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ABSTRACT
Using direct numerical simulations, we verify that Roberts-IV flow exhibits dynamo action
dominated by horizontally averaged large-scale magnetic field. With the test-field method,
we compute the turbulent magnetic diffusivity and find that it is negative and overcomes
the molecular diffusivity, thus explaining quantitatively the large-scale dynamo for magnetic
Reynolds numbers above ≈8. As expected for a dynamo of this type, but contrary to α-effect
dynamos, the two horizontal field components grow independently of each other and have
arbitrary amplitude ratios and phase differences. Small length-scales of the mean magnetic
field are shown to be stabilized by the turbulent magnetic diffusivity becoming positive at
larger wavenumbers. Oscillatory decaying or growing solutions have also been found in
certain wavenumber intervals and sufficiently large values of the magnetic Reynolds number.
For magnetic Reynolds numbers below ≈0.5, the turbulent magnetic diffusivity is confirmed
to be positive, as expected for all incompressible flows. Earlier claims of a dynamo driven by
a modified Taylor–Green flow through negative eddy diffusivity could not be confirmed.
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1 IN T RO D U C T I O N

The equations of magnetohydrodynamics (MHD) permit growth of
magnetic energy at the expense of kinetic energy. This phenomenon
is called the dynamo effect (see e.g. Brandenburg & Subramanian
2005 for a recent review). If the dynamo effect gives rise to a
magnetic field whose characteristic length-scale is greater than that
of the fluid, we call it a large-scale dynamo. Most astrophysical
dynamos, including the solar dynamo and the Galactic dynamo, are
of this type.

To theoretically describe the large-scale dynamo, one must aver-
age the equations of MHD over the small scales to obtain an effective
equation for the large-scale magnetic field. This effective equation
can be written down by using either mean-field theory (Steenbeck,
Krause & Rädler 1966) or multiple-scale expansions (see e.g. Zhe-
ligovsky 2011 for a recent review). These equations contain turbu-
lent transport coefficients: the α-effect and turbulent diffusivity. In
general, both are tensors whose complexity depends on the symme-
tries of the problem. Within the formalism of mean-field theory, it
is generally a non-trivial task to calculate the turbulent transport co-
efficients even if we ignore the back-reaction of the magnetic field
on the flow, i.e. for kinematic dynamos. For several kinematic prob-
lems, the turbulent transport coefficients have been calculated using
the test-field method (TFM) of Schrinner et al. (2005, 2007); see
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also Brandenburg (2005), Brandenburg et al. (2008a), Brandenburg,
Rädler & Schrinner (2008b). Typically, it is found that the α-effect
gives rise to the growth of a large-scale magnetic field while the
turbulent diffusivity contributes to decay by effectively enhancing
the molecular magnetic diffusivity. However, multiscale methods
have shown that for certain flows the α-effect can be zero, but the
eddy diffusivity, i.e. the sum of turbulent and molecular diffusivity,
may turn out to be negative (see e.g. Lanotte et al. 1999; Zheligov-
sky, Podvigina & Frisch 2001). In that case, such flows may act as
large-scale dynamos. However, we are not aware of direct numer-
ical simulations (DNS) that demonstrate that those flows really do
produce mean magnetic fields and that this is caused by negative
eddy diffusivity.

In a remarkable paper, Roberts (1972) shows that the multiple-
scale versions of two-dimensional spatially periodic motions can
give growing magnetic fields for magnetic diffusivities below a
critical value. He studies four different periodic flow patterns. We
are here especially interested in flow IV (in the following referred to
as Roberts-IV flow) because, although this flow yields exponentially
growing solutions in time (see his fig. 10), he finds all components
of the α tensor to be zero. Roberts (1972) also notes that his results
are relevant to turbulent dynamos with positive turbulent diffusivity,
but the possibility of negative turbulent diffusivity is not discussed
explicitly. In this paper, we first verify, using DNS, that for a partic-
ular flow (Roberts 1972), namely the Roberts-IV flow, it is possible
to drive a kinematic large-scale dynamo, although the α-effect and
the planar-averaged kinetic helicity are indeed zero. Next, by using
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the TFM, we show that such a dynamo can be accurately described
by zero α-effect but negative turbulent diffusivity which dominates
over the molecular one. (In the context of laminar flows, the ex-
pression turbulent diffusivity is not optimal, and refers simply to a
diffusion-like coefficient in the averaged equations.)

