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ABSTRACT

We show that an α effect is driven by the cosmic-ray (CR) Bell instability exciting left–right asymmetric turbulence.
Alfvén waves of a preferred polarization have maximally helical motion, because the transverse motion of each
mode is parallel to its curl. We show how large-scale Alfvén modes, when rendered unstable by CR streaming,
can create new net flux over any finite region, in the direction of the original large-scale field. We perform direct
numerical simulations (DNSs) of a magnetohydrodynamic fluid with a forced CR current and use the test-field
method to determine the α effect and the turbulent magnetic diffusivity. As follows from DNS, the dynamics
of the instability has the following stages: (1) in the early stage, the small-scale Bell instability that results in
the production of small-scale turbulence is excited; (2) in the intermediate stage, there is formation of larger-
scale magnetic structures; (3) finally, quasi-stationary large-scale turbulence is formed at a growth rate that is
comparable to that expected from the dynamo instability, but its amplitude over much longer timescales remains
unclear. The results of DNS are in good agreement with the theoretical estimates. It is suggested that this
dynamo is what gives weakly magnetized relativistic shocks such as those from gamma-ray bursts (GRBs) a
macroscopic correlation length. It may also be important for large-scale magnetic field amplification associated
with CR production and diffusive shock acceleration in supernova remnants (SNRs) and blast waves from GRBs.
Magnetic field amplification by Bell turbulence in SNRs is found to be significant, but it is limited owing to the
finite time available to the super-Alfvénicly expanding remnant. The effectiveness of the mechanisms is shown to
be dependent on the shock velocity. Limits on magnetic field growth in longer-lived systems, such as the Galaxy
and unconfined intergalactic CRs, are also discussed.
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1. INTRODUCTION

Astrophysical blast waves are strongly suspected of ampli-
fying the ambient magnetic field into which they propagate.
Supernova remnants (SNRs), given detailed models for their
ultra-high-energy gamma-ray emission, indicate magnetic fields
that are considerably stronger than the several μG fields that
are present in the interstellar medium. The exact strength of
SNR magnetic fields depends on how small-scale bright spots
are interpreted (Pohl 2009).

Gamma-ray burst (GRB) afterglows, which are attributed to
relativistic blast waves, are generally best fit with a magnetic
field strength that is much higher than interstellar magnetic
fields. It has been suggested that the Weibel instability is
responsible for the magnetic field production/amplification
(Medvedev & Loeb 1999), but several difficulties with this
proposal (Blandford & Eichler 1987) remain unsolved. First,
the fastest growing Weibel-unstable modes are of very small
scale, the ion plasma skin depth, and they should decay away
resistively over the hydrodynamical timescale of the blast wave.
Second, the electrons in the actual interstellar medium are
already magnetized as they enter the shock, and they should
therefore freeze the magnetic flux. The Weibel instability,
which creates new flux, should therefore be suppressed at finite
amplitudes, despite being unstable at infinitesimal amplitudes.
It is not clear that these problems are resolved by simulations,
which cannot be run over hydrodynamical timescales, and which
do not always include initial electron magnetization. In this
regard, the Bell instability (Bell 2004), which treats the thermal

plasma as a magnetized fluid, may be more relevant than kinetic
approaches that ignore the electron magnetization, i.e., their
gyroradii are small compared with the relevant length scales of
the system.

Cosmic-ray (CR) protons above 200 TeV and iron nu-
clei above 3 PeV are difficult to account for with standard
SNR parameters (Lagage & Cesarsky 1983), and magnetic field
amplification would solve this problem if it occurs on a large
scale. The smaller the scale of field amplification, the lower
the maximum energy of the CRs that can be accelerated by the
shock (Eichler & Pohl 2011).

Simulations of magnetic fields in the presence of CRs (Lucek
& Bell 2000; Bell 2004) show magnetic field stretching. This
is accompanied by a jumbling of the field lines into a more
complicated geometry and a smaller coherence length. It has
remained unclear whether this is merely turbulent field line
stretching or there is an additional mechanism.

It has recently been noted by Bykov et al. (2011) that a
circularly polarized Alfvén wave gives a net electromotive
force (EMF) along the direction of the original magnetic field.
Because CR protons preferentially excite Alfvén waves of a
particular circular polarization, they generate a net EMF along
the original magnetic field. The field growth is given by the
curl of this EMF, which, for a plane wave, is k×B, yielding
a growing Alfvén mode, whose polarization vector k×B is
perpendicular to the original magnetic field. To lowest order,
this does not amplify the field but merely bends it, and the
question still remains as to whether (1) the field lines are merely
getting stretched on this large scale, which would leave the net
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flux through any large-scale surface unchanged, or (2) there is
organized amplification, whereby the flux of magnetic field lines
through a given large-scale surface is increased.

In this paper we note that the situation can result in an
α2 dynamo, in which a large-scale magnetic field can grow along
its original direction and thus get amplified. The effect results
from a nonlinear coupling between the individual waves that
were demonstrated by Bykov et al. (2011) to grow. However,
there is a maximum size over which such amplification can
be effective. As the quantity α has dimensions of velocity
(in contrast to the stretching timescale, which has dimensions
of time and which can be as short as the eddy turnover time of
the turbulence), this maximum spatial scale is of the order of
α T , where T is the age of the blast wave. The magnetic field
on this scale can grow by at most of the order of one e-fold
over this time. On the other hand, because the field is amplified
along its original direction, scales below the maximum scale can
grow exponentially, in contrast to mere stretching, which would
continually alter the scale as the field lines lengthen.

The formal objective of the present work is to show that the
parameter α, as defined in standard dynamo theory, is non-zero
in the presence of CR streaming instabilities and to estimate its
value. This will imply a maximum amount of growth on any
given scale over any given time interval.

The partial pressure P cr = ncrΓmic
2/3 in CRs in any

logarithmic interval of energy above energy Emin is about
P cr ∼ ρu2

s / ln(Emax/Emin) � ρu2
s /10 (Ellison & Eichler 1985).

Here, us is the streaming velocity, ρ = nimi is the plasma
density, ni is the interstellar number density of protons, mi is the
mass of a plasma ion, c is the speed of light, and Γ is the CR’s
Lorentz factor. Thus, the high-energy CR number density is

ncr = 3P cr

Γmic2
∼ 3ρu2

s

Γmic2 ln(Emax/Emin)
.

The CR current J cr = ncr e us due to CRs within a given
logarithmic interval of CR energy can then be factored into
dimensionless parameters as follows:

J ≡ 4π

c

J cr

kB
= 3

2

us

c

P cr

B2/8π

eB

kΓmic2
. (1)

We will show in the present study that J is a key parameter
that determines large-scale magnetic field amplification. The
last factor eB/(kΓmic

2) in Equation (1) is the deflection of
the CR over its passage through one scale length, k−1, of the
magnetic field. The derivation of the Bell instability that is
caused by the CR current in plasma assumes that the deflection
of the CR is small. For the firehose instability, the subject of
a separate investigation, it can be larger than unity, as the CRs
would be bound to the field lines. However, a situation can
occur in which the CRs maintain a steady anisotropy, A, even
if they scatter, and the choice for the streaming velocity is then
us = Ac, and the shock velocity is assumed to be approximately
the same.

The factor us/c is typically of the order of 10−2 or less, both
for the Galaxy as a whole, where the anisotropy is limited by
direct measurements, and for the CRs accelerated by forward
shocks of blast waves from SNRs, where the CR precursor
moves essentially at the shock velocity, typically 10−3 to
10−2 times c. Very young SNRs can have somewhat higher
shock velocities, but the CR accelerated in them may then be
more prone to adiabatic losses. Note that because we assume
the streaming velocity to be the velocity of the shock, we may

allow for the possibility that CRs scatter in our estimate of the
CR current. But we still have to limit the time over which a given
parcel of fluid is exposed to the CR current to be less than the
shock crossing time—the time it takes the shock to cross the
length of the CR precursor at that energy.

