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ABSTRACT

Many astrophysical bodies harbour magnetic fields that are thought to be sustained by adynamo
process. However, it has been argued that the production of large-scale magnetic fields by mean-
field dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the
conservation of magnetic helicity. This phenomenon is known as catastrophic quenching.
Advection of magnetic fields by stellar and galactic winds towards the outer boundaries and
away from the dynamo is expected to alleviate such quenching. Here we explore the relative
roles played by advective and turbulent—diffusive fluxes of magnetic helicity in the dynamo.
In particular, we study how the dynamo is affected by advection. We do this by performing
direct numerical simulations of a turbulent dynamo of a? type driven by forced turbulence in
a Cartesian domain in the presence of a flow away from the equator where helicity changes
sign. Our results indicate that in the presence of advection, the dynamo, otherwise stationary,
becomes oscillatory. We confirm an earlier result for turbulent—diffusive magnetic helicity
fluxes that for small magnetic Reynolds numbers (Rm < 100...200, based on the wavenumber
of the energy-carrying eddies) the magnetic helicity flux scales less strongly with magnetic
Reynolds number (Rm~!/?) than the term describing magnetic helicity destruction by resistivity
(Rm™"). Our new results now suggest that for larger Rm the former becomes approximately
independent of Rm, while the latter falls off more slowly. We show for the first time that
both for weak and stronger winds, the magnetic helicity flux term becomes comparable to the

resistive term for Rm 2 1000, which is necessary for alleviating catastrophic quenching.
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1 INTRODUCTION

A theoretical framework for explaining the large-scale magnetic
fields observed in many astrophysical bodies is mean-field dynamo
theory. Its basic idea is that the inductive effects of turbulent mo-
tions are able to amplify a weak magnetic field and maintain it on
time-scales longer than the magnetic diffusion time (Moffatt 1978).
Gradients in the large-scale velocity field, like shear motions, can
also contribute significantly to the amplification of the magnetic
field. In mean-field dynamo theory, the contribution of the turbu-
lent scales is parametrized through the electromotive force which
depends on the large-scale magnetic field as well as its derivatives
(Krause & Rédler 1980). The coefficients in front of the magnetic
field and its derivatives are called turbulent transport coefficients.
They can describe either turbulent—diffusive (with turbulent diffu-
sion ;) or non-diffusive (e.g. the o effect or turbulent pumping)
effects.

* E-mail: fadiesis @ gmail.com

Under some approximations (e.g. in the low conductivity limit for
small magnetic Reynolds number, Rm < 1, or in the high conductiv-
ity limit for short correlation times, i.e. small Strouhal number, St <
1), theories like the first-order smoothing approximation are able to
predict the functional form of the expressions and the correct val-
ues of the coefficients. Within their limits of validity, these results
present a remarkably good agreement with the computation of the
transport coefficients through direct numerical simulations (DNS);
see e.g. Sur, Brandenburg & Subramanian (2008). However, not
enough is known about the functional form of these coefficients at
large values of Rm (i.e. small values of the microphysical magnetic
diffusivity) and about the saturation process when the magnetic
field becomes dynamically important. Understanding the behaviour
of the dynamo in these regimes has remained an important problem
for several decades. Although many recent works have contributed
to understanding dynamo saturation at large magnetic Reynolds
numbers, more work is still necessary to have a complete picture of
the dynamo excitation and saturation mechanisms.

Among the turbulent transport coefficients, the « effect is par-
ticularly important because it allows a closed dynamo loop for
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regenerating both poloidal and toroidal magnetic fields. It has been
suspected, however, that in closed or triply periodic domains the «
effect can be strongly suppressed at higher magnetic Reynolds num-
bers and might scale like o o Rm~! (Vainshtein & Cattaneo 1992;
Cattaneo & Hughes 1996). An explanation for this was proposed
by Gruzinov & Diamond (1994), who used the « effect derived
by Pouquet, Frisch & Leorat (1976), which has, in addition to the
kinetic helicity density, a contribution proportional to the current
helicity density. It is this quantity which builds up as the dynamo
saturates.

This is a consequence of magnetic helicity conservation and can
be explained as follows: the large-scale magnetic field generated
by the o effect is helical, but in order to satisfy the conservation
of total magnetic helicity, a small-scale field with equally strong
magnetic helicity of opposite sign must be generated in the system.
The small-scale magnetic helicity is responsible for the creation of
a magnetic « effect (o) which contributes with opposite sign to
the kinetic «. This basic idea led Kleeorin & Ruzmaikin (1982)
to propose the dynamical quenching model at a time well before
simulations saw any indications of catastrophic quenching. Even
nowadays the issue is quite unclear when it comes to making pre-
dictions about the high-Rm regime. The final amplitude that the
magnetic o effect acquired depends on the geometry of the sys-
tem and on the value of the magnetic Reynolds number. For highly
turbulent astrophysical objects with high Rm like the Sun or the
Galaxy, ay could attain higher amplitudes, decreasing then the dy-
namo efficiency. However, the dynamics of «y also depends on the
ability of the system to get rid of the small-scale magnetic helicity
responsible for its creation. In a closed or triply periodic homoge-
neous domain, magnetic helicity annihilation depends just on the
microscopic magnetic diffusivity. This is a very slow process given
the scales and diffusivity values under consideration. However, an
obvious solution to this catastrophic (Rm-dependent) quenching is
to allow the system to get rid of helical small-scale magnetic fields.