Finally, we turn to the Taylor–Green (TG) and the modified
TG flows for which negative eddy diffusivity dynamos have been
claimed previously (Lanotte et al. 1999). Again, these flows have
no net helicity. Although dynamo action was found in several cases,
no large-scale magnetic field was found in DNS of these flows.
Furthermore, the α-effect turns out to be zero, but the eddy diffu-
sivity remains positive. This flow does therefore not appear to be an
example of a negative eddy diffusivity dynamo.

2 THE RO BERTS-IV FLOW

In connection with understanding the geodynamo, Tilgner (2004)
studied in some detail the Roberts-IV flow. We follow here Tilgner’s
definition of the flow:

U = u0

⎧⎪⎨
⎪⎩

√
2/f sin k0x cos k0y

−√
2/f cos k0x sin k0y√

f sin k0x

⎫⎪⎬
⎪⎭ , (1)

where u0 characterizes the amplitude of the flow. It is solenoidal
and its vorticity, W = ∇ × U , is given by

W = u0

⎧⎪⎨
⎪⎩

0

−√
f k0 cos k0x

2
√

2/f k0 sin k0x sin k0y

⎫⎪⎬
⎪⎭ . (2)

Here, the parameter f determines the relative importance of vertical
to horizontal motions. The kinetic helicity density, W · U , is given
by

W · U =
√

2 u2
0k0 (1 + sin2k0x) sin k0y (3)

and is independent of f. Tilgner (2004) showed that in spite of the
horizontally averaged kinetic helicity density, W · U , being zero,
the Roberts-IV flow gives rise to dynamo action. In other words, it
leads to growing solutions of the induction equation,

∂B
∂t

= ∇ × (U × B − η J) , (4)

where η is the microphysical (molecular) magnetic diffusivity, B is
the magnetic field, J = ∇ × B is the current density, and we have
chosen our units such that the vacuum permeability is unity.

Note, however, that Tilgner (2004) described the dynamo to be a
small-scale one, i.e. the characteristic length-scales of the magnetic
field is of the same order as 1/k0. In the following, we obtain
solutions to equation (4) via DNS using the PENCIL CODE.1 We do not
evolve the flow, hence we study kinematic dynamo solutions.

As an example of the resulting magnetic field, we show in Fig. 1
the three components of the magnetic field at the periphery of the
computational domain. It is remarkable that the resulting magnetic
field has a large-scale component that survives xy averaging (de-
noted by overbars), i.e. B = B(z, t) is non-vanishing; see Fig. 2,
where we show examples of the resulting mean field obtained by
averaging the solution of the DNS. In other words, we have here

1 http://pencil-code.googlecode.com/

Figure 1. Three components of the magnetic field on the periphery of the
computational domain for Rm = 20, f = 1, and domain size Lx = Ly =
Lz = 2π/k0.

Figure 2. Examples of runs with two different initial conditions (upper and
lower panels) showing the x and y components of the mean field (normalized
by the rms value of the total field B) versus z, obtained from the DNS
for f = 1, Lx = Ly = Lz = 2π/k0 and η = 0.05 u0/k0, corresponding to
Rm = 20.

an example of a mean-field dynamo with B being a solution of the
horizontally averaged induction equation,

∂B
∂t

= ∇ × (
U × B + E − η J

)
, (5)

where E = u × b is the mean electromotive force resulting from
correlations of residual velocity and magnetic fields, u = U − U
and b = B − B, respectively. (Note that here U = 0.) Empirically,
we find that the horizontally averaged solutions of equation (4) are
of the form

B(z, t) =

⎧⎪⎨
⎪⎩

B0x cos(kz + φx)

B0y cos(kz + φy)

0

⎫⎪⎬
⎪⎭ eλt , (6)

where B0x, B0y, φx and φy are arbitrary constants, i.e. the x and
y components of the magnetic field evolve independently of each
other and they have arbitrary phase shifts, depending just on the
properties of the initial conditions; see Fig. 2 for an example. The
same result can be inferred from equation 7.3 of Roberts (1972).
Solutions of equation (5) can be obtained by mean-field simulations
which requires a closed expression for E in terms of B. This will
be discussed in the following.