The factor 3P cr/(B2/4π ) is of the order of unity for the
Galaxy as a whole if all relativistic CRs are included. In this case,
the anisotropy must be taken to be at most 10−3 and us � 10−3c.
In the case of supernova blast waves, the factor 3P cr/(B2/4π )
can be as high as ∼u2

s /v
2
A, where vA is the Alfvén speed. Thus,

the CR pressure can be a significant fraction of the ram pressure
ρu2

s (see, e.g., Ellison & Eichler 1985).
Altogether, we can choose a plausible value for J of

∼3u3
s /cv

2
A ln(Emax/Emin), which can range from 104 for young

SNRs (us ∼ c/10 ∼ 103vA) to order unity for old ones. For the
Galaxy as a whole, we are probably limited to 3P cr/(B2/4π ) �
1. For collisionless shock waves generated in the interstellar
medium by GRBs, the value of J can be enormous—of or-
der 1014—and the α effect may be particularly effective in that
context. This will be discussed in greater detail below, where
relativistic effects are included more carefully.

The physical time over which the mechanism can operate
on a given patch of upstream fluid in the case of an SNR is
one expansion time, or Rs/us , where Rs is the radius of the
forward shock. As us does not appear explicitly in the simulation
parameters, we use the above expression J ∼ u3

s /cv
2
A to

substitute for us in terms of Jcr and vA. For the Galaxy as a
whole, we are limited by the Hubble time to be about 104RG/vA,
where RG is the size of the Galaxy.

2. GOVERNING EQUATIONS

We consider magnetohydrodynamic (MHD) flows consisting
of background plasma ions of number density ni, electrons of
number density ne, and CR protons of number density ncr. The
equation of motion in MHD flows with CRs imbedded in a
background plasma reads (Chen 2010)

ρ
DU
Dt

= −∇P +
1

c
J×B + e (ni − ne) E + Fν, (2)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative; U is
the fluid velocity; ρ and P are the fluid density and pressure,
respectively; E and B are the electric and magnetic fields; and
Fν is the viscous force. The densities of the plasma current,
J , and of CR protons, J cr, are the sources of magnetic field in
Maxwell’s equations:

∇×B = 4π

c
( J + J cr), (3)

∇×E = −1

c

∂ B
∂t

, (4)

with Ohm’s law: J = σ (E+c−1U×B), where σ is the electrical
conductivity of the gas, and we have neglected in Equation (3)
the displacement current, because the conductivity is high and
the fluid motions are slow compared with the speed of light.
These equations yield the induction equation,

∂ B
∂t

= ∇×(U×B − η∇×B + c J cr/σ ), (5)

where η = c2/4πσ is the magnetic diffusivity. We assume
quasi-neutrality for the whole system, i.e., ni + ncr = ne, and
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Equation (2) reads

ρ
DU
Dt

= − ∇P +
1

4π
(∇×B)×B + Fν − 1

c
J cr×B

+
1

c
encr (U×B), (6)

where we have used Equation (3) and assumed that |J/σ | �
c−1|U×B|, i.e., we consider plasma flows with large hydrody-
namic and magnetic Reynolds numbers. Hereafter, we assume
that the CR velocity is much larger than fluid velocity U , so that
the last term in Equation (6) vanishes. The plasma density is
determined by the continuity equation:

∂ρ

∂t
+ ∇ · ρ U = 0. (7)

Following Bell (2004), let us consider the equilibrium:
J eq + J cr = 0, Beq = B∗ = const, U eq = 0, and ρeq = ρ∗ =
const. Linearized Equations (5)–(7) for small perturbations yield
the following dispersion relation:

γ 2
(
γ γB + ω2

s

) (
γ 2 + ω2

A

) = ω2
A

(
γ γB

k2

k2
z

+ ω2
s

)

×
[(ωcrkz

k

)2
− ω2

A − γ 2

]
, (8)

where ωA = k · vA is the frequency of the Alfvén waves,
ωs = kcs is the frequency of the sound waves, cs is the sound
speed, k is the wavenumber, vA = B∗/ (4πρ)1/2 is the Alfvén
speed, ωcr = c−1 J cr (4π/ρ)1/2, γ = γB + ηk2, γB is the growth
rate of an instability, and we have considered the case where the
equilibrium magnetic field B∗ and J cr are directed along the
z-axis.

In this system, the non-resonant Bell instability (Bell 2004;
Lucek & Bell 2000) is excited by the CR current that causes
growing MHD modes. The growth rate of this instability for
β � 1 that follows from Equation (8) is given by

γB =
[ |ωA ωcr kz|

k
− ω2

A

]1/2

− ηk2, (9)

where β is the ratio of gas pressure to magnetic pressure. For
incompressible MHD modes b̃(k) = i(k · B∗) ũ(k)/γB (Bell
2004), where ũ and b̃ are perturbations of velocity and magnetic
field.

When β � 1, the growth rate of this instability that follows
from Equation (8) is given by

γB = |ωA|√
2

⎧⎨
⎩

[(
1 − k

kz

)2

+

(
2ωcr

ωA

)2
]1/2

−
(

1 +
k2

k2
z

) ⎫⎬
⎭

1/2

− ηk2. (10)

The nonlinear stage of this instability has been investigated
in a number of publications (see, e.g., Bell 2004, 2005; Pelletier
2006; Reville 2008; Zirakashvili et al. 2008; Amato & Blasi
2009; Luo & Melrose 2009; Vladimirov et al. 2009; Zweibel
& Everett 2010; Bykov et al. 2011, 2012). These studies
have demonstrated that this instability produces small-scale

turbulence with cascading of turbulence energy into larger and
smaller scales.

In this paper, we discuss the possibility of mean-field dy-
namo action caused by the interaction of mean electric current
of CR particles with small-scale background homogeneous tur-
bulence produced by the Bell instability. This paper can be con-
sidered as an extension of the recent study by Bykov et al. (2011),
who demonstrated, using a multi-scale quasi-linear mean-field
approach, that small-scale Bell-type turbulence can result in
the growth of long-wavelength obliquely propagating modes
(Bykov et al. 2011).

3. LARGE-SCALE INSTABILITY

In this section, we discuss mean-field dynamo action in
small-scale turbulence produced by the Bell instability in a
plasma with a given mean electric current of CR ions. The
importance of this effect is determined by the ratio of the
CR current to the ambient field; see Equation (1).

3.1. Mean-field Dynamo Equations

We use a mean-field approach in which magnetic and velocity
fields are divided into mean and fluctuating parts, U = U + u
and B = B + b, where u and b are fluctuations of veloc-
ity and magnetic field, B and U are the mean magnetic and
velocity fields, and the fluctuating fields have zero mean val-
ues. We consider the case when magnetic and fluid Reynolds
numbers are large. This implies that the nonlinear terms in the
induction and Navier–Stokes equations are much larger than the
dissipative and viscous terms. In this case the quasi-linear ap-
proach for determining the turbulent transport coefficients (e.g.,
the α effect and turbulent magnetic diffusivity) does not work.
We use instead the spectral τ relaxation approximation (Orszag
1970; Pouquet et al. 1976; Kleeorin et al. 1990; Rogachevskii &
Kleeorin 2004) that is valid for large magnetic and fluid
Reynolds numbers. A justification for the τ approximation
in different situations has been performed in numerical sim-
ulations and analytical studies (see, e.g., Brandenburg &
Subramanian 2005; Rogachevskii et al. 2011). For more details
see Appendix A.3.

