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ABSTRACT

Aims: We present evidence for finite magnetic helicity density in the heliosphere and numerical models thereof, and relate it to the
magnetic field properties of the dynamo in the solar convection zone.
Methods: We use simulations and solar wind data to compute magnetic helicity either directly from the simulations or indirectly
using time series of the skew-symmetric components of the magnetic correlation tensor.
Results:We find that the solar dynamo produces negative magnetic helicity at small scales and positive at large scales. However, in
the heliosphere these properties are reversed and the magnetic helicity is now positive at small scales and negative at large scales.
We explain this by the fact that a negative diffusive magnetic helicity flux corresponds to a positive gradient of magnetic helicity,
which leads to a change of sign from negative to positive values at some radius in the northern hemisphere.
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1. Introduction

The magnetic field in the heliosphere is a direct consequence of
the solar dynamo converting kinetic energy of the convection
zone into magnetic energy. The magnetic field is cyclic with
a period of 22 years on average, but has also significant fluctu-
ations on top of this. These fluctuations can be large enough to
suppress the number of sunspots to minimum levels for dec-
ades, for example during the Maunder minimum. This mini-
mum has been associated with the little ice age in the early
17th century, although the solar activity to Earth climate rela-
tion remains ill understood. Of particular interest for space
weather are strong variations caused by coronal mass ejections
(CMEs). These events are believed to be a result of footpoint
motions of the magnetic field at the solar surface, driving
strongly stressed magnetic field configurations to a point when
they become unstable and release the resulting energy in an
instant. CMEs can shed large clouds of magnetized plasma into
interplanetary space and can accelerate charged particles to high
velocities toward the Earth. The main driver of these ejections
is the magnetic field, where the energy of the eruption is stored.

Large-scale dynamos, for example the one operating in the
solar convection zone, produce magnetic helicity of opposite
sign at large and small scales. Here, magnetic helicity is the
dot product of the magnetic field and the vector potential inte-
grated over a certain volume. For a long time it was believed
that CMEs are disconnected from the actual dynamo process,
but this view has changed in the past 10 years. In the regime
of large magnetic Reynolds numbers, or high electric conduc-
tivity, the magnetic helicity associated with the small-scale
field, quenches the dynamo (Pouquet et al. 1976). This is a con-
cept that is now well demonstrated using periodic box simula-
tions of helically forced turbulence (Brandenburg 2001).
However, astrophysical large-scale dynamos are inhomoge-
neous and drive magnetic helicity fluxes, whose divergence is

relevant for alleviating what is now often referred to as cata-
strophic quenching of the large-scale dynamo. An important
fraction of these magnetic helicity fluxes is associated with
motions through the solar surface and their eventual ejection
into the interplanetary space (Blackman & Brandenburg
2003). Connecting the dynamo with the physics at and above
the solar surface is therefore an essential piece of dynamo
physics.

In this paper we review the state of such models and their
ability to shed magnetic helicity and to produce ejections of
the type seen in the Sun. We begin by discussing a simpler
model in Cartesian geometry and turn then to models in spher-
ical wedges. Finally, we compare with observations of magnetic
helicity in the solar wind and discuss our finding in connection
with earlier dynamo models. Full details of this work have been
published elsewhere (Warnecke & Brandenburg 2010;
Brandenburg et al. 2011; Warnecke et al. 2011), but here we
focus on an aspect that is common to all these papers, namely
the nature of magnetic twist associated with the ejecta away
from the Sun.

2. Plasmoid ejections in Cartesian models

A straightforward extension of dynamos in Cartesian domains
is to add an extra layer on top of it that mimics a nearly
force-free solar corona above it. This was done by Warnecke
& Brandenburg (2010) who used a dynamo that was driven
by turbulence that in turn was driven by a forcing function in
the momentum equation. To imitate the effects of stratification
and rotation that are known to produce helicity, they used a
forcing function that was itself helical. This leads to large-scale
dynamos that are more efficient than naturally occurring ones
that are driven, for example, by rotating convection (see, e.g.,
Käpylä et al. 2010, 2012; Warnecke et al. 2012). In those
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papers, the produced kinetic helicity is much weaker. As men-
tioned in the beginning, such dynamos can produce magnetic
fields whose small-scale contribution has magnetic helicity of
the same sign as that of the forcing function and whose
large-scale contribution has magnetic helicity of opposite sign.