As pointed out by Tilgner (2004), the Roberts-IV flow has no α-
effect. As this is a laminar flow, driving a dynamo via fluctuations
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of the α-effect (Mitra & Brandenburg 2012) is also not possible.
This suggests that the observed mean field might be produced by
a negative eddy diffusivity (Lanotte et al. 1999; Zheligovsky et al.
2001). To investigate such a possibility, we now apply the TFM to
calculate the turbulent transport coefficients of the Roberts-IV flow.

As is long recognized (Rädler 1976), the connection between E
and B is a non-local one that is described by a convolution of the
form

E i = α̂ij ◦ Bj − η̂ij ◦ J j , (7)

where ‘◦’ denotes a convolution in space and time, i.e.

η̂ij ◦ J j =
∫∫

η̂ij (z − z′, t − t ′) J j (z′, t ′) dz′ dt ′, (8)

and likewise for α̂ij ◦ Bj , but this term is vanishing for the Roberts-
IV flow (Tilgner 2004). The hats on α̂ij and η̂ij indicate that the
corresponding quantities are integral kernels.

We emphasize that in equation (7) we have made use of the fact
that the only non-vanishing derivatives of a horizontally averaged
mean field are ∂Bx/∂z and ∂By/∂z, which be expressed in terms of
components of J , so the corresponding turbulent diffusivity tensor
is just of rank 2, not, as in the general case of rank 3 (Krause &
Rädler 1980).

In the TFM, the kernel formulation above is most naturally con-
sidered in Fourier space with

Ẽ(k, ω) = α̃ij (k, ω)B̃j (k, ω) − η̃ij (k, ω)J̃j (k, ω), (9)

where tildes denote appropriately normalized Fourier transforms of
the corresponding mean-field quantities (Brandenburg et al. 2008b;
Hubbard & Brandenburg 2009). The usual α-effect and turbulent
diffusivity emerge in the limits k → 0 and ω → 0 for the respective
quantities. Hereafter, we drop the tildes even when the k and ω

arguments are indicated to be non-vanishing.
In the following, we consider a three-dimensional domain of

size Lx × Ly × Lz. For most cases we choose cubic domains, i.e.
Lx = Ly = Lz = 2π/k0. We are primarily interested in the case of
harmonic solutions of equation (5) with given vertical wavenumber
k of a magnetic field that is growing or decaying exponentially
proportional to eλt . So we are interested in the case ω = iλ. As an
approximation, we begin by considering the case ω = 0, i.e. we
ignore the so-called memory effect; see Hubbard & Brandenburg
(2009) for illustrating the departure in the case of the standard
Roberts flow with helicity (also known as the Roberts-I flow).

3 R ESU LTS

In the following, we use the TFM, as described in Brandenburg
et al. (2008b) and Hubbard & Brandenburg (2009).

3.1 Sign change of eddy diffusivity

As we have already mentioned, all components of αij(k, ω) vanish
for the Roberts-IV flow. Moreover, ηij(k, ω) is isotropic, i.e. we can
write ηij = ηtδij. In practice, we compute ηt = (η11 + η22)/2 and find
that εη = (η11 − η22)/2 vanishes to numerical accuracy. A priori the
fact that ηij(k, ω) is isotropic is surprising because the z component
of the flow is not isotropic. This is also confirmed by analytical cal-
culation using the second-order correlation approximation (SOCA),
as shown by Rädler (private communication). Indeed, this isotropy
is broken once we allow for averages that depend on y and z, but
with that definition of averages, α is no longer zero. This leads to

Figure 3. Turbulent magnetic diffusivity, ηt (top and middle panels), and
growth rates λdisp and λDNS versus Rm for f = 1 and k = k0. In the first two
panels, the dashed lines give the SOCA result, ηtk0/u0 = Rm/4. In the first
panel, the intersection between ηt and −η (dotted line) marks the onset of
dynamo action at Rm ≈ 8. (The section for Rm > 8 is marked in red/thick.)
The double-logarithmic representation in the middle panel allows one to see
that the linear SOCA dependence is obeyed for Rm � 0.5. Note also that
the turbulent passive scalar diffusivity, κ t, remains positive (triangles and
dash–dotted line).

other interesting interpretations regarding negative eddy diffusivity
dynamos that will be investigated in a future publication.