Averaging Equations (5) and (6) over an ensemble of turbulent
eddies yields the following mean-field equations:

∂ B
∂t

= ∇×(U×B + u×b − η∇×B), (11)

ρ
DU
Dt

= − ∇P +
1

4π
(∇×B)×B − 1

c
J cr×B

+
1

c
encr(U×B) − ∇j uuj + Fν, (12)

where E(B) = u × b is the mean EMF and J cr is the mean
density of the electric current of CR particles. For large hydro-
dynamic and magnetic Reynolds numbers we can neglect kine-
matic viscosity, ν, and magnetic diffusivity, η, in comparison
with the turbulent viscosity and turbulent magnetic diffusion.

3.2. Contributions to the α Effect

We will show in this study that, formally, there are two con-
tributions to the α effect, caused by (1) existing kinetic helicity
produced by the Bell instability (referred to as u(0) · (∇ × u(0))
below) and (2) correlations in the forcing by the mean CR current
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in the presence of small-scale magnetic fluctuations that create
further perturbation u(1) in the velocity field u(0). Effect (2)
causes opposite sides of a magnetic loop to be forced in op-
posite directions, thereby twisting the loop out of its original
plane. The distinction between the two terms may be more for-
mal than physical. That is, in an unstable circularly polarized
Alfvén mode, the additional helicity added by the CR forcing
term is merely a continuation of the process that formed the
already existing helicity.

The α effect, however, is distinct from the linear growth of
the circularly polarized Alfvén wave. It can be thought of as one
circularly polarized Alfvén wave riding on another, somewhat
longer wavelength Alfvén wave (which need not be circularly
polarized). The longer wave makes a perpendicular component
to the original field, while the stretching of the perpendicular
component (into a loop, say), together with the twisting of the
loop, restores newly created flux back into the original direction.
It is the nonlinear coupling of two waves, each of which is of
the sort discussed by Bykov et al. (2011). This coupling can
scatter energy in the two modes of wavenumbers k1 and k2 into
modes of much longer wavelength and thereby amplify the field
at large scale in its original direction.

Let us consider the case where the equilibrium uniform mean
magnetic field B∗ and the mean density of the electric current
of accelerated particles J cr are directed along the z-axis. We
take into account effects that are linear in perturbations of the
mean magnetic field: B̃ = B − B∗, i.e., we consider kinematic
mean-field dynamo.

The first contribution to the α effect is caused by the helical
part of the turbulence. A non-zero kinetic helicity is caused by
the Bell instability that results in the production of small-scale
helical turbulence. This contribution to the mean EMF is given
by E (I)

i = α
(I)
ij B̃j + · · · (see Appendix A.6), where α

(I)
ij = αcr

1 δij

is an isotropic α effect,

αcr
1 = − C1 τ0 u(0) · (∇ × u(0)), (13)

with coefficient C1 ≈ 1/3, and dots referring to higher-order
terms that will be considered later in Section 4.2. In the rest
of this section the dots will not be noted explicitly. Here,
u(0) are the velocity fluctuations of the background turbulence.
Equation (13) is a well-known result for the α effect caused by
kinetic helicity of the turbulence (see Krause & Rädler 1980;
Moffatt 1978; Parker 1979; Zeldovich et al. 1983).

The second contribution to the α effect is caused by incom-
pressible and non-helical parts of the turbulence interacting with
the mean CR current. In particular, this contribution to the mean
EMF is given by E (II)

i = α
(II)
ij B̃j , where α

(II)
ij = αcr

2 (δij + eiej )
(see Appendix A.6),

αcr
2 = C2

(
4π

c

J cr �0

B∗

)1/2

V A sgn ( J cr · B∗), (14)

V A = B∗/(4πρ)1/2 is the mean Alfvén speed based on the
equilibrium mean magnetic field B∗, e is the unit vector
directed along B∗, C2 = 4(q − 1)/3(2q − 3), and q is the
exponent of the energy spectrum of the turbulence. Note that
C2 ≈ 8/3 for q = 5/3. The total α effect is the sum of the two
contributions:

αcr
ij = α

(I)
ij + α

(II)
ij . (15)

The mechanism of the second contribution, α
(II)
ij , to the

α effect can be understood by the following reasoning. Tangling
of the mean magnetic field B̃ = B − B∗ by velocity fluctu-
ations of the background anisotropic turbulence u(0) produces
magnetic fluctuations:

∂b(1)

∂t
∝ (B̃ · ∇)u(0). (16)

The generated magnetic fluctuations b(1) interacting with the
CR current J cr produce additional velocity fluctuations:

∂u(1)

∂t
∝ − 1

c ρ
J cr×b(1). (17)

These velocity fluctuations contribute to the mean EMF E (II) =
u(1) × b(0). Here, b(0) are the magnetic fluctuations resulting
directly from the Bell instability, just like the velocity perturba-
tions u(0). In particular, the stretching of the original magnetic
field determined by Equation (16) and rotation of the stretched
magnetic loop determined by Equation (17) create an electric
field E (II) along the original magnetic field B̃. The Lorentz force
in Equation (17) plays the role of rotation of a magnetic loop. Us-
ing Equations (16) and (17), we can estimate the mean EMF E (II)

using dimensional reasoning. Indeed, the velocity fluctuations
can be estimated as

u(1) ∝ − τ

c ρ
J cr×b(1) ∝ − τ 2

c ρ
J cr×(B̃ · ∇)u(0), (18)

where τ is the characteristic time of the turbulence. Therefore,
the mean EMF E (II) is estimated as

E (II)
i ∝ τ 2

c ρ

(
J cr

i b
(0)
n ∇ju

(0)
n − J cr

n b
(0)
n ∇ju

(0)
i

)
B̃j . (19)

The mean EMF E (II) is proportional to the mean magnetic field
B̃, i.e., E (II)

i = aij B̃j and the tensor α
(II)
ij is the symmetric part

of aij. Therefore,

α
(II)
ij ∝ τ 2

2c ρ

(
J cr

i b
(0)
n ∇ju

(0)
n + J cr

j b
(0)
n ∇iu

(0)
n

− J cr
n b

(0)
n ∇ju

(0)
i − J cr

n b
(0)
n ∇iu

(0)
j

)
. (20)

Note that in many kinds of background turbulence, the tensor

b
(0)
i u

(0)
j and the background mean EMF E (0) = u(0)×b(0) vanish.

On the other hand, for the turbulence produced by the

Bell instability, the tensor b
(0)
i u

(0)
j does not vanish.

Now let us compare this mechanism for the α effect with
the standard mechanism based on nonzero kinetic helicity. The

mean EMF E (I) = u(0) × b(1), where the magnetic fluctuations
b(1) are generated by the tangling of the mean magnetic field B̃
by the velocity fluctuations of the background turbulence u(0).
Therefore, the mean EMF is given by

E (I) ∝ τu(0) × (B̃ · ∇)u(0), (21)

and the α
(I)
ij tensor is

α
(I)
ij ∝ τ

(
εinm u

(0)
m ∇ju

(0)
n + εjnm u

(0)
m ∇iu

(0)
n

)
, (22)
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where the kinetic helicity is produced by the Bell instability

and χij = εinm u
(0)
m ∇ju

(0)
n + εjnm u

(0)
m ∇iu

(0)
n is the symmetric

tensor of the kinetic helicity for anisotropic turbulence. Using
the model for helical background turbulence, Equation (22) can
be reduced to Equation (13). Therefore, the α

(I)
ij tensor is directly

related to the kinetic helicity. Now let us estimate the kinetic
helicity for the Bell background turbulence. The contribution of
the CR current to the velocity of the background turbulence is

∂u(0)

∂t
∝ − 1

c ρ
J cr×b(0). (23)

Therefore, the corresponding contribution of the CR current to
the vorticity of the background turbulence is

∂

∂t
∇ × u(0) ∝ 1

c ρ
( J cr · ∇)b(0). (24)

