, while for k 
 k0
they decrease.

B. Helical magnetic field evolution

As we have noted above, the presence of magnetic
helicity results in the development of an inverse cascade
during which the correlation length is increasing while the
total magnetic energy decreases. Similar to the nonhelical
case, there are basically two different approaches:
(i) Refs. [30,32,33] assume exact conservation of magnetic
helicity, and the magnetic field is the dominant contribu-
tion to the total energy density, i.e., EK=EM � 1 (where EK

is the total kinetic energy density of turbulence); (ii) other
approaches are given in Refs. [27,31]. In particular,
Ref. [27] refers to a more general case with magnetic
helicity evolving as HMð�Þ / ��2s. Also, the ratio be-
tween kinetic and magnetic energy densities has in some
studies been assumed to be around 1; Ref. [31] assumes
that the magnetic field evolves toward a force-free regime
with constant magnetic helicity and with a constant ratio
between magnetic and kinetic energy densities. All models
[28,30–33] show that the scaling laws are independent of
the initial magnetic field spectrum. In fact, there are two
main behaviors described: (i) Refs. [30,32,33] claim

EMð�Þ / ��2=3 and �Mð�Þ / �2=3; (ii) Refs. [27,31] claim

�Mð�Þ / �1=2 with EMð�Þ / ��1=2. In both scaling laws,
�MEM � const. The main difference between these two
scaling laws consists in choosing the turbulence model.
Refs. [27,31] assume a force-free development of the
MHD turbulence decay, while Ref. [33] [see their
Eq. (4)] assumes a linear dependence between vorticity
and Lorentz force. Our new numerical results support the
former scenario, (i). Figure 3 shows the evolution of kinetic
and magnetic spectral energies. As we can see, the k2 and
k4 laws are established at large scales for kinetic and
magnetic spectral energies, respectively. We can also see
the slight increase of power at large scales, even in the case
of nonhelical fields.

We have performed a study of the large-scale decay of a
maximally helical magnetic field under conditions similar
to those in the nonhelical case, and for different magnetic
Prandtl numbers as well as different values of magnetic
resistivity. We have recovered the EMðkÞ / k4 spectral

shape and the scaling laws as �M / �2=3 and EM /
��2=3, so that n� ¼ 2=3, nE ¼ �1=3 [46]; see also

Ref. [29] for more general discussion, and see Figs. 1
and 2. Again, these scaling laws are valid when the corre-
lation length is greater than the damping scale, so that
dissipation does not play an important role. Similarly to
the nonhelical run, we find for k � k0 and early times that
EMðk; �Þ / k4 and EKðk; �Þ / k2; see Fig. 4. In this case,
there is a strong inverse cascade with a strong increase of
spectral energies with time for k � k0. We can also see the
constant magnetic power while the peak is moving toward
large scales (inverse cascade). This corresponds to the
constant helicity case.

IV. IMPLICATIONS FOR THE COSMOLOGICAL
EVOLUTION OF MAGNETIC FIELDS

Decay of cosmological MHD turbulence occurs together
with the cooling of the Universe and the increase of mag-
netic correlation length. Therewith, the correlation length
increases only up to the point when the Universe reaches
the temperature T ¼ 1 eV [35]. The initial values of cor-
relation length and magnetic field strength, �0 and B0, at
the temperature of magnetogenesis T�, together with the
two scaling indices n� and nE, fully determine the large-

scale magnetic field decay, and as a result, the final con-
figuration of the magnetic field.
Phenomenological arguments as well as numerical

simulations show that n� ¼ 1=2 and nE ¼ �1=2 in the

nonhelical case, while n� ¼ 2=3 and nE ¼ �1=3 in the

helical case during the turbulent regime. The speed of
growth of �M is constant, independently of the relation
between �M and �d. This implies that, in the case in which
the initial correlation length of the magnetic field is com-
parable to the size of the cosmological horizon at the epoch
of magnetogenesis, the final correlation length reaches
2� 10�4 Mpc and 6� 10�3 Mpc for nonhelical magnetic
fields generated at EWPT and QCDPT, respectively. In the
helical case, the correlation length reaches 10 kpc for
fields generated at the QCDPT and 0.1 Mpc for the EWPT.