The resulting values of ηt(k0, 0) are shown in Fig. 3 as a function
of magnetic Reynolds number,

Rm = u0/ηk0. (10)

For comparison with earlier work involving turbulent flows, we
note that this definition of Rm is close to a definition in terms of
the rms velocity of the flow (for f = 1 we have urms ≈ 1.225 u0)
and the wavenumber of the energy-carrying eddies kf, i.e. urms/ηkf.
If we approximate kf ≈ wrms/urms, where wrms is the rms value
of the fluctuating part of the vorticity, then we have kf ≈ 1.29 k0.
Therefore, we have urms/ηkf ≈ 0.95 Rm, which is close to Rm.

As is common to many turbulent transport coefficients (Branden-
burg, Rädler & Schrinner 2008b; Sur, Brandenburg & Subramanian
2008), ηt grows linearly with Rm for Rm � 0.5; see the middle panel
of Fig. 3. More importantly, ηt is positive, which is to be expected
based on a calculation for incompressible flows using SOCA, which
is valid for Rm 	 1. To show this, one uses the fact that the Fourier
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transform of the velocity correlation tensor is positive semidefinite.
We note in passing that this is not true for potential flows, for which
the turbulent diffusion tensor is negative semidefinite for Rm 	 1;
see Rädler et al. (2011) for a recent demonstration using the TFM.

Returning now to the Roberts-IV flow, which is indeed incom-
pressible, we show in Fig. 3 that ηt changes sign from positive to
negative at Rm ≈ 4. This is clearly a result that cannot be recov-
ered by SOCA. A corresponding calculation for the turbulent pas-
sive scalar diffusivity, κ t (e.g. Brandenburg, Svedin & Vasil 2009),
shows that its value remains positive and close to the SOCA value
for small Péclet numbers, Pe = u0/κk0, where κ is the microphys-
ical (molecular) passive scalar diffusivity.

Our TFM results show that, for Rm ≈ 8, the total magnetic dif-
fusivity, η + ηt(k, 0) becomes negative, i.e. dynamo action by the
negative magnetic diffusivity effect is possible. The critical value of
Rm agrees with that found above through DNS. The growth rate of
the dynamo is given in implicit form as a solution of the equation

λ(k) = −[η + ηt(k, iλ)]k2 (11)

for k = k0. However, it is common to approximate ηt(k0, ω) by ηt(k0,
0), and we refer to the corresponding solution as

λ(k) ≈ λdisp(k) = −[η + ηt(k, 0)]k2, (12)

which is shown in the third panel of Fig. 3 and compared with the
growth rate λDNS obtained by solving equation (4) through DNS.
The agreement between λdisp and λDNS is moderate and reminiscent
of what has been found earlier (Hubbard & Brandenburg 2009). By
using test fields that grow exponentially at a rate that is equal to the
expected growth rate, λ = λDNS, we find for η = 0.020 u0/k0 (corre-
sponding to Rm ≈ 50), the value ηt(k0, iλDNS) = −0.081 u0/k0 with
λDNS = 0.061 u0k0, instead of the value λ = −0.070 u0k0 obtained
with ηt(k0, 0) = 0. Thus, perfect agreement between DNS and TFM
is obtained once the memory effect included.

3.2 Dependence on f

Let us now discuss the dependence on the parameter f, which char-
acterizes the relative importance of vertical to horizontal motions.
We consider here the case of Rm = 20 and k = k0. The results are
shown in Fig. 4. The negative turbulent diffusivity dynamo is found

Figure 4. Dependence of turbulent diffusivity on f for Rm = 20 and k =
k0. Negative (positive) values of ηt are indicated with open (filled) symbols,
and the horizontal dash–dotted line indicates the region above which there
is dynamo action, because η + ηt < 0. The dotted line has a slope of 1.7
and is shown for orientation.

to be operating in the range 0.6 ≤ f ≤ 1.23, i.e. when the vertical
turbulent diffusivity is not much larger than the horizontal.