In our Cartesian model, the two horizontal directions (x and
y) are equivalent, but when the large-scale field saturates, it
must finally choose one of the two possible directions. This
is a matter of chance but, in the case discussed below, the field
shows a large-scale variation in the y-direction. The large-scale
field settles into a state with minimal horizontal wavenumber,
which is here (kx, ky) = (0, k1), where k1 = 2p/L and L is the
horizontal extent of the domain. Note that for fields with vari-
ation along the diagonal the wavenumber would be

ffiffiffi
2
p

times
larger, so such a state is less preferred.

In Figure 1 we show the surface magnetic field of such a
dynamo of the work of Warnecke & Brandenburg (2010). We
show color-coded the vertical (line of sight) magnetic field
component together with a perspective view of field lines in
the volume above, which we shall refer to as the corona region.
In addition to fluctuations, we can see a large-scale pattern of
the field with a sinusoidal modulation in the x-direction and
no systematic variation in the y-direction. The field lines in
the corona region show a spiraling pattern corresponding to a
left-handed spiral. This is because the helicity of the forcing
function is in this model positive (right handed), so the resulting
large-scale field must have helicity of the opposite sign.

The large-scale magnetic field is essentially steady in the
dynamo region and does not change its overall bipolar struc-
ture; see Figure 2 for a perspective view. However, the mag-
netic field of the corona region shows a time-dependent
oscillating structure associated with nearly regularly occurring
ejection. The ejection events can be monitored in terms of the
current helicity, J Æ B, where J = $ · B/l0 is the current den-
sity and l0 is the vacuum permeability. To compensate for
the radial decline of J Æ B, we have scaled it by hB2iH ;t, which

is here understood as a combined average over horizontal direc-
tions and over time. The result is shown in Figure 3.

It is remarkable that the field does not remain steady in the
outer parts. This can be seen more clearly in a sequence of field
line visualizations in Figure 4. Here, the magnetic field is aver-
aged over the x-direction and we show Bxh ix color-coded
together with magnetic field lines as contours of Axh ix in the
yz-plane. Light/yellow shades correspond to positive values,
the dark/blue to negative, similar to Figure 3. Note that a con-
centration in Bx emerges from the lower region to the outer one.
The magnetic field lines surround the concentration and form a
shape similar to plasmoid ejections, which are believed to be a
two-dimensional model of producing CMEs (Ortolani &
Schnack 1993). At a time of t/s = 2881 turnover times, the con-
centration is split into two parts, where the upper one leaves the
domain through the upper boundary, while the lower one stays
in the lower layer. Here, s = (urmskf)

�1 is the turnover time
based on the forcing wavenumber kf and urms is the root mean
squared velocity averaged in the lower layer. At t/s = 3041, the
field lines have formed an X-point in the center of the upper
layer. In an X-point, field lines reconnect and release large
amounts of energy through Ohmic heating. In the Sun these
reconnection events are believed to trigger an eruptive flare,
which can cause a CME. A similar behavior can also be seen
in more realistic models in spherical geometry, as will be dis-
cussed in the next section.

Fig. 1. Three-dimensional visualization of the magnetic field viewed
from above. The vertical magnetic field component is color-coded
(light/yellow pointing upward and dark/blue pointing downward).
Note that the field lines form a left-handed spiral over the scale of the
domain, as expected for turbulence with positive helicity at small
scales. The x-axis points to the right while the y-axis points upward.
Adapted from Warnecke & Brandenburg (2010).

Fig. 2. Magnetic field structure in the dynamo exterior. Field lines
are shown in red and the modulus of the current density is shown in
pink with semitransparent opacity. Note the formation of a vertical
current sheet above the arcade. Adapted from Warnecke &
Brandenburg (2010).