In real astrophysical systems, this processes is generally expected
to happen in a number of different ways. Among the various mech-
anisms for removing magnetic helicity from the system, we focus
here on the role played by the turbulent—diffusive magnetic helicity
flux and by the presence of advective flows or winds. The role of
these magnetic helicity fluxes has been tested in the context of mean-
field dynamo models through a dynamical equation for the mag-
netic « effect (Kleeorin et al. 2000; Brandenburg & Subramanian
2005; Shukurov et al. 2006; Sur, Shukurov & Subramanian 2007;
Brandenburg, Candelaresi & Chatterjee 2009; Guerrero, Chatterjee
& Brandenburg 2010; Chatterjee, Guerrero & Brandenburg 2011).
These models have demonstrated the importance of magnetic he-
licity fluxes in solving the catastrophic quenching problem.

Verifying the validity of these results in DNS is more compli-
cated since obtaining higher Rm in the numerical models requires
high resolution and large computational resources. Various attempts
have, however, succeeded in demonstrating the role of magnetic he-
licity conservation in the saturation of the dynamo. For instance,
Brandenburg (2001) studied the saturation in triply periodic he-
lically forced dynamos of «? type. The role of open magnetic
boundary conditions for convective dynamos has been studied in
Képylad, Korpi & Brandenburg (2008, 2009, 2010). Furthermore,
using forced turbulence, Mitra et al. (2010a, hereafter MCCTB)
have verified the existence of turbulent—diffusive magnetic helic-
ity fluxes in o> dynamo models in the presence of an equator and
Hubbard & Brandenburg (2010, hereafter HB) did the same for a
dynamo region embedded inside a highly conducting halo which
provided a more realistic boundary condition. In both cases, it was
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found that a fit to a Fickian diffusion law can account for this flux
and that the diffusivity value is comparable to or below the value
of the turbulent magnetic diffusivity n,. The resulting Fickian diffu-
sion coefficient was found to be approximately independent of Rm.
By considering a statistically steady state, and noting that the local
value of the magnetic helicity density was also statistically steady,
their result became then also independent of the gauge chosen to
define the magnetic vector potential.

In addition, shear flows have been argued to be effective in allevi-
ating catastrophic quenching (Vishniac & Cho 2001) and allowing
significant saturation levels of the dynamo (Képyld et al. 2008),
although it appears now plausible that their result could also be ex-
plained through a change in the excitation conditions of the dynamo.
Indeed, recent DNS have failed to demonstrate the presence of the
Vishniac—Cho flux (Hubbard & Brandenburg 2011). Yet another
possibility is the advective magnetic helicity flux. In the context of
the galactic dynamo, alleviation of catastrophic quenching thanks
to a wind has been studied in mean-field models by Shukurov et al.
(2006) and Sur et al. (2007). Mitra et al. (2011) studied the role of
a wind in solar mean-field dynamo models. The models studied in
this paper allow us to compare with their results and to determine
the importance of magnetic helicity fluxes in the dynamical evolu-
tion of the magnetic « effect. To our understanding, the study of
advective fluxes in DNS of a dynamo is an outstanding problem.
With this paper we intend to close this gap.

We perform DNS leading to o>-type dynamo action in a domain
with kinetic helicity of opposite signs on both sides of the equator.
We use a relaxation term to include a large-scale flow that advects
the large-scale magnetic field. Furthermore, we consider periodic
boundary conditions in the horizontal directions, zero-gradient con-
ditions for the velocity and vertical field conditions for the magnetic
field. In this way, we allow for the removal of magnetic helicity
through advection. For the sake of simplicity and to study these ef-
fects separately in a clear way, we do not include large-scale shear.
Nevertheless, the results presented here should also be applicable
in the context of the galactic dynamo and, in principle, also to the
solar dynamo, where large-scale winds have been shown in mean-
field models to play a role in carrying magnetic helicity outside its
bounds (Mitra et al. 2011).

This paper is organized as follows. In Section 2, we describe the
physical model considered here and present the equations governing
its evolution. In Section 3, we present the results of the simulations.
First, we describe the properties of the solutions without the wind.
Next, we explore the effects that the wind has on the characteristics
of the dynamo solution. Finally, we determine the magnetic helic-
ity fluxes present in the model and verify their balance with the
production terms to prevent the quenching of what corresponds to
the o effect in the related mean-field description. We conclude and
summarize the results in Section 4.