As indicated by the dotted line in Fig. 4, both for small and
for large values of f, there is an approximate power-law dependence
with |ηt| ∼ f 1.7. However, in the range 1.3 < f < 3 the TFM diverges
and is unable to deliver useful results. Diverging results of the TFM
are common and related to unstable eigenvalues of the associated
homogeneous system of equations solved in the TFM. Usually,
this problem can be avoided by restricting the analysis of the test
problems to limited time intervals (Hubbard et al. 2009; Rheinhardt
& Brandenburg 2010), but in the present case the solutions were
diverging immediately.

3.3 Scale dependence and memory effect

Owing to the k2 factor in equations (11) and (12), one might expect
dynamos driven by negative eddy diffusivity to grow faster at larger
values of k (smaller scales), unless η + ηt changes and becomes
positive at larger k. To study this, we now employ test fields with k
�= k0. In Fig. 5, we show the k dependence of ηt(k, 0). It turns out
that ηt(k, 0) is approximately constant for k ≤ k∗ ≈ 1.125 k0, and
positive with an approximate dependence

ηt(k, 0) ≈ 0.31 u0/k0

[(k − k∞)/k0]0.7
for k > k∞, (13)

where k∞ ≈ 2.25 k0. In the range k∗ < k < k∞, we have two data
points in Fig. 5 that clearly deviate from the description above. In
addition, there are several other values of k in this range where the
TFM again diverges and is unable to deliver useful results.

To illuminate the problem of intermediate k values further, we
now use DNS to compute the growth rate as a function of the
domain size Lz, decreased according to Lz = 2π/k. The result is
shown in Fig. 6. It turns out that λ (= λDNS) has a maximum at k/k0

≈ 1.04 (corresponding to Lzk0 ≈ 6). Thus, large-scale separation,
as assumed in some analytic studies (Lanotte et al. 1999), is neither
needed nor necessarily helpful for the operation of this negative eddy
diffusivity dynamo. Furthermore, for k/k0 ≈ 1.23 (corresponding
to Lzk0 ≤ 5.1), no dynamo is possible and the field decays in an
oscillatory fashion. The oscillation frequency ω grows sharply as
k increases further; see the dotted line in Fig. 6. However, when
the dynamo is excited, it is non-oscillatory. While Roberts (1972)

Figure 5. Wavenumber dependence of turbulent diffusivity for Rm = 20
and f = 1. Note that dynamo action is only possible for k/k0 ≤ 1.25, i.e.
when ηt is negative.
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Figure 6. Dependence of the growth rate λ and the oscillation frequency ω

on k (using a correspondingly adjusted domain size Lz = 2π/k) for Rm =
20 and f = 1. In all cases with λ > 0, we have ω = 0.

also finds non-oscillatory behaviour in the dynamo cases, he finds
non-oscillatory decaying solutions, but at smaller Rm.

At the level of a simplistic description of a mean-field dynamo
with negative eddy diffusivity, the occurrence of oscillations in the
subcritical case must be surprising. However, this puzzle is easily
resolved by reinstating the ω dependence of ηt(k, ω) in equation (9).
This corresponds to the memory effect, i.e. the dependence of E on
the mean magnetic field at past times.

A simple prescription of the memory effect would be to assume
that ηt is proportional to the analytic function 1/(1 − iωτ ), where
τ is a characteristic time-scale of the flow. Following Hubbard &
Brandenburg (2009), we replace −iω by the Laplace variable s and
assume that the growth rate is equal to Re s and the frequency is
ω = −Im s. This leads to the dispersion relation

sτ = −τηtk
2/(1 + sτ ) − τηk2. (14)

Solving this quadratic equation for sτ , we find

s±τ = − 1
2 (1 + n) ± 1

2

√
(1 − n)2 − 4nt, (15)

where n = τηk2 and nt = τηtk2 have been introduced. Here, only the
upper sign corresponds to physically realizable solutions that can
grow for negative eddy diffusivity, ηt + η < 0. In that case, sτ is real,
but complex for positive turbulent diffusivity, nt > 0. This explains
qualitatively the occurrence of oscillatory decay, except that this
formula would also predict a narrow nt interval of non-oscillatory
decay which is not seen in the data.