Multiplying Equation (23) by the vorticity ∇ × u(0) and
Equation (24) by the velocity u(0) and averaging over the
ensemble, we obtain

∂

∂t
u(0) · (∇ × u(0)) ∝ − J cr

j

c ρ

(
b(0) × (∇ × u(0))j

− u
(0)
n ∇j b

(0)
n

)
. (25)

Dimensional reasoning yields the following estimate for the
kinetic helicity for the Bell background turbulence:

u(0) · (∇ × u(0)) ∝
(

τ 2 J cr
j J cr

i

c2 ρ2

)
εjnm b

(0)
m ∇ib

(0)
n

+
τ J cr

j

c ρ
u

(0)
n ∇j b

(0)
n , (26)

where we have taken into account that ∇ × u(0) ∝
(τ/c ρ) ( J cr · ∇)b(0). The first term on the right-hand side of
Equation (26) is related to the current and magnetic helicities.
For the Bell instability b(0)(k) ≈ i(k · B∗) u(0)(k)/γB. Therefore,
Equations (20) and (26) show that only part of the contribution
to α

(II)
ij may be related to the kinetic helicity. This contribution is

caused by the last term on the right-hand side of Equation (26).
Note that Equation (26) for the kinetic helicity is different from
Equation (C6) of Bykov et al. (2011), where no substitution for
b(1), as in Equation (18), is performed.

3.3. Large-scale Instability for B̃(t, x, y)

Let us start to analyze the large-scale instability using a
case of incompressible flow when perturbations of velocity and
magnetic field are independent of z. In this case, perturbations
of the mean magnetic field B̃(t, x, y) are determined by the
following equation:

∂ B̃
∂t

= (B∗·∇)Ũ + ∇×(u×b) , (27)

where (u×b)i = αcr
ij B̃j − ηt (∇×B̃)i , ηt = Cη u0 �0 is the

turbulent magnetic diffusivity, Cη ≈ 1/3 is a constant, �0
is the maximum (integral) scale of turbulent motions, u0 is

the characteristic turbulent velocity in the integral scale of
turbulence, and B = B∗ + B̃ and Ũ(t, x, y) are the perturbations
of the mean velocity field. Here, for simplicity, we neglect small
anisotropic contributions to the turbulent magnetic diffusion.
Since the equilibrium uniform mean magnetic field B∗ is
directed along the z-axis, the first term, (B̃∗·∇)Ũ , on the
right-hand side of Equation (27) vanishes for perturbations that
are independent of z. In this case the mean-field induction
Equation (27) is decoupled from the mean-field momentum
equation. The perturbations of the mean magnetic field B̃
can be written in the form of the axisymmetric field: B̃ =
B̃z(t, x, y) e + ∇×[Ã(t, x, y) e].

Let us start the analysis with the simpler case in which the
tensor αcr

ij = αcr δij is isotropic. Then the functions B̃z(t, x, y)

and Ã(t, x, y) are determined by the following equations, which
follow from Equation (27):

∂B̃z

∂t
= − αcrΔÃ + ηt ΔHB̃z, (28)

∂Ã

∂t
= αcrB̃z + ηt ΔHÃ, (29)

where ΔH = ∇2
x + ∇2

y . We seek a solution of the mean-field
dynamo Equations (28) and (29) of the form ∝exp[γinst t +
i(Kx x + Ky y)]. The growth rate γinst of the mean-field dynamo
instability in homogeneous turbulent plasma with CRs is then
given by

γinst = |αcr K| − ηt K
2, (30)

where K2 = K2
x + K2

y and αcr = αcr
1 . This large-scale

dynamo instability is called α2 dynamo, because this dynamo
is caused by the interaction between two modes, toroidal,

B̃
(T ) = B̃z(t, x, y) e, and poloidal mean magnetic fields, where

poloidal field, B̃
(P ) = ∇×[Ã(t, x, y) e], is determined only

by the potential Ã(t, x, y). The toroidal field is generated
from the poloidal field by the α effect due to the first term,
−αcrΔÃ in Equation (28), while the poloidal field is generated
from the toroidal field by the α effect (due to the first term,
αcrΔB̃z in Equation (29)). This implies that the α effect acts
twice in the positive feedback loop, and these interactions
between the magnetic field components cause the α2 mean-field
dynamo.

Now we consider the case in which the tensor αcr
ij is

anisotropic. In this case the functions B̃z(t, x, y) and Ã(t, x, y)
are given by

∂B̃z

∂t
= − αcr

yy∇2
x Ã − αcr

xx∇2
y Ã + ηt ΔHB̃z, (31)

∂Ã

∂t
= αcr

zzB̃z + ηt ΔHÃ, (32)

where αcr
xx = αcr

yy �= αcr
zz. The growth rate γinst of the mean-field

dynamo instability in this case is

γinst = |K|
√

αcr
yy αcr

zz − ηt K
2, (33)
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and the ratio of magnetic energies along and perpendicular to
the direction of the CR current is given by

B̃2
z

B̃2
x + B̃2

y

= αcr
xx

αcr
zz

, (34)

where αcr
xx = αcr

yy = αcr
1 + αcr

2 and αcr
zz = αcr

1 + 2αcr
2 .

Comparing with Bykov et al. (2011), who studied a long-
wave instability for incompressible flows of a plasma with CRs,
we note that their growth rate vanishes when perturbations of
mean magnetic and velocity fields are independent of z; see their
Equation (23). In this sense, the mean-field dynamo mechanism
studied in our paper for Kz = 0 is a complementary effect to
a mechanism related to the long-wave instability discussed by
Bykov et al. (2011).

3.4. Large-scale Instability for B̃(t, z)

Now let us consider the case when perturbations of mean
magnetic and velocity fields depend only on z. The perturbations
B̃z = 0 (because ∇ · B̃ = 0) and the large-scale dynamo
instability can generate magnetic field only in the direction
perpendicular to the CR current. In this case we seek a solution
of the linearized mean-field dynamo Equations (11) and (12)
of the form ∝exp(γinst t + iKz z). The growth rate γinst of the
large-scale dynamo instability is given by

γinst =
[
|ΩA Ωcr| − Ω2

A +
1

4
(αcrKz)

2

]1/2

+
1

2
|αcr Kz| − ηt K

2
z ,

(35)

where ΩA = KzV A, Ωcr = c−1 J cr (4π/ρ)1/2, and αcr = αcr
xx =

αcr
yy = αcr

1 + αcr
2 . The growth rate γinst of the dynamo instability

can be interpreted as the interaction of the α2 large-scale dynamo
instability (determined by the terms ∝αcrKz in Equation (35))
and the Bell instability (described by the terms ∝|ΩA Ωcr|−Ω2

A
in Equation (35)) in a homogeneous turbulent plasma with a
CR current. When αcr = 0, the growth rate of the large-scale
instability (35) coincides with that derived by Bykov et al.
(2011); see Equation (23) of their paper.

4. DIRECT NUMERICAL SIMULATIONS

4.1. DNS Model

We consider a cubic computational domain of size L3. The
smallest wavenumber is k1 = 2π/L. We adopt an isothermal
equation of state with constant sound speed cs, so the gas
pressure is p = ρc2

s . We solve the equations of compressible
MHD in the form

ρ
DU
Dt

= 1

4π
(∇ × B) × B − c2

s ∇ρ + ∇ · (2νρS) − 1

c
J cr × B,

(36)

∂ A
∂t

= U × B + η∇2 A, (37)

∂ρ

∂t
= − ∇ · ρU, (38)

where ν and η are kinematic viscosity and magnetic diffusivity,
respectively, B = B0 + ∇ × A is the magnetic field consisting
of a uniform mean background field, B0 = (0, 0, B0), and a

nonuniform part that is represented in terms of the magnetic
vector potential A, and Sij = 1/2(Ui,j + Uj,i) − 1/3δij∇ · U is
the traceless rate of strain tensor, where commas denote partial
differentiation.