2 THE MODEL

2.1 Governing equations

We use the PENCIL copE! to solve the following set of compressible
hydromagnetic equations in an isothermal layer:
0A

§=UxB—MonJ, (D

Uhttp://pencil-code.googlecode.com/
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DU 1 1
— =—cVinp+—~J x B+ —V-200S+ f, + f, )
Dt ’ P o

DInp

Dt + 4, 3)

where D/Dt = 0/0t + U - V is the advective derivative, A is the
magnetic vector potential, B = V X A is the magnetic field, J =
V x B/uy is the current density, 14 is the magnetic permeability, n
and v are magnetic diffusivity and kinematic viscosity, respectively,
¢s = const is the sound speed, U is the velocity, p is the density, S
is the rate of strain tensor given by

1 1
S = E(Ui,j +Uji)— gaijv U, )

where the commas denote derivatives, f, provides a forcing
for the wind (defined in Section 2.2), g, is a source term in
equation (3) needed to replenish the resulting mass loss, f is
a time-dependent random §-correlated forcing function of the
form

f=f&x.1,0(2)), 3)

where o is related to its local helicity density,

(f -V x f)/ ke f?) =20/(1 +07), Q]

and is chosen to vary like o (z) = sin(2mz/L,) with a sign change
across the equator at z = 0. This forcing drives turbulence in a band
of wavenumbers around k;. The modulation o (z) of this forcing is
similar to that used by Warnecke, Brandenburg & Mitra (2011) to
simulate a sign change of helicity in forced turbulence in a spherical
wedge.

We consider a computational domain of size L, x L, x L.,
with quadratic horizontal extent, L, = L,, using periodic boundary
conditions and a vertical extent that is twice as big, L, = 2L, with
|z| < L./2 (ie. —L;/2 <z < L;/2) and an equator at z = 0. Our
boundary conditions are

Ux,Z = U)uz = UZ -U, = Ax,z = Ay,z = Az =0 (7)

on the top and bottom boundaries at z = £L./2 = 7. U, is
the wind profile, as defined in Section 2.2. The lowest horizontal
wavenumber in the domain is k; = 27t/ L, . In the following, we use
ki as our inverse length unit, so |k, z| < 27t. To eliminate boundary
effects, we restrict most of the analysis to a diagnostic layer, |z| <
L, with k;L, = 3. For all our runs we choose k¢/k; = 4, which is
a compromise between it being large enough to allow a large-scale
magnetic field to be generated and yet small enough to achieve
sufficiently large values of Rm.

We set ¢ to unity in the code, so our dimensionless time is in units
of the sound travel time, (c;k;)~'. However, the relevant physics is
not governed by compressibility effects, so it is more natural to
quote time in turnover times, i.e. we quote instead the value of
tumske. In most of the cases reported below, the turbulent Mach
number, Ma = ;s /cs, is around 0.1. Likewise, in the code v and
n are given in units of ¢,/k;, but it is physically more meaningful
to quote corresponding Reynolds numbers instead. Our resolution
is increased with increasing values of Rm, so the largest resolution
used in this paper is 1024 x 1024 x 2048 mesh points. We return
to this issue at the end of this paper.

2.2 Generating the wind

In our model, the advective term from the wind is given by the
forcing function in equation (8),

1 —
fo=-—[U-Tu@]. ®)
where U is the horizontally averaged velocity field, and
— z
U W(Z) = Uo (9)
Zt(»p

is the wind profile that increases linearly towards the z boundaries.
The wind profile can be modified by the turbulence and the magnetic
field, but the original outflow profile tends to be restored on a time-
scale 7. The presence of a wind leads to mass loss across the
vertical boundaries with a mass-loss rate that depends on U.

Stellar winds are the main agents of mass loss in stars. In a
galactic environment, it is possible to observe galactic winds as
well as galactic fountains. These mechanisms can be driven by the
explosions of supernovae in the galactic disc. In this case a direct
estimate of the mass-loss rate is more complicated, given that it is
expected to be very small. However, to have stationary conditions,
we keep the mass in the domain constant using the source term ¢,
in equation (3). This source term tends to be restored the density
at each spatial point in the domain to its initial value py on a
time-scale ty = t,,. Thus, analogously to equation (8), we write
qdp = —t;l(lnﬁ - lnﬁo)-

We study the dependence of our model on the dimensionless
wind speed and the magnetic Reynolds number of the turbulence.
These are defined as
S = V-Uy

urms
, Rm=—7". 10
urmskf nkf ( )
In all cases, we use a magnetic Prandtl number of unity, i.e.
v/n=1.

2.3 Magnetic helicity fluxes

In our model, we expect two different kinds of magnetic helicity
fluxes: those caused by the wind, i.e. advective magnetic helicity
fluxes, and those due to turbulence in the presence of a mean gradient
of the magnetic helicity density, i.e. turbulent—diffusive magnetic
helicity fluxes. To assess their importance in the magnetic helicity
budget, we now consider the magnetic helicity equation in the Weyl
gauge which is used in equation (1), i.e.