The actual form of ηt(k, ω) near onset at k/k0 ≈ 1.23 is of course
more complicated. The result, obtained using the method described
by Hubbard & Brandenburg (2009), is shown in Fig. 7. For ω/u0k0 >

0.5, a reasonable fit to the data is given by

ηt(k, ω) ≈ u0k0

[1 + b(ω/u0k0)4]2

4∑
n=0

an

(
− iω

u0k0

)n

, (16)

with empirical coefficients a0 = −0.055, a1 = 0.5, a2 = −0.35,
a3 = 0.2, a4 = −0.02 and b = 0.031. On the other hand, for
small departures from the stationary state, ω/u0k0 	 0.5, a good
approximation is ηt = −0.055 u0k0/(1 − iωτ ) with τ ≈ 2/u0k0,
confirming thus our initial ansatz. For larger values of k, when Re ηt

becomes positive, there is a rapid increase of τ , which explains why
the aforementioned interval with non-oscillatory decay is absent.

In analogy with α-effect mean-field dynamos, where the
wavenumber of the fastest growing mode increases with dynamo

Figure 7. Dependence of real and imaginary parts of η̃t on ω for the case
k/k0 ≈ 1.23, Rm = 20 and f = 1 compared with the empirical fit given by
equation (16). Real (imaginary) parts are indicated by filled (open) symbols
and solid (dashed) lines. The inset shows that for ω/u0k0 < 0.1, the data are
well described by ηt = −0.055 u0k0/(1 − iωτ ) with τ ≈ 2/u0k0.

Figure 8. Similar to Fig. 6, but for Rm = 100. Note the existence of growing
oscillatory solutions in the ranges 0.6 � k/k0 � 0.8 and 1.3 � k/k0 � 1.7.

number, one may ask whether this is also true of the negative mag-
netic diffusivity dynamo. In Fig. 8, we show the result for Rm =
100. It turns out that the wavenumber of the fastest growing mode
increases slightly (from k/k0 ≈ 1.04 at Rm = 20 to ≈1.21 at Rm =
100). For larger values of k, the solutions become again oscillatory,
but, in contrast to the case of smaller values of Rm, the modes are
now not decaying. Looking at Fig. 8, it becomes clear that the ex-
planation in terms of the simplest form of the memory effect no
longer applies, and that a more detailed dependence on ω would
need to be considered.

4 M O D I F I E D TAY L O R – G R E E N F L OW S

While the possibility of a dynamo driven by negative eddy diffu-
sivity has not been previously quantified for the Roberts-IV flow,
it was discussed in some detail by Lanotte et al. (1999) for the TG
flow,

UTG = u0

⎧⎪⎨
⎪⎩

sin k0x cos k0y cos k0z

− cos k0x sin k0y cos k0z

0

⎫⎪⎬
⎪⎭ , (17)
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Figure 9. Magnetic power spectra of DNS for the TG flow with A = 1 and
B = 0 in a domain of size Lx = Ly = Lz = 8π/k0 using 2563 mesh points
and η = 0.02 u0/k0 at different times during the exponential growth phase
of the dynamo. The earliest time is shown as a dash–dotted line.

and the modified TG flow, UTG + AUA + BUB, where A and B
denote the amplitudes of additional contributions proportional to

UA = u0

⎧⎪⎪⎨
⎪⎪⎩

sin 2k0x cos 2k0z

sin 2k0y cos 2k0z

−(cos 2k0x + cos 2k0y) sin 2k0z

⎫⎪⎪⎬
⎪⎪⎭

and

UB = u0

⎧⎪⎨
⎪⎩

(sin k0x cos 3k0y + 5
13 sin 3k0x cos k0y) cos k0z

−(cos 3k0x sin k0y + 5
13 cos k0x sin 3k0y) cos k0z

2
13 (cos k0x cos 3k0y − cos 3k0x cos k0y) sin k0z

⎫⎪⎬
⎪⎭ ,

respectively.
We have performed kinematic DNS with this flow and we indeed

find dynamo action. We carry out calculations for η = 0.02 u0/k0,
which corresponds to the case where the dynamo is mildly super-
critical. We consider the following three cases: (a) a cube of size
Lx = Ly = Lz = 2π/k0, using 1283 meshpoints; (b) a cuboid with
Lz = 4 Lx and Ly = Lx = 2π/k0, using 1282 × 512 meshpoints and
(c) a cuboid with Lx = Ly = 4 Lz and Lz = 2π/k0. In all these cases,
the large-scale field obtained by averaging over the xy plane decays
as a function of time, i.e. no large-scale dynamo is obtained with this
average. However, there still remains, in principle, the possibility of
a large-scale field developing that is zero under xy averaging but is
non-zero under another averaging procedure, e.g. Fourier filtering.
But even this possibility is ruled out because we observe no growth
of a large-scale field at k ≤ k0; see Fig. 9. This is found by calculat-
ing the spectrum of the magnetic field from simulations with 2563