In all cases we adopt triply periodic boundary conditions. The
simulations are performed with the Pencil Code,5 which uses
sixth-order explicit finite differences in space and a third-order
accurate time stepping method (Brandenburg & Dobler 2002).
Simulations have been done with various resolutions, but here
we focus on two runs with 5123 mesh points. Some of the results
are also compared with corresponding ones at 2563 mesh points.

4.2. Test-field Method

We apply the quasi-kinematic test-field method (see, e.g.,
Schrinner et al. 2005, 2007; Brandenburg et al. 2008) to
determine all relevant components of the tensor αij and turbulent
magnetic diffusion. This method allows for the presence of
strong magnetic field as long as the magnetic fluctuations
are entirely a consequence of the imposed field (Rheinhardt
& Brandenburg 2010). The essence of this method is that

a set of prescribed test fields B
(p,q)

and the flow from the
direct numerical simulation (DNS) are used to evolve separate
realizations of small-scale fields b(p,q). Neither the test fields
B

(p,q)
nor the small-scale fields b(p,q) act back on the flow.

These small-scale fields are then used to compute the EMF E (p,q)

corresponding to the test field B
(p,q)

. The number and form of
the test fields used depend on the problem at hand.

The choice of test fields depends on the averaging that is
performed. Relevant for the present study are averages that
depend on x or y, or both. To gather sufficient statistics,
we adopt planar yz averages that depend on x, so we use

test fields B
(1c) = (0, B̃0 cos kx, 0), B

(1s) = (0, B̃0 sin kx, 0),
B

(2c) = (0, 0, B̃0 cos kx), and B
(2s) = (0, 0, B̃0 sin kx), in which

case the series expansion of the EMF contains two terms,

Ei = aijBj − ηij (∇ × B)j . (39)

The symmetric part of the tensor aij is of particular interest and
is commonly referred to as the α tensor,

αij = 1
2 (aij + aji). (40)

Errors are estimated by dividing the time series into three equally
long parts and computing time averages for each of them. The
largest departure from the time average computed over the entire
time series represents an estimate of the error.

4.3. DNS Results

All runs are isothermal with cs = 10. The box has a size
of 16π , i.e., k1 = 1/8. In our units, ρ0 = 1, and the magnetic
Prandtl number ν/η = 1. The relevant non-dimensional parame-
ters are Lu = vA0/ηk1 (the Lundquist number), where vA0 = B0
is the non-dimensional Alfvén speed, and J = 4πJ cr/cB0k1
(the non-dimensional CR current density).

Visualizations of the magnetic field Bx/B0 on the periphery
of the computational domain are shown in Figure 1 for a run
with 5123 mesh points using the following parameters: the non-
dimensional CR current density is J = 80 and the Lundquist
number Lu = 80 (with J cr = 0.1, B0 = 0.01, and k1 = 1/8).
In the beginning of the instability, the length scale is rather

5 http://pencil-code.googlecode.com
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Figure 1. Visualization of Bx/B0 on the periphery of the computational domain using 5123 mesh points for J cr = 0.1, B0 = 0.01, k1 = 1/8 (so that J = 80), and
ν = η = 10−3 (so that the Lundquist number Lu = 80).

(A color version of this figure is available in the online journal.)

Figure 2. Time evolution of E
‖
M k1/v

2
A0 for modes with different wavenumbers

for the run with J = 80. The short straight lines show the growth rate of the
Bell instability, as given by Equation (9) for modes with three selected values
of k, as well as the value of γinst as given by Equation (33).

small, but it increases continuously as time goes on. Note
in particular the much larger horizontal length scales in the
xy plane that may be associated with the dynamo instability.
After tvA0k1 ≈ 0.5, the instability reaches yet another stage
during which the magnetic field pattern becomes turbulent.
Again, as time goes on, the typical eddy scale increases.

All runs with a constant CR current show that there is a
growth until the velocities become eventually supersonic. This is
probably the reason the simulation terminates. It is conceivable
that this could be avoided by including the back-reaction of the
amplified field on the CR current, which would limit the Bell
instability (Riquelme & Spitkovsky 2009). In Figures 2 and 3,
we show the time evolution of the normalized spectral vertical

Figure 3. Time evolution of the ratio of the spectral vertical (along the imposed
field B0) and horizontal magnetic energies 2E

‖
M/E⊥

M for the run with J = 80.

magnetic energies E
‖
M k1/v

2
A0 and the ratio of the spectral

vertical (along the imposed field B0) and horizontal magnetic
energies 2E

‖
M/E⊥

M for modes with different wavenumbers for
the same run as in Figure 1. As follows from these figures, the
dynamics of the instability has the following stages:

1. In the early stage there is the development of small-scale
instability that results in the production of small-scale
turbulence. It is seen in Figure 2 that the mode-averaged
growth rate of this instability in this stage is slightly smaller
than that of Equation (9) that describes the Bell instability
for the fastest growing mode of a given |k|, as should be
expected.

2. In the second stage, there is formation of large-scale
magnetic structures (during the interval 0.2–0.4 Alfvén

7
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Figure 4. Time evolution of E
‖
M and EM for the run using 5123 mesh points

(J cr = 0.1, B0 = 10−2, so that J = 80). The normalized time interval between
different spectra is vA0k1Δt = 3/80 ≈ 0.04. The solid lines refer to the initial
spectra proportional to k4 for small values of k, and the red and blue lines
represent the last instant of EM and EK , respectively. The straight lines show
the k4 and k−5/3 power laws.

(A color version of this figure is available in the online journal.)

times; see Figure 1). Note from Figure 2 that the growth rate
of the large-scale mode k = k1 is about twice the growth
rate of the largest mode. The interpretation of this will be
given below.

3. In the final stage, there is a development of larger-scale
turbulence; the perturbed field actually exceeds the original
field by a considerable factor, and a significant fraction of
the energy is now present in modes with k⊥ � k‖. The
growth rate in this final stage agrees with that predicted by
Equation (33), where αcr

yy , αcr
zz, and ηt have been obtained

with the test-field method, as described below.

Time evolution of power spectra of magnetic energy of the
Bz component, E‖

M , and those of all components, EM , are shown
in Figure 4, which demonstrates an inverse energy cascade-like
behavior. The evolution during the second stage (during the
interval 0.2–0.4 Alfvén times; see Figure 1) shows that large-
scale modes (k ∼ k1) are growing at about twice the growth
rate of the fastest growing mode k/k1 ∼ 25. We interpret
this as perturbation field growth ∂b/∂t at large scale due to
the coupling of pairs of higher-k modes (k1 and k2, say), and
therefore proportional to u2

rmsB0 ∝ exp(γ1 + γ2), where γ1 and
γ2 are the respective linear growth rates of the high-k modes.
During this stage, the perturbed field is still small compared to
the original field, so the exponential growth of the total field as
described by Equations (13) and (14) has not yet begun.

At the end of the simulation, both kinetic and magnetic en-
ergy spectra develop a k−5/3 energy spectrum. This is shown in
Figure 5, where we plot spectra compensated by ε−2/3k5/3,

Figure 5. Compensated spectra of EK (blue), EM (red), and E
‖
M (black), at

the end of the simulation. Here, ε is the total (kinetic and magnetic) energy
dissipation rate. The dashed horizontal line goes through 2.7.

(A color version of this figure is available in the online journal.)

Figure 6. Normalized αzz vA0/u
2
rms and αyy vA0/u

2
rms for the run with J = 80.