%ﬁ = 2nuod -B—V-F, an
where overbars denote averages over x and y and F = E x A is
the total magnetic helicity flux, with E = nuoJ — U x B being
the electric field in the lab frame. This equation is evidently gauge-
dependent; see for instance Candelaresi et al. (2011). In particular,
since A - B is not a physical quantity, it could drift — even in the
steady state; see fig. 2 of Brandenburg, Dobler & Subramanian
(2002) for an example. However, if A - B is constant in a particular
gauge, then we have

V.F=-2nuJ - B, 12

where now V - F must be gauge-independent because J and B are
gauge-invariant. This argument was invoked by MCCTB and HB to
determine turbulent—diffusive contributions to the magnetic helicity
flux.



In the present work, we are interested in two contributions to
h = A - B, one from the mean fields, 4, = A - B, and one from
the fluctuating fields, 7t = @ - b. Their sum gives the total mean
magnetic helicity density, i.e. & = hy, + ;. Note, however, that
only & is the component directly relevant for the study of catas-
trophic quenching because it is approximately proportional to the
current helicity density, j - b, which in turn determines the mag-
netic contribution to the « effect. (The approximate proportionality
of magnetic and current helicities is non-trivial and will need to be
reassessed below; see also fig. 3 of MCCTB and table 2 of HB for
earlier examples.)

The evolution equation for /; is
%:—Ei—muoﬁ—v-ﬁ, (13)
where, as mentioned above, we allow two contributions to the flux
of magnetic helicity from the fluctuating field F;: an advective
flux due to the wind, F¢* = h¢U,, and a turbulent—diffusive flux
due to turbulence, modelled here by a Fickian diffusion term down
the gradient of Ay, i.e. F;9 = —k, Vh;. Here, € = u x b is the
electromotive force of the fluctuating field.

In the steady state, and if hy is then also constant (which is not
guaranteed to be the case because ; is a priori gauge-dependent),
we have

V.-Fr=-2E-B—2nuj-b. (14)

Again, although V - F; is in principle gauge-dependent, it can
now be determined by measuring £ - B and j - b that are mani-
festly gauge-independent quantities. This means that V - F; must
be gauge-independent as well. We assume that F; has a compo-
nent only in the vertical direction. We can therefore obtain its z
dependence through integration via

?fz=/ V. Fid7. (15)
0

The assumption of only a z component of F¢ would break down in
the presence of shear, where cross-stream fluxes with finite diver-
gence are possible; see Hubbard & Brandenburg (2011).

For the discussion of our results presented below, let us contrast
our present simulations with those of MCCTB. In their case, the
outer boundary condition at z = +L./2 was a perfect conductor
(P.C.) one and the most easily excited mode was antisymmetric
about the mid-plane with dynamo waves propagating towards the
equator. This antisymmetry results in permitting a flux of magnetic
helicity through the equatorial plane and in this sense has the same
effect as the vertical field (V.F.) boundary condition. This, together
with the fact that the magnetic helicity density is antisymmetric
about the equator, is the reason why in their case the turbulent—
diffusive flux can play a measurable role. However, because ?fz
has vanishing vertical derivative at the equator, the V - F¢ vanishes
there. This is different in the model of HB, in which the helicity
is arranged to be symmetric about the mid-plane, which is there-
fore not an equator in the usual sense. Here the field is symmetric
about the mid-plane, corresponding thus to a P.C. condition, and
thus V - F¢ # 0. The boundary conditions and their properties are
summarized in Table 1 for MCCTB and HB and compared with
those used in the present work.

Unlike MCCTB, in the present work the V.F. condition is applied
on the outer boundaries, in which case the most easily excited
mode is symmetric about the equator with dynamo waves travelling
away from the mid-plane. This is similar to a P.C. condition at the
mid-plane, for which the magnetic helicity flux vanishes. However,

Advective magnetic helicity flux 1689

Table 1. Comparison of boundary conditions and other properties of the
simulations of MCCTB and the present work.

MCCTB HB Present work
Boundary PC. Halo V.E.

Fr.=0 Fr #0 Fr #0

V- -Fr#0 V.- Fr=0 V.- Fr=0
Equator/ Antisymmetry Symmetry Symmetry
mid-plane (like V.F.) (like P.C.) (like P.C.)

.szf 0 ff:f 0 ?fzf 0

V.-Fr=0 V- Fr#0 V.- Fr=0

because /; is antisymmetric about the equator, it must have a turning
point there, so its second derivative vanishes and V - F;=0.The
present model does not have shear, but the nature of the dominant
mode is similar to early simulations of dynamos driven by the
magnetorotational instability (Brandenburg et al. 1995).