FIG. 4 (color online). Evolution of EMðk; �Þ (solid) and
EKðk; �Þ (dashed) versus k for � ¼ 5, 10, 20, 50, and 100 for
the helical run. Thick lines are for � ¼ 10. The red dash-dotted
lines give the k2 and k4 scalings for comparison. All spectra are
normalized by

R
EMðk; 0Þdk=k0.
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The evolutionary paths of magnetic field strength and
correlation length in time and in the B, �M parameter space
are shown in Figs. 5–7. In principle, the free turbulence
decay periods in the early Universe are intermittent, with
periods of viscously damped evolution [32]. So, starting
from 10 MeV, Figs. 5 and 6 show only maximal values of
helical and nonhelical magnetic fields and their correlation
lengths from QCD and electroweak phase transitions with-
out accounting for any possible damping processes that can
affect the given scaling laws. These maximal values are
derived using several assumptions: the magnetic correla-
tion length during phase transition matches the bubble size,
and magnetic fields are excited with maximal amplitudes
allowed by the BBN limit. In fact, before neutrino decou-
pling the viscous damping force fvisc in Eq. (14) grows as
��lmfp;� � �4, where lmfp;� is the neutrino mean free path.

This growth is much faster than the �M � �1=2 growth of
the integral scale of the magnetic field. This means that,
even if �M 
 lmfp;� at the moment of magnetogenesis, lmfp

catches up with �M at a later time �visc. Starting from this
time and up to the moment of neutrino decoupling, the
magnetic field stops to decay, B� const, because the fluid
motions are damped by viscosity, v� 0, so that there is no
coupling of the magnetic field to the fluid in this regime.
However, turbulence restarts after the neutrino decoupling,
so that the system returns to the same evolutionary track

FIG. 6 (color online). The correlation length�M (top panel) and
the maximal allowed Bmax (bottom panel) for primordial helical
(thin red) and nonhelical (thick blue) magnetic fields generated
during EWPT. Constraints on the magnetic field at T ¼ 0:25 eV
are set to Bmax ¼ 1:3� 10�12 G (�M ¼ 3:5� 10�6 Mpc) and
Bmax ¼ 1:1� 10�10 G (�M ¼ 3:1� 10�4 Mpc) for nonhelical
and helical cases, respectively. Dashed lines show areas where
damping processes may reduce ideal estimates.

FIG. 7 (color online). Cosmological evolution of BðeffÞ and �M

for magnetic fields generated at the EWPT (green) and QCDPT
(orange). Arrows show the evolution of the strength and integral
scale of helical and nonhelical fields during the radiation-
dominated era up to their final values. Thick solid line(s) show
the possible present-day strength and the integral scale of the
phase-transition-generated magnetic fields.

FIG. 5 (color online). The correlation length �M (top panel)
and the maximal allowed Bmax (bottom panel) for primordial
helical (thin red) and nonhelical (thick blue) magnetic fields
generated during QCDPT. Constraints on the magnetic field
at T ¼ 0:25 eV are set to Bmax ¼ 4:5� 10�11 G (�M ¼ 2�
10�3 Mpc) and Bmax ¼ 1:3� 10�9 G (�M ¼ 5:6� 10�2 Mpc)
for nonhelical and helical cases, respectively. Dashed lines
show areas where damping processes may reduce ideal
estimates.
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shown in Fig. 7 just after neutrino decoupling. At lower
temperatures, when the viscosity is provided by photon
streaming, the viscous damping scale grows as ��
lmfp;� � �2, where lmfp;� is the photon mean free path. In

this time interval, the growth of � is again faster than the
growth of �M, so that the episode of viscously damped
evolution repeats when lmfp;� reaches �M. This could again

delay the advance of ðB; �BÞ along the evolutionary track
shown in Fig. 7. The end point of the evolutionary track at
the end of the radiation-dominated era is well defined by
the condition that the correlation length of the magnetic
field should not be shorter than the Silk damping scale
times the Alfvén velocity [47]. The loci of the possible end
points of the evolution are shown by the inclined thick
solid (green/orange) lines in Fig. 7.

V. CONCLUSION

Our study shows that magnetic fields generated during
phase transitions are comparable with the observational
lower bound even if we account for large-scale decay as
well as additional Alfvén wave-induced damping. The
extremely low values of the smoothed magnetic field [24]
do not imply that the effective magnetic field in the range
1 pc–1 kpc is small enough to result in observational
changes in blazar emission spectra. The advantage of using
the effective magnetic field lies in its independence of the
spectral shape. In summary, if the magnetic field has been

generated during a phase transition, its correlation length is
strongly limited. If future observations were to detect a
weak magnetic field � 10�14–10�15 G with a typical cor-
relation length of the order of a few pc, this could serve as
an indication of magnetogenesis during EWPT, while a
somewhat stronger field with a correlation length of the
order of kpc might indicate the presence of QCDPT
magnetogenesis.
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