The inset shows that after about 0.45 Alfvén times, both αDNS
yy /urms and

αDNS
zz /urms are approximately constant in time.

where ε is the total (kinetic and magnetic) energy dissipa-
tion rate. The wavenumber is normalized by the dissipation
wavenumber kd = [ε/(ν + η)3]1/4.

The test-field results for the normalized components of the
α tensor, αzz vA0/u

2
rms and αyy vA0/u

2
rms, are shown in Figure 6

for the same run. The value of αDNS
zz vA0/u

2
rms ≈ 0.6 is of the

same order of magnitude as that determined by Equation (14),
i.e., α

theory
zz vA0/u

2
rms ≈ 0.5. Note that at late times, after about

0.45 Alfvén times, we find that both αDNS
yy /urms and αDNS

zz /urms
are approximately constant in time. This measured value of
the α effect is much larger than that based on kinetic helicity
determined by Equation (13), unless τ0 is considerably larger
than 1/kurms (see Figure 7). We interpret this as evidence for
an additional contribution, Equation (14). The growth rate of
the large-scale dynamo instability is of the same order as that
theoretically predicted from the large-scale dynamo instability.
Indeed, Equation (33) for the growth rate yields γ theory ≈ 0.03,
corresponding to γ theory/vA0k1 ≈ 24 in non-dimensional units.
This value is in agreement with the growth rate expected from an
α2 dynamo with coefficients obtained with the test-field method;
see the inset of Figure 7, where γinst/vA0k1 ≈ 20. This agrees
with the growth seen in the DNS at k = k1 during the time
interval 0.45–0.65; see Figure 2. Finally, Equation (34) for
the ratio of magnetic energies along and perpendicular to the

8
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Figure 7. Evolution of α = (αyyαzz)1/2, normalized by τ cr〈ω · u〉, where
τ cr = 1/ωcr for the run with J = 80. The inset gives the instantaneous value
of γinst as derived from Equation (33).

Figure 8. Same as the bottom panel of Figure 4 (J = 80), but showing only
the time interval 0.35 � tvA0k1 � 0.45 (dashed lines), i.e., the last 0.1 Alfvén
times just near the end of the linear growth phase. The black solid lines refer to
tvA0k1 = 0.35, while red and blue lines refer to kM

f (t) and kK
f (t), respectively,

at tvA0k1 = 0.65. The slope k3 is shown for comparison.

(A color version of this figure is available in the online journal.)

direction of the CR current yields
[
B̃2

z /(B̃2
x + B̃2

y )
]theory ≈ 0.08,

while this ratio according to DNS (see Figure 3) is estimated
as [B̃2

z /(B̃2
x + B̃2

y )]DNS ≈ 0.06. The above comparison implies a
good agreement between theoretical predictions and the results
of the numerical simulations.

In Figure 8, we show the time evolution of power spectra
of magnetic energy of the Bz component, E

‖
M , and those

of all components, EM , like it was presented in Figure 4,
but during only the last 1/10 of an Alfvén time. We see
that the amplification of magnetic field with respect to initial
perturbations during the last 1/10 of an Alfvén time (which is
of the order of the shock crossing time) at k = k1 is 3.5 orders
of magnitude (i.e., up to 0.6 × 10−3 of the field). However, this
field is less than the equilibrium-imposed field B0 = 10−2. On
the other hand, the visualizations of the magnetic field Bx/B0
on the periphery of the computational domain shown in Figure 1
demonstrate that the ratio Bx/B0 < 60 at tvA0k1 = 0.65.

To quantify the inverse cascade-like behavior, let us now look
at the evolution of the wavenumber of the magnetic-energy-
carrying eddies, kM

f , defined via

[
kM

f (t)
]−1 =

∫
k−1EM (k, t) dk

/ ∫
EM (k, t) dk, (41)

and likewise for kinetic energy and magnetic energy in the z

component, kK
f and k

M‖
f , respectively (see Figure 9). It turns out

Figure 9. Evolution of kM
f (solid, red), k

M‖
f (dashed), and kK

f (dotted, blue) for
the same run as in Figure 1 (J = 80).

(A color version of this figure is available in the online journal.)

Figure 10. Evolution of ηt/η (solid line), ηyy/η (dotted line), and ηzz/η (dashed
line) for the run J = 80. The inset shows α/ηtk1.

that all three wavenumbers reach a value somewhat above 20 k1
by the end of the small-scale dynamo instability and then drop
rapidly in the mean-field dynamo stage. Note, however, that the
decrease of kK

f is somewhat faster than that of kM
f .

The test-field method yields not only αij but also the com-
ponents of the turbulent magnetic diffusivity tensor ηij . It
turns out that ηyy ≈ ηzz. The ratio ηt/η, where ηt = (ηyy +
ηzz)/2, greatly exceeds unity in the late stages; see Figure 10.
Mean-field dynamo efficiency depends on the dynamo number
D = (α/ηTk1)2, where α = (αyyαzz)1/2 and ηT = ηt + η. The
dynamo number exceeds the critical value for dynamo action
of unity (D > 1) after about 0.3 Alfvén times; see the inset of
Figure 10.

4.4. Comparison with the Run J = 800

In this subsection, we discuss the results of DNS with the
higher CR current, i.e., when the normalized CR current is
increased by one order of magnitude J = 800 (i.e., J cr = 1,
B0 = 0.01, and k1 = 1/8), and the other parameters are the same
as in the previous subsection (the Lundquist number Lu = 80
and the resolution is 5123 mesh points). In this case, very small
scales (higher-k modes) are not well resolved. On the other hand,
the main contribution to the mean-field dynamo (which is the
main subject of our study) is of the maximum scale of turbulent
motions. The time evolution of spectra of magnetic, EM , and
kinetic, EK , energies for J = 800 is shown in Figure 11,

9
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Figure 11. Time evolution of EM and EK for the run J = 800 (J cr = 1,
B0 = 10−2) showing only the time interval 0.0125 � tvA0k1 � 0.075. The
time interval between the lines ΔtvA0k1 = 0.0125. The red and blue lines
represent the last instant of EM and EK , respectively. The slopes k4 and k3 are
shown for comparison.

(A color version of this figure is available in the online journal.)

Figure 12. Normalized Brms/B0 for runs with J = 80 (using 2563 and
5123 meshpoints; dotted and dashed lines, respectively) and J = 800
(5123 meshpoints, solid line). Upper horizontal axis corresponds to case J =
80, while lower horizontal axis corresponds to case J = 800.

demonstrating an inverse energy cascade-like behavior, but to a
lesser extent in comparison with the lower CR current (J = 80).

For comparison with the case J = 80, in Figures 12–14 we
show the time evolution of the total magnetic field Brms/B0,
Brms/ρ

1/2Urms (which does not include the imposed field
B0), and the growth rate of the total velocity field, γ DNS =
d ln Urms/dt , for runs with J = 80 (dotted and dashed lines
for 2563 and 5123 meshpoints, respectively) and J = 800
(solid line). Since the time evolution for different values of
the CR current occurs on different timescales, we use the upper
horizontal axis for the case J = 80, while the lower horizontal
axis corresponds to case J = 800.

Inspection of Figure 12 shows that, at the final stage of
evolution, the generated magnetic field is one order of magnitude
larger than the imposed field B0. The J = 80 results at lower
resolution are similar to those at higher resolution, but have run
for a slightly shorter time before resolution problems occurred.
The growth rate of the velocity and magnetic field is five times
larger for the case ofJ = 800 (see the upper panel of Figure 14).
On the other hand, the evolution of the kinetic energy—apart
from this rescaling of time—is not strongly dependent on the

Figure 13. Evolution of Brms/ρ
1/2Urms for runs with J = 80 (dotted and

dashed lines for 2563 and 5123 meshpoints, respectively) and J = 800 (solid
line, 5123 meshpoints). Upper horizontal axis corresponds to case J = 80,
while lower horizontal axis corresponds to case J = 800.