3 RESULTS

3.1 Model without advective flux

We begin by describing the results for a dynamo in the absence of
an advective flux (Sw = 0). The solution for this particular set-up
is a steady magnetic field mainly concentrated around the equator
of the domain, where the magnetic helicity changes its sign. In
Fig. 1, we show the B, and B, components of the magnetic field
in the saturated phase of a model without wind and Rm = 206
(later referred to as model N3). Note that B, = B, = 0 on the top
and bottom boundaries, owing to the use of vertical-field boundary
conditions. Both of them, as well as B;, do not show any significant
temporal change once b, has reached its saturation value. This can
be observed in the top panel of Fig. 2, where the vertical distribution
of B, is depicted as a function of time.

The fact that this model is steady in the absence of a wind
is surprising, because according to linear mean-field calculations
(Brandenburg et al. 2009) it should exhibit cyclic behaviour with
dynamo waves moving away from the mid-plane. This discrepancy

B/B,,

0.50

r

0.00
B,/B,, t=2870 B,/B,

-0.50

Figure 1. Visualization of By (left) and B, (right) on the borders of the
domain for model N3 in the saturated phase of the simulation (z is the time
in turnover times).
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Figure 2. Space-time diagrams of §y for different wind intensities Sw
corresponding to models N3, W3, M2 and S2 from top to bottom. The time
axes have been shifted such that for each run about 1200 turnover times are
being displayed. Note that the cycle period decreases with increasing wind
speed.

could be related to non-linearity or to differences resulting from
the use of mean-field theory. However, for the different boundary
conditions used by MCCTB, mean-field and direct numerical sim-
ulations exhibit rather similar behaviour. If it is a consequence of
non-linearity, it could be related to not allowing magnetic helicity to
escape the domain. Indeed, the behaviour is certainly quite different
from the cases with advective magnetic helicity flux (see below),
and it is also different from the otherwise similar accretion disc
models.

3.2 Model with advective flux

Let us now turn to models in which a wind is included (Sw # 0).
An example of the resulting wind profile as well as the vertical
distribution of u, is shown in Fig. 3. Even with just a weak wind,
the dynamo becomes oscillatory; see Fig. 2. Note that the cycle
period decreases as the wind speed is increased. We observe oscil-
latory solutions of even parity, that is B, and Ey are on average
symmetric with respect to the mid-plane z = 0, with dynamo waves
migrating away from z = 0. This is expected based on mean-field
models in similar set-ups (Brandenburg et al. 2009) provided the
outer boundary condition is a vacuum or vertical field condition, as
is the case here.

In Fig. 4 we can see how the actual By(x, y, z, 1), as opposed
to its horizontal average B (z, t), evolves during half a period in
the saturated phase of the simulations, changing gradually from
negative to positive polarity. In Table 2 we summarize important
output parameters that characterize the simulations and, in partic-
ular, details regarding the magnetic helicity balance. Note that all
table entries are non-dimensionalized by normalizing with relevant
quantities such as B.y; see the table caption for details. Magnetic
helicity and the various production terms are antisymmetric about
the mid-plane. Within the range |z| < L., all these quantities vary ap-

0.05 4

0.00

Figure 3. Resulting vertical profile of U, together with the rms velocity
as a function of height. Different lines correspond to different times. In this
case Uy = 0.015¢q, corresponding to Sy = 0.0055.

proximately linearly with z. Therefore, we characterize their values
by their slope. An appropriate normalization is therefore k7 Bezq.

As can be seen from the bottom panel of Fig. 5, the difference
between the values of total and turbulent—diffusive fluxes is roughly
constant with z, so that its divergence is small. This shows that in
this particular set-up the turbulent—diffusive magnetic helicity flux
has actually no contribution in balancing the right-hand side of
equation (14) to zero. This is different form the case studied by
HB, in which a finite magnetic helicity flux across the equator was
possible, playing thus a measurable role; see Table 1.

To characterize the magnitude of the magnetic helicity, we give its
value averaged over the range |z| < L,. To compare this value with
that from advective magnetic helicity fluxes, we should multiply
the table entry for V - F; by L,, which is about half the full vertical
extent of the domain. Note that V - F; and klfjlff are actually

comparable, even though 7‘3‘“ can have no effect in the present
geometry and gives zero divergence.

We recall that j - b and a - b are approximately proportional to
each other. This is also borne out by the present simulations where
k% = j -b/a - b is constant and keg/k; ~ 2. This confirms earlier
findings of MCCTB and HB, where a similar value of k. was
found. Under isotropic conditions, this ratio is approximately unity
(Brandenburg 2001). However, for models N3 and N4, the corre-
lation between j - b and a - b is poor, giving formally a negative
value, so kg 1S given as imaginary in Table 2.

The quantity jﬁ/kagq is systematically below unity, suggest-
ing that the dynamo can only be expected to produce mean fields
where §2 ~
gence of the mean field V - F,. These values are typically about
10 times larger than the flux divergence of magnetic helicity of the
small-scale field, V - Fy, but it is of course only the latter that is
relevant for alleviating catastrophic quenching.