Fig. 3. Dependence of J � Bh iH= B2
� �

H;t
on time and height. Dark/

blue stands for negative and light/yellow for positive values. For this
run the vertical extent of the domain is � 2

3
p � z � 4

3
p.
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3. Helicity reversals in spherical models

While similar ejection events are also seen in spherical geome-
try, a more surprising property is a reversal of the current helic-
ity in the radial direction (Warnecke et al. 2011). In Figure 5 we
show visualizations of J Æ B in meridional planes. The figure
shows two examples of coronal ejections which we found to
be ejected from the dynamo region into the atmosphere. At
t/s = 358 we can identify a shape that is similar to that of the
three-part structure of CMEs, observed on the Sun (Low
1996). It consists of an arch of one sign of current helicity in
front of a bulk of opposite sign and a cavity in between. As
shown in Figure 5, the ejection leaves the domain on the radial
boundary and a new ejection of opposite sign occurs. We also
see that in the dynamo region the current helicity is negative in
the northern hemisphere and positive in the southern. This
seems to be basically true also in the immediate proximity
above the surface, but there is now an increasing tendency
for the occurrence of magnetic helicity of opposite sign ahead
of the ejecta. This seems to be associated with a redistribution
of twist in the swept-up material. The current helicity is by far
not always of the same sign, but both signs occur and there is
only a slight preference of one sign over the other. This is seen
more clearly in Figure 6, where we show a time series of J Æ B
versus radial position r/R and time t/s.

A time series of the normalized current helicity,
J � B=hB2it, evaluated at radius r = 1.7 R and 28� latitude, is
shown in Figure 7, where we also show their running means.
It is now quite clear that on average the sign of current helicity
has changed relative to what it was in the dynamo region. This
is seen explicitly in a time-averaged plot of current helicity in
the meridional plane (Fig. 8).

This reversal is significant because similar behavior has also
been seen in recent measurements of the magnetic helicity spec-
trum in the solar wind (Brandenburg et al. 2011), but before
showing the evidence for this, let us first discuss in more detail
a similar diagnostic for the simulations. In Figure 9 we show the
time variations of Bh and B/ and the magnetic helicity spectrum
obtained from these time series. Unlike the solar wind, where a
time series can be used to mimic a scan in distance space (the so-
called Taylor hypothesis), this argument fails in the present case,
because no wind is produced in the present model. There is only
the pattern speed associated with the CMEs. Whether this is
enough to motivate the use of the Taylor hypothesis is rather
unclear. Nevertheless, there is a remarkable similarity with sim-
ilar helicity spectra obtained for the solar wind; see Figure 10. In
both cases, magnetic helicity has been obtained under the
assumption of local isotropy of the turbulence. This means that
one computes the one-dimensional magnetic energy E1D

M ðkRÞ
and magnetic helicity spectra H 1D

M ðkRÞ simply as

E1D
M kRð Þ ¼ B̂

�� ��2=l0; H 1D
M kRð Þ ¼ 4 ImðB̂hB̂�/Þ=kR; ð1Þ

where kR is the component of the wave vector in the radial
direction. Here, a hat denotes Fourier transformation and an
asterisk complex conjugation. These are the equations used
by Matthaeus et al. (1982) who applied such an analysis to
data from Voyager 2. Since Voyager 2 flew close to the eclip-
tic, the magnetic helicity is dominated by fluctuations. This is
why Brandenburg et al. (2011) applied this analysis to
Ulysses data, where a net magnetic helicity was seen for the
first time. An important advantage of Ulysses over Voyager
1 and 2 is the high angle with the ecliptic. So, only with
Ulysses we can measure the magnetic helicity far away from
the ecliptic in both hemispheres of the heliosphere.