meshpoints and a domain size of Lx = Ly = Lz = 8π/k0. In other
words, a dynamo is observed but it is not a large-scale dynamo.
This is corroborated by the TFM which produces positive turbulent
diffusivity and vanishing α in all the aforementioned cases. In case
(a) ηt = +0.135 u0/k0 for A = 1 and B = 0, and ηt = +0.146 u0/k0

for A = 1 and B = 1; in case (b) ηt = +0.158 u0/k0. However, in
case (c) the TFM becomes unstable.

In conclusion, the magnetic field structure of dynamos from the
modified TG flows is quite different from that of dynamos from
the Roberts-IV flow. In the latter, the mean fields contributed about
50 per cent to the total field; see Fig. 2, while for the former, most of
the power occurred at small scales. No significant mean magnetic
field could thus be identified.

5 C O N C L U S I O N S

In this work, we have revisited the Roberts-IV flow using the TFM
to compute the full set of turbulent transport coefficients. We con-
firm an earlier result of Tilgner (2004) that a dynamo is possible and
that all components of the α tensor are vanishing. In addition, we
confirm the result of Roberts (1972) that there is a finite horizontally
averaged mean magnetic field, which should be explicable in terms
of mean-field dynamo theory. The TFM reveals that the turbulent
diffusivity tensor is isotropic in the horizontal plane. Moreover, in
the regime where the dynamo is excited, the turbulent diffusivity
is sufficiently strongly negative such that the eddy (molecular plus
turbulent) diffusivity is negative. This is an unusual situation in that
the horizontal components of the mean field are completely decou-
pled and grow independently with arbitrary relative amplitudes and
phase shifts, but the same growth rate.

Many laminar flows are only slow dynamos, i.e. the growth rate
goes to zero for large Rm. The Roberts-IV flow is no exception.
These dynamos are therefore not expected to be astrophysically
relevant. However, the method used to analyse such dynamos (TFM
combined with DNS) is now playing an important role in the study
of astrophysical dynamos for turbulent flows. This work highlights
the accuracy of this method in that it enables us to pinpoint the
detailed nature of a dynamo exhibiting a finite averaged magnetic
field.

In the present case of laminar flow patterns, non-locality is cru-
cially important. In other words, turbulent transport is described
by a convolution of suitable integral kernels with the mean fields
in space and time rather than just a multiplication. The TFM is
particularly well suited to deal with such cases. For generic turbu-
lent flows, as shown in earlier works by Hubbard & Brandenburg
(2009) and Rheinhardt & Brandenburg (2012), we expect these
transport kernels to have a relatively simple form and that compli-
cated kernels, such as found here and in the earlier work (Rädler &
Brandenburg 2009) are atypical. Note, however, that even though
most astrophysical flows are turbulent and are expected to become
statistically homogeneous and isotropic at small scales; in practice,
large-scale anisotropy and inhomogeneity play an important role.
In many of those cases, non-locality cannot be neglected and many
Fourier modes need to be taken into account, as demonstrated by
Chatterjee et al. (2011) for flows driven by the magnetic buoyancy
instability.
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Computers at the Royal Institute of Technology in Sweden.

R E F E R E N C E S

Brandenburg A., 2005, Astron. Nachr., 326, 787
Brandenburg A., Subramanian K., 2005, Phys. Rep., 417, 1
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Rädler K.-H., Brandenburg A., Del Sordo F., Rheinhardt M., 2011, Phys.

Rev. E, 84, 4
Rheinhardt M., Brandenburg A., 2010, A&A, 520, A28
Rheinhardt M., Brandenburg A., 2012, Astron. Nachr., 333, 71

Roberts G. O., 1972, Phil. Trans. R. Soc. A, 271, 411
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