All simulations with wind show that the rms value of the mean
field, By, declines slowly with increasing wind speed; see Fig. 6.
This result might just be a consequence of a gradual increase of
the critical value of Rm above which dynamo action is possible.
However, it could also be an indication that a fraction of the mean
magnetic field is being removed from the domain by the flow — as
found in the mean-field models of Shukurov et al. (2006).

In Fig. 7, we see how B, decreases with increasing Rm. The
scalings Rm~%* and Rm~"!7 are given for orientation and show

Bezq‘ Finally, we also give the values of the flux diver-
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B/B,,

0.50

0.0

t=1550 t=1650

-0.50

Figure 4. Visualization of By (left) at six different times during the evolution of the system, for model S3. Note that this component of the magnetic field is
prevalently negative in the first snapshot and gradually turns positive in the others. Time is given in turnover times and spans over half a cycle. On the right, B
is visualized on the borders of the domain for model S3. It does not show any relevant variability during its evolution.

Table 2. Characteristic output parameters olzhe simulations. Here, Sw characterizes the wind speed, Byms is the rms value of the mean field
normalized by Beq, 2€ - B, 2 j - b and V - F; give, respectively, the magnetic helicity production, dissipation and flux divergence in units of

—diff
kf?]t()Bezq, .7:21 gq,
by kg, j - b is normalized by kaezq and V - Fy, is the flux divergence of the mean field in units of kg Bezq. The strongest outflows we simulate are
those of models I1 and 12, for which we reckon that the magnetic field is mainly carried out of the domain by the outflow. The outflows on which

we mainly focus in this work are those of models S1-S6, in which the maximum value of the wind speed is Uy ~ 0.15uymys.

is the turbulent—diffusive magnetic helicity flux in units of 1 Bz, characterized by the diffusion coefficient k /7y, kefr is normalized

Model Sw Rm 2B Znﬁ V.- Fr ﬁlﬁ Ke/ne ket ﬁ V- Fnm
Tl 0.0000 9 0.066 + 0.019 —0.069 + 0.018 0.004 + 0.001 0.007 —-03+£0.7 1.22 —0.03 0.06
T2 0.0000 23 0.032 + 0.005 —0.035 +0.003 0.004 + 0.007 0.002 —-05+04 1.16 —0.03 0.03
N1 0.0000 37 0.048 + 0.007 —0.047 +0.007 0.001 £ 0.001 0.004 0.1+£02 148 —0.07 0.05
N2 0.0000 81 0.023 £ 0.008 —0.022 4+ 0.005 0.000 + 0.005 0.002 -00+£0.2 137 —0.07 0.02
N3 0.0000 206 0.001 £ 0.001 —0.002 % 0.000 0.001 £0.001  —0.003 0.0£02 0971 —0.01 0.00
N4 0.0000 397 0.000 + 0.004 —0.001 =0.001  —0.000 £ 0.004  —0.000 0.1+£02 084 —0.01 0.00
N5 0.0000 722 —0.006 = 0.002 —0.005 £+ 0.001 0.005 + 0.005 0.017 0.1+£03 234 —0.16 —0.02
N6 0.0054 1073 0.010 £ 0.004 —0.006 +0.000 —0.018 £ 0.015 0.019 0.0+03 2.83 —0.28 0.02
Wi 0.0020 24 0.205 + 0.007 —0.196 + 0.007  —0.008 4 0.002 0.013 04+£01 1.17 —0.19 0.19
w2 0.0019 51 0.094 + 0.022 —0.088 +0.023  —0.005 £ 0.001 0.011 05+0.1 145 —0.18 0.09
W3 0.0019 129 0.047 £ 0.004 —0.043 £0.004 —0.004 £ 0.002 0.010 04+02 1.60 —0.23 0.05
w4 0.0018 265 0.026 + 0.002 —0.024 +0.001  —0.003 £ 0.003 0.008 024+02 2.03 —0.26 0.03
W5 0.0018 540 0.014 £ 0.004 —0.012 £0.001  —0.002 £ 0.012 0.008 00+02 262 —0.26 0.01
M2 0.0038 51 0.090 + 0.007 —0.082 = 0.010  —0.006 £ 0.001 0.008 04+02 148 —0.17 0.09
S1 0.0060 24 0.167 £ 0.004 —0.152 £ 0.004 —0.012 £ 0.002 0.019 0.8+02 1.27 —0.15 0.16
S2 0.0056 51 0.085 + 0.004 —0.074 £ 0.004  —0.007 £ 0.007 0.015 05+04 1.52 —0.16 0.08
S3 0.0055 133 0.034 £ 0.005 —0.029 £ 0.004  —0.005 £ 0.002 0.007 0.6+03 223 —0.16 0.03
S4 0.0053 271 0.023 £ 0.001 —0.018 = 0.001  —0.005 £ 0.002 0.013 03+04 235 —0.20 0.02
S5 0.0053 548 0.015 £ 0.006 —0.011 £0.000  —0.005 £ 0.004 0.012 0.1+£02 239 —0.25 0.02
S6 0.0054 1063 0.013 £ 0.003 —0.007 £ 0.001  —0.006 £ 0.009 0.010 0.1 £0.2 2.70 —0.32 0.01
11 0.0112 26 0.064 £ 0.003 —0.060 = 0.002  —0.002 £ 0.001 0.009 1.1+12 201 —0.06 0.06
12 0.0105 55 0.029 + 0.007 —0.027 £ 0.004  —0.002 £ 0.004 0.007 —-00+12 9.11 —0.06 0.03