Fig. 4. Time series of the formation of a plasmoid ejection. Contours of Axh ix are shown together with a color-scale representation of hBxix;
dark/blue stands for negative and light/yellow for positive values, as in Figure 3. The contours of Axh ix correspond to field lines of Bh ix in the
yz-plane. The dashed horizontal lines show the location of the surface at z = 0. For this run the vertical extent of the domain is � 2

3
p � z � 4

3
p.
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What we see both in the simulations and in the solar wind is
that there is magnetic helicity of opposite sign at large and small
scales. However, it is exactly the other way around than what is
found in the corona region; see Table 1. To understand the rea-
son for this, we need to consider the equations for the produc-
tion of magnetic helicity at large and small length scales. As
will be argued in Section 4, the mechanism that sustains nega-
tive small-scale helicity in the north is turned off in the solar
wind, and there is just the effect of turbulent magnetic diffusion
which contributes with opposite sign. By contrast, inside the
dynamo region, turbulent diffusion is subdominant, because
otherwise no large-scale magnetic field would be generated.
However, in the wind we do not expect the dynamo to be
excited, so here diffusion dominates.

4. Connection with earlier dynamo models

The purpose of this section is to make contact with dynamo the-
ory and to understand more quantitatively why the magnetic he-
licity reverses sign with radius. In essence, we argue that the
profile of magnetic helicity density must have a positive radial
gradient to maintain a negative diffusive magnetic helicity flux
and that this is the reason for the magnetic helicity to change
from a negative sign to a positive one at some radius in the
northern hemisphere.

We begin by discussing the magnetic helicity equation. The
magnetic helicity density is h = A Æ B, where B = $ · A is the
magnetic field expressed in termsof themagnetic vector potential
Awhich, in the Weyl gauge, satisfies @A=@t ¼ U � B� gl0J .
The evolution equation for A Æ B is then

@

@t
A � B ¼ �2gl0J � B� $ � F; ð2Þ

Fig. 5. Time series of coronal ejections in spherical coordinates. The normalized current helicity, J � B=hB2it , is shown in a color-scale
representation for different times; dark/blue stands for negative and light/yellow for positive values, as in Figure 3. The dashed lines show the
location of the surface at r2 = x2 + z2 = R2.

Fig. 6. Dependence of the dimensionless ratio J � B=hB2it on time
and radius. The top panel shows a narrow band in h in the northern
hemisphere and the bottom one a narrow band in the southern
hemisphere. Dark/blue stands for negative and light/yellow for
positive values. The dashed horizontal lines show the location of the
surface at r = R.

Fig. 7. Dependence of the dimensionless ratio J � B=hB2it on time
at radius r = 1.7R and 28� latitude. The solid line stands for the
northern hemisphere and the dotted for the southern hemisphere. The
red lines represent the cumulative mean for each hemisphere.
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where F is the magnetic helicity flux. Next, we define large-
scale fields as averaged quantities, denoted by an overbar, and
small-scale fields as the residual, denoted by lower case char-
acters, so the magnetic field can be split into two contribu-
tions via B ¼ Bþ b. Likewise, A ¼ Aþ a; J ¼ J þ j, and

U ¼ U þ u. The evolution equation for the mean magnetic
helicity density �h ¼ A � B is given by

@

@t
A � B ¼ �2gl0J � B� $ � F: ð3Þ

To determine the magnetic helicity density of the mean field,
�hm ¼ A � B, we use the averaged induction equation in the
Weyl gauge, @�A=@t ¼ U � Bþ u� b� gl0J , so that

Fig. 8. Current helicity averaged over time. Dark/blue corresponds
to negative values, while the light/yellow corresponds to positive
value, as in Figure 6. The dashed line shows the location of the
surface at r2 = x2 + z2 = R2.

Fig. 9. Helicity in the northern outer atmosphere. The values are
written out at the point, r = 1.5 R, 90� � h = 17�, and / = 9�. Top
panel: phase relation between the toroidal B/ and poloidal Bh field,
plotted over time t/s. Bottom panel: helicity H(k) is plotted over
normalized wavenumber kR. The helicity is calculated with the
Taylor hypothesis using the Fourier transformation of the poloidal
and toroidal field. Adapted from Warnecke et al. (2011).