Figure 14. Instantaneous growth rate γ DNS = d ln Urms/dt (upper panel)
and ln Urms/νk1 (lower panel) for runs with J = 80 (dotted and dashed
lines for 2563 and 5123 meshpoints, respectively) and J = 800 (solid line,
5123 meshpoints). Upper horizontal axis corresponds to case J = 80, while
lower horizontal axis corresponds to case J = 800.

CR current (see the lower panel of Figure 14), and neither is
αzz/Urms (see the test-field results of the measured α effect in
Figure 15 shown in log scale).

As noted above, the quasi-kinematic test-field method is valid
as long as the magnetic fluctuations are entirely a consequence of
the imposed field. In one particular case we have verified this by
comparing with results from a fully nonlinear test-field method
where velocity fluctuations resulting from the interaction with
magnetic field fluctuations are also included. This method has
currently been tested and implemented in the Pencil Code
only for a modified set of equations in which the pressure
gradient and the U · ∇U term are omitted, but the Lorentz
force is fully retained (Rheinhardt & Brandenburg 2010). We
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Figure 15. Normalized αzz/Urms for runs with J = 80 (dotted and dashed
lines for 2563 and 5123 meshpoints, respectively) and J = 800 (solid line,
5123 meshpoints). Upper horizontal axis corresponds to case J = 80, while
lower horizontal axis corresponds to case J = 800.

have applied this method, with the modified set of equations,
to a case similar to that displayed in Figure 6, but at lower
resolution (643). In that case, αyyvA/U 2

rms is nearly constant after
tvAk1 = 0.1 and comparable to the corresponding value shown
in Figure 6 at tvAk1 = 0.4, while αzzvA/U 2

rms agrees with that
of Figure 6 in the full time interval. More importantly, however,
the quasi-kinematic and fully nonlinear test-field methods agree
with each other within machine precision, confirming thus the
applicability of the quasi-kinematic method to the present case.

4.5. Interpretation of the Results

Our results seem consistent with the following interpretation.
There appear to be three distinct stages. In the first stage,
the c−1 J cr × b force (which we refer to as the Lorentz
force due to the “counter-CR current”—i.e., the current in
the thermal plasma that cancels the CR current) amplifies the
motion perpendicular to the original, unperturbed magnetic
field in one circular polarization of Alfvén modes, thereby
stretching the field such that it develops a component that is
perpendicular to the original direction. This is the Bell instability
in our simulation, but anything that creates a perpendicular
component might work just as well for this phase. The Bell
instability grows fastest on small scales and in a direction
whose k vector is parallel to the z-axis. Tentatively, we may
attribute the increasing preference for “perpendicular” energy
that we see in the simulation, i.e., energy in motion in the
“perpendicular” (x and y) directions, to the faster growth rate
of on-axis (k = kz) Alfvén waves. However, there is clearly
significant parallel energy, even in the linear growth regime,
presumably due to off-axis waves. The reason that the ratio
of “parallel” to “perpendicular” energy decreases in the first
stage is presumably because the on-axis waves, which have
only motion perpendicular to the axis, are the fastest growing
modes.

During the first stage, the ratio of αzz to urms grows exponen-
tially, because for any given mode, α ∝ u · ∇ × u ∼ ku2 is
proportional to u2, and u is growing exponentially (Figure 14),
consistent with the linear Bell instability. The correlation length
of both the magnetic field and the turbulence, apart from a drop
in the very early stages, remains more or less constant and cor-
responds to the scale of the fastest growing modes.

The second stage is much like the first, except that the growth
rate of the larger-scale, low-k modes begins to increase above

its linear value; see Figure 2. This is presumably due to the fact
that their growth is dominated by nonlinear coupling of higher-
k modes, which have developed much larger amplitudes than the
low-k ones, even though they are still in the linear regime.

The third stage, for J = 80 (J = 800), begins at about
tvA0k1 ∼ 0.45 (tvA0k1 ∼ 0.06), as shown in the upper panel
of Figure 14. Several things clearly happen at the onset of the
second stage: (1) the growth of Urms suddenly slows (Figure 14);
(2) the growth of the magnetic field also shows a change
(Figure 12), though it continues to rise; (3) the correlation
lengths of both the magnetic field and the velocity begin to
increase noticeably (Figure 9); (4) the ratio of α to urms stops
rising exponentially and either flattens out or grows much more
slowly (Figures 6 and 15); (5) the turbulent magnetic diffusivity
begins to rise significantly and dominates the microscopic value
(Figure 10); (6) the ratio of energy in parallel magnetic field
to that in perpendicular field rises sharply (Figure 3); and
(7) a Kolmogorov-type spectrum is reached from below, while
the level of turbulence grows more slowly.

All these changes can be understood in terms of nonlinear
effects. Once the turbulent velocity exceeds the Alfvén velocity,
the nonlinear convective term in the Navier–Stokes equation
becomes as important as or more important than the Lorentz
force due to the counter-CR current, so that the stirring of the
fluid by the latter, as expressed in unstable Alfvén modes, is
in equilibrium with eddy viscosity. By the same token, the
amplitude of the magnetic field is large, so that the α2 dynamo is
activated. Taken in isolation, an exponentially growing α effect
would lead to super-exponential growth, but this is not what
is seen. The sudden rise of parallel to perpendicular magnetic
energy could perhaps be attributed to this effect, but, looking at
the shape of the spectra in Figures 4 and 11, and as said before,
nonlinear mode coupling to the fastest growing modes, which
here turn out to be at k/k1 ≈ 25 and 70, respectively, is a likely
explanation.

In this nonlinear stage, the ratio of parallel to perpendicular
energy begins to grow, and the field attains larger scale and
becomes more isotropic, as can be seen in Figure 1. The
α2 dynamo can be interpreted as an inverse cascade, in which
parallel and anti-parallel magnetic fluxes are generated by the
stretching of perpendicular flux, while the anti-parallel flux is
kinematically “pumped” out of any given finite region of size
L at a velocity of order α by the α effect. The pumping of flux
into large regions of size L can be viewed from a modal point
of view as inverse cascading of energy into small wavenumbers
of order π/L.

The observed scaling of the time evolution with J is rea-
sonable: the timescale for J = 800 is about a factor of
5.5 ∼ 100.75 times less than that for J = 80. Because the stir-
ring force of the counter-CR current is proportional to J , one
might expect velocities to scale as J for a fixed correlation time.
However, if an acceleration a operates over a set distance s, then
the velocity scales only as (sa)1/2. Once the turbulent velocity
exceeds vA0, the amplitude of the transverse motion associated
with a given mode is ∼2π/k, and the correlation length varies
more weakly than the correlation time with J . So we expect that
the timescale for the dynamo mechanism scales as J δ , where
0.5 � δ � 1, and this is what we observe: δ � 0.75. We have
not verified how this scaling law extends to larger J .

In Kolmogorov turbulence, the turbulent kinetic energy∫
EK(k) dk at any instant is proportional to P 2/3, where P is

the stirring power. In a situation such as the present one, where
the stirring force F is proportional to JB, for a given stirring
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scale k, the velocity U scales as (F/k)1/2, the power is pro-
portional to F 3/2, and the energy should then, by dimensional
arguments, have a finite, steady state value that is proportional to
F. The point is that for a given B, the energy E has a finite value
to which it should rise and flatten out. There is indication of this
in our simulation results, as seen in Figures 2 and 3, where the
total turbulent energy flattens out at tvA0k1 = 0.45 for J = 80
(tvA0k1 = 0.08 for J = 800). It does not completely flatten out
though, and we attribute this to the fact that Brms is still creep-
ing up with time due to the dynamo effect. Our simulations are
not long enough to determine whether the magnetic energy EM
always reaches equipartition with the kinetic energy EK . If it
does, then, because B scales as E

1/2
M , dimensional arguments

suggest that the force F, which scales as JB, therefore scales
as JE

1/2
K . So, if U scales as (F/k)1/2 and thus EK scales as

F, then the force scales as J 2. We believe that it would take
longer simulation runs that were currently feasible to check this
prediction and whether EM indeed scales as EK .