that in the presence of advection B, varies much slower than
Rm™!, which is the slope anticipated from catastrophic quenching
models without a wind (Brandenburg & Subramanian 2005). Note,
however, that DNS always gave a shallower slope (Brandenburg
& Dobler 2001) and, at larger values of Rm, B may have been
already independent of Rm (Hubbard & Brandenburg 2012). Indeed,
without a wind (Sw = 0) the Rm dependence is compatible with
a steeper Rm~!/? law, but it is less certain in this case. Looking at
Fig. 8, we can also see that there is no significant change of the
cycle period with Rm. The high-resolution runs with Rm = 544 and
1061 are too short to cover a magnetic cycle, but one can see that

the slope of the structure, which corresponds to the speed of the
dynamo wave, is approximately unchanged. In the high-Rm models
the fluctuations are more pronounced, but the peak-to-peak contrast
is about the same for all runs.

Table 2 shows that 2€ - B, 2nuo j - b and V - F; balance ap-
proximately to zero, confirming that the results represent a statisti-
cally steady state. All three quantities have approximately the same
(nearly linear) z dependence for |z| < L,, so that also the values of
their three slopes must balance to zero, which is indeed the case.
In Fig. 9, we show the scaling properties of the aforementioned
quantities for models W1-W5 and S1-S6. For Rm < Rm,, where
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Figure 5. Contributions to the magnetic helicity flux for model W3. Upper
panel: vertical profiles of magnetic helicity fluxes of the fluctuating field
(solid line), compared with the contribution from the mean flow (dashed
line). Lower panel: residual between the two aforementioned fluxes (solid
line) compared with a fit to the gradient of the magnetic helicity density
from the small-scale field (dashed line). The fluxes are normalized by Fo =
Mo By
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Figure 6. Root mean square value of the mean magnetic field, B, as a
function of Sy for models N1, W2, M2, S2 and 12, which have Rm ~ 50.

Rm,, ~ 170 for Sw = 0.002 and Rm,, ~ 120 for Sy = 0.005, the first
two quantities decrease approximately like Rm~!, while the latter
decreases only like Rm~!/2, which is in agreement with the values
obtained by HB; see also fig. 10 of Candelaresi et al. (2011) for a
corresponding plot.

However, for Rm > 200 the scaling of 2€ - B changes into an
Rm~'/2 scaling; V - F; is at first below 25 j - b, but for high
enough Rm increases to reach an absolute value similar to that
of 2€ - B. This suggests that the simple expectation based on the
naive extrapolation given from a linear fit is misleading, and that
catastrophic quenching might be alleviated already for Rm 2> 1000.
In the absence of a wind and for large magnetic Reynolds numbers
(models N4-N6), the divergence of the magnetic helicity flux shows
strong fluctuations about zero, making it harder to determine an
accurate magnetic helicity balance of small-scale fields.

1'0 T T T T T T T
L — Sy=0 i
I - .- S,=0.0055 |
g | . ]
N r - q
S R Rm 1/2
ot A : 1
Ith \\
047
L Rm P 4
0.1 1 1 1
10 100 1000
Rm
Figure 7. B, as a function of Rm in the absence (solid line, models T1,

T2, N1-N6) and presence (dashed line, models S1-S6) of advective flux.
The two dotted lines give the slopes —0.5, —0.4 and —0.17 for orientation.
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Figure 8. Space—time diagrams of Fy for wind Uy = 0.015¢ (correspond-
ing to Sw ~ 0.0055) for models S1-S6 for different magnetic Reynolds
numbers. From the top: Rm = 24, 51, 133, 271, as well as 547 (bottom left)
and 1063 (bottom right).

In Table 3 we summarize additional output parameters of the
simulations including Rm, the magnetic diffusivity, the ratios of
the rms values of mean field to fluctuating velocity and fluctuating
magnetic field, i.e. Byys/Ums and Bl /b, respectively, as well as
Mach number and number of mesh points. As was already obvious
from Fig. 7, Bums/tms (Which is the same as Bym/Beq) decreases
with increasing Rm, and the same is also true of the ratio B s /brms.