Fig. 10. Magnetic energy and helicity spectra, 2l0EM(k) and
k|HM(k)|, respectively, for two separate distance intervals (first and
third panels). Furthermore, both spectra are scaled by 4pR2 before
averaging within each distance interval above and below 2.8 AU,
respectively. The relative magnetic helicity, kHM(k)/2l0EM(k), is
plotted separately (second and fourth panels) together with its
cumulative average starting from the low wavenumber end. The zero
line is shown as dashed. Adapted from Brandenburg et al. (2011).

Table 1. Distribution of magnetic helicity at large and small scales
both in the dynamo region close to or below the surface and the
corona region, solar wind or the exterior of the dynamo.

Magnetic helicity
Large
scales

Small
scales

Dynamo region, interior + �
Corona region, solar wind, exterior � +
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@

@t
¼ A � B ¼ 2u� b � B� 2gl0J � B� $ � Fm: ð4Þ

The magnetic helicity equation for the fluctuating field,
�hf ¼ �h� �hm ¼ a � b, takes then the form

@

@t
a � b ¼ �2u� b � B� 2gl0j � b� $ � Ff ; ð5Þ

so that the sum of equations (4) and (5) gives equation (3).
Here, the total magnetic helicity flux consists of contribution
from mean and fluctuating fields, denoted by subscripts m and
f, respectively, i.e., Fm þ Ff ¼ F. Note that, even in the limit
g ! 0 and in the absence of fluxes, magnetic helicity at large
and small scales is not conserved individually, but there can
be an exchange of magnetic helicity between scales.

A note regarding the gauge-dependence is here in order.
Obviously, equation (5) depends on the gauge choice for a.
However, if we are in a steady state, and if �hf also happens
to be steady (which is not automatically guaranteed), then we
have

r � Ff ¼ �2u� b � B� 2gl0 j � b; ð6Þ
and since the right-hand side of this equation is manifestly
gauge-invariant, r � Ff must also be gauge-invariant. This
property was used in earlier work of Mitra et al. (2010),
Hubbard & Brandenburg (2010) and Warnecke et al. (2011)
to determine the scaling of Ff withr�hf and thus the turbulent
diffusion coefficient jh. In addition, if there is sufficient scale
separation between large and small scales, which is typically
the case in the nonlinear regime at the end of the inverse cas-
cade process (Brandenburg 2001), then �hf can be expressed as
a density of linkages, which is itself manifestly gauge-inde-
pendent (Subramanian & Brandenburg 2006). This property
then also applies to the flux Ff .

The correlation u� b is known to have two contributions,
one proportional to B with a pseudo-tensor in front of it (the a
effect, responsible for large-scale field generation), and one pro-
portional to J with a coefficient gt in front of it that corresponds
to turbulent diffusion, i.e.,

u� b ¼ aB� gtl0J ; ð7Þ
where we have again assumed isotropy. The reason why the
mean magnetic helicity density of the small-scale field is neg-
ative in the north is because a > 0 in the north (e.g., Krause &
Rädler 1980), producing therefore negative magnetic helicity
at a rate �2aB2

< 0 for small-scale fields and þ2aB2
> 0 for

large-scale fields, so that their sum vanishes. There is also tur-
bulent magnetic diffusion which reduces this effect, because
gt > 0 and J � B > 0 in the north. In the solar wind no new
magnetic field is generated, so turbulent magnetic diffusion
could now dominate and might thus explain a reversal of
magnetic helicity density (Brandenburg et al. 2011).

Support for a reversal of the sign of magnetic helicity was
first seen in dynamo simulations with magnetic helicity flux in
the exterior. In Figure 11 we show a representation of magnetic
helicity density of small-scale fields �hf ¼ a � b versus z and t for
a model similar to that of Brandenburg et al. (2009), but where
the magnetic helicity flux is caused by a wind that is then run-
ning into a shock1 where the flux is artificially suppressed at

height z = 3H. This figure shows that there is a clear segrega-
tion of negative and positive small-scale magnetic helicities in
the dynamo regime and the exterior, respectively.