In the above discussion, we have invoked the Bell instability
to generate magnetic flux that is perpendicular to the local back-
ground, because this, from the point of view of the fluid, is an
MHD effect and can be represented in an MHD simulation. We
note, on the other hand, that non-MHD effects could achieve the
same result. For example, the non-resonant firehose instability
could achieve the same stretching. The helicity that is required
for the α effect relies on preferential growth of one circular
polarization over the other, so the firehose instability on large
scales, which has no such preference, could not by itself bring
about an α effect. However, it could combine with the resonant
cyclotron instabilities to do so. In this case, the firehose insta-
bility would play the role that differential rotation plays in the
αΩ dynamo—that of creating a perpendicular field component,
while the helical turbulence that is generated by the Bell in-
stability would play the role of helical turbulence that, in the
αΩ dynamo, is generated by the combination of convection in
a stratified medium and Coriolis force.

5. ASTROPHYSICAL APPLICATIONS

In a real astrophysical system, there is a limited amount
of time available. In the case of an expanding blast wave,
this is of order the expansion time. Similarly, in an accretion
shock, accreting matter continuously sweeps magnetic field
downward over the crossing timescale of the accreting matter.
The question is whether this is enough for significant magnetic
field amplification.

5.1. Blast Waves

In our simulations, the growth up to maximum amplitude
takes on the order of 0.45 (0.08) Alfvén crossing times across
the box for J = 80 (J = 800); see Figures 11–14. However,
this total time interval witnesses a gain of many orders of
magnitude of the level of large-scale magnetic field, because
the simulation begins at the noise level. For J = 80 it can be
seen from Figures 2 and 4 that at vA0k1t ∼ 0.3, the growth at
large scales speeds up, the energy in field perturbations at any
given scale grows by a factor of ∼103/2 per Δt ∼ 0.04vA0k1,
and, at somewhat later times, by a factor of nearly 102 per
Δt ∼ 0.04vA0k1, suggesting that, during a period of exponential
growth, the gain factor over an interval T at wavenumber k is
G(T , k) = 102vAk1T/0.04. For an SNR of radius R, the precursor
has a width W of somewhat less than R, and the largest mode has

a wavenumber of order k1 = 2π/W � 1. Thus, the available
time T for field amplification by CR current is T = W/us ∼
2π/(k1vAMA), where MA = us/vA is the Alfvén Mach number
of the blast wave. Then vAk1T ∼ 2π/MA, suggesting that
the α dynamo effect could amplify the field energy of the
remnant by a gain factor G of order G = 10π/0.01MA , and the
amplification of the field’s magnitude would be the square root
of this factor, i.e., a factor of several for MA ∼ 102. This appears
to be consistent with Figure 13. According to Equation (1), and
assuming P cr ∝ u2

s , we see that raising the potential CR current
by ζ 3 speeds up the time evolution of the field amplification by
ζ δ , where δ is between 0.5 and 1; see the discussion above. So,
in very young SNRs, where J can be much higher than in the
runs we made, the gain factor for an expansion time could be
higher. In Figure 4, for example, the magnetic energy on any
given scale, [EK(k)k]/(k1/k), reaches, but does not significantly
exceed, unity.

For young, expanding SNRs MA is typically 102, so the growth
factor on the scale of the supernova could be of order one
e-fold per expansion time if the assumptions of the simulation
were to remain valid over the full interval. While not dramatic,
neither is it insignificant in view of the uncertainties, a modest
amount of magnetic field amplification may take place within an
expanding SNR, and this may be enough to be compatible with
observational inferences (Pohl et al. 2005). While the correlation
length of the magnetic field increases with time, it is at all times
less than the size of the box by a factor of several.

On the other hand, increasing the shock velocity from 10−2c
to near c would raise J by a factor of 106, thereby speeding up
the rate of field amplification by J 6δ � 103 while decreasing
the expansion time by only a factor of 102, so there would then
seem to be enough time to amplify the magnetic field by many
orders of magnitude even on the largest scale—as demonstrated
in our simulations—if there are no other fundamental limitations
that we have not yet identified. Thus, GRBs, which create
ultrarelativistic shocks in the interstellar medium, would have
the greatest potential for magnetic field amplification, because
their ratio of particle pressure to initial magnetic pressure is so
large. This is now discussed below.

In our simulations, the velocity of the turbulence attains a
magnitude of about 102vA0, the magnetic field increases to
∼10 times the original field B0, and the correlation length L of
this field is about 10−1 of the box size R. Thus, the quantity eBL
is not much changed from the original value eB0R, meaning that
the maximum energy attainable by CRs, ∼useBL/c (Eichler
& Pohl 2011), is not much changed by the magnetic field
amplification. (However, until we are certain how the final
correlation length scales with the running time of the simulation,
this matter remains not completely settled.)

If the energy of the highest energy CRs E is taken to be
usB0R/c then the deflection of these highest energy CRs implied
by, though ignored in, the simulations is probably small for
urms � us . In general, the turbulent rms velocity urms should be
somewhat less than the shock velocity, us, so the potential drop
eurmsBL/c across one correlation length L is somewhat less
than the maximum energy attainable with shock acceleration
eusBL/c. This means that deflection is not a problem for the
highest energy CRs but would be a problem for lower energy
CRs, and, to compute the CR current, we are entitled to figure
in only CRs of the highest energies, i.e., above urmsEmax/us .
Magnetic field amplification that uses CRs at lower energies is
unlikely to help increase the maximum energy to which CRs
can be accelerated by shocks.
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As mentioned above, the correlation length L is probably
considerably less than the size of the box, i.e., the radius of
the SNR when applied to that context. It is possible that the
rather large values of magnetic fields that have been claimed for
young SNRs (103G, i.e., about 102 times the interstellar field of
the Galaxy) are observationally compatible with such a small
scale.

5.2. Weakly Magnetized Relativistic Shock Waves

We define a weakly magnetized relativistic shock wave as
one where the kinetic energy of the upstream fluid flowing into
the shock greatly exceeds the magnetic energy, i.e., where the
upstream fluid is sufficiently magnetized as to be describable
by MHD. Particles reflecting off the shock have velocity βs in
the frame of the shock, where us = βsc is the shock velocity,
which we assume to be equal to the streaming velocity discussed
in Section 1. Assuming (1 − βs) � 1, velocities are up to
βs + (1 − βs)/2 in the lab frame. The thickness of the shock
precursor in the lab frame is thus of order Rs(1 − βs)/2, where
Rs is the radius of the shock. The current density in reflected
ions, which we assume extend farther upstream than the reflected
electrons, is thus of order

J � 2en0c Γ2
s . (42)

For typical GRB parameters n0 ∼ 1cm−3, us � c, Γs2 ≡ Γs/100
(where Γs is the shock Lorentz factor), and B0 ∼ 3 μG,
the dimensionless parameter defined in the introduction is
J ∼ n0mic

2/(B2
0/8π ) = Γ2

s c
2/vA

2 ∼ 1013Γ2
s2 for scales

k−1 of order the reflected ion gyroradius. This is a far larger
value than anything that can be reliably simulated, because the
fastest growing mode is of too small a scale to be resolvable
numerically.

The thickness of the precursor of reflected ions from the
shock is determined by how far ahead of the shock the ions
can get before they are overtaken by the shock. A reflected
ion by definition moves faster along the shock normal than the
shock itself at the moment the ion crosses upstream, and it is
overtaken by