0.100 £ 3
0.010 F 3
0.001 ‘ e
10 100 1000
Rm
0.010 . <
0.001 ‘ .
10 100 1000

Figure 9. Scaling properties of the vertical slopes of 2 - B, —2nuo j - b
and —V - F¢ for models W1-W5 (upper panel) and for models S1-S6
(lower panel). (Given that the three quantities vary approximately linearly
with z, the three labels indicate their non-dimensional values at kjz = 1.)
The second panel shows that for a stronger wind the contribution from the
advective term becomes approximately independent of Rm for Rm > 170
(blue line), while that of the resistive term decreases approximately like
Rm~2/3 (red line) and 2€ - B decreases approximately like Rm~!/2 (black
line).

Table 3. Additional parameters of the simulations including Rm, magnetic
diffusivity, the ratios ‘B/u’ (= Byms/ttrms) and ‘B/b’ (= Bims/bms), as
well as Mach number and number of mesh points. N, indicates the number
of mesh points in the x direction. (In all cases we have Ny = Ny and N, =
2N,.)

Model Rm nky/cs ‘B/w ‘B/b Ma Ny
Tl 9 50x1073 0.58 1.13 0.18 64
T2 23 20x 1073 0.48 0.87 0.19 64
N1 37 1.0 x 1073 0.53 0.70 0.15 64
N2 81 5.0 x 1074 0.58 0.73 0.16 128
N3 206 20x107* 0.27 0.33 0.17 256
N4 397 1.0 x 1074 0.27 0.33 0.16 512
N5 722 50x 1075 0.18 0.21 0.15 1024
N6 1073 25x 1073 0.11 0.15 0.11 1024
Wi 24 1.0 x 1073 0.61 0.69 0.10 128
w2 51 5.0x 1074 0.42 0.48 0.10 128
W3 129 20x107* 0.36 0.39 0.10 256
W4 265 1.0 x 1074 0.28 0.31 0.11 512
W5 540  5.0x 1075 0.19 0.22 0.11 1024
M2 51 5.0x 1074 0.36 0.45 0.10 128
S1 24 1.0 x 1073 0.40 0.55 0.10 64
S2 51 5.0x 1074 0.31 0.42 0.10 128
S3 133 20x107* 0.20 0.27 0.11 256
S4 271 1.0 x 1074 0.17 0.23 0.11 512
S5 548  50x 107 0.15 0.19 0.11 1024
S6 1063 2.5 x 1077 0.14 0.17 0.11 1024
Il 26 1.0 x 1073 0.18 0.36 0.10 64
2 55 50x107* 0.13 0.26 0.11 128
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The numerical resolution in the x direction, N,, is given in the last
column. This is also the resolution used in the y direction, while
that in the z direction is always twice as large.

4 CONCLUSIONS

In the present work, we have examined the effects of an advective
magnetic helicity flux in DNS of a turbulent dynamo. The present
simulations without shear yield an oscillatory large-scale field ow-
ing to the spatially varying kinetic helicity profile with respect to
the equatorial plane. We emphasize in this context that the possi-
bility of oscillatory dynamos of & type is not new (Baryshnikova
& Shukurov 1987; Ridler & Briuer 1987), but until recently all
known examples were restricted to spherical shell dynamos where
o changes sign in the radial direction. The example found by Mitra
et al. (2010b) applies to a spherical wedge with latitudinal variation
of o changing sign about the equator. Similar results have also been
obtained in a mean-field dynamo with a linear variation of a(z) x z
(Brandenburg et al. 2009). Our present simulations are probably the
first DNS of such a dynamo in Cartesian geometry. Closest to our
simulations are those of MCCTB who used perfectly conducting
outer boundary conditions without wind, and also found oscillatory
solutions. Surprisingly, however, oscillations are here only obtained
if there is at least a slight outflow.

One would have expected that catastrophic quenching can be
alleviated if magnetic helicity is removed from the domain at a
rate larger than its diffusion rate, that is, the advective term V - F;
dominates over the resistive term, 2n/o j - b. Fig. 9 shows that,
for Rm < 200, the latter term decreases linearly with decreasing
n, while the former only decreases proportional to n'/2, i.e. pro-
portional to Rm~!/2. This would have led us to the estimate that
for Rm &~ 4 x 10° the catastrophic quenching can be alleviated
by a wind with Sy =~ 0.005. Our new results suggest that this can
happen already for smaller values of Rm. The reason for this is still
unclear. It is possible that catastrophic quenching was an artefact of
intermediate values of Rm, as suggested by Hubbard & Branden-
burg (2012), or that a magnetic helicity flux can have an effect even
though it is weak compared with diffusive terms.

Finally, we should emphasize that we have only examined here
the case of subsonic advection. In real astrophysical cases, like
galactic and stellar winds, the outflow is instead supersonic and can,
thus, play an even more important role in alleviating the catastrophic
quenching through the advection of magnetic helicity. This assumes,
of course, that the dynamo is strong enough to be still excited in the
presence of a stronger wind.
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