In our description above we have suggested that the mag-
netic helicity production balances the @a � b=dt term, but this
cannot be true in the steady state. Instead, it must be the diver-
gence of the magnetic helicity flux, $ � Ff . Let us assume that
Ff can be approximated by a Fickian diffusion law, i.e.,
Ff ¼ �jh$�hf . Simulations have suggested that jh=gt is around
0.3 (Hubbard & Brandenburg 2010; Mitra et al. 2010;
Warnecke et al. 2011). Thus, balancing now the source
SðzÞ � �2aB2 þ 2gtl0J � B against the divergence of the
flux of magnetic helicity at small scales, we have, in a

Fig. 11. zt diagrams of �hf for an a2 dynamo with a wind which stops
all of a sudden at z/H = 3. The white horizontal line marks the
location z = H. Light/yellow shades indicate positive values and
dark/blue shades indicate negative values.

Fig. 12. Sketch showing possible solutions �hf ðzÞ (upper panel) to
equation (8) with S = const = �1 in z < 0 and S = 0 in z > 0. The
red (dashed) and black (solid) lines show solutions for which the
magnetic helicity flux (�jhd�hf=z, see lower panel) is negative in
the exterior. This corresponds to the case observed in the Sun. The
blue (dotted) line shows the case, where the magnetic helicity flux is
zero above the surface and therefore does not reverse the sign of
�hf ðzÞ in the exterior.

1 Note that the shock at z/H = 3 becomes eventually underresolved
and the simulation has to be terminated. This is what causes the
wiggles in the proximity of the shock.
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one-dimensional model (neglecting the molecular diffusion
term, 2gl0 j � b):

S zð Þ ¼ �jh
d2�hf

dz2
: ð8Þ

Taking as an example a source where S(z)/jh = �1 in the
dynamo interior (z < 0), and S(z) = 0 in z > 0 , we have a family
of solutions of equation (8) that only differ in an undetermined
integration constant corresponding to a constant offset in the
flux; see the second panel of Figure 12. The solutions for which
the magnetic helicity flux,�jhd�hf=dz, is negative in the exterior
are those for which �hf reaches an extremum below the surface.
This seems to be what happens both in simulations and in the
solar wind. We can thus conclude that the reason for a sign
change is not a dominance of turbulent diffusion in the solar
wind, but just the possibility of the magnetic helicity density
reaching an extremum below the surface (dashed red and solid
black lines in Figure 12), not at the surface (dotted blue lines).

5. Conclusions

Aswe have seen in the present paper, magnetic twist (or helicity)
plays an important role for the solar dynamo (Brandenburg
2001; Blackman & Brandenburg 2002) and for producing erup-
tions of the form of CMEs (Low 1996, 2001). The recent work
of Warnecke & Brandenburg (2010) and Warnecke et al. (2011)
tries to combine both aspects into one. Although the models are
still rather unrealistic in many respects, they have already now
led to useful insights into the interplay between dynamo models
and solar wind turbulence. In particular, they have allowed us to
understand the properties of magnetic helicity fluxes. We have
confirmed that the hemispheric sign rule of magnetic helicity
does not extend unchanged into the interplanetary space, but
we have now shown that it must flip sign somewhere above
the solar surface. On the other hand, Bothmer & Schwenn
(1998) found that the magnetic clouds follow Hale’s polarity
and that the sign of the magnetic helicity is the same as in the
interior. However, this result is not based on rigorous statistics.

Future work in this direction should include more realistic
modeling of the solar convection zone. Preliminary work in this
direction is already underway (Warnecke et al. 2012). Further-
more, it will be necessary to allow for the development of a
proper solar wind from the dynamo region. One of the difficul-
ties here is that, if the critical point is assumed to be too close to
the solar surface, which would be computationally convenient
because it would allow us to use a smaller domain, the mass
loss rate would be rather high and could destroy the dynamo.
In future work we will be trying to strike an appropriate com-
promise that will allow us to study the qualitatively new effects
emerging from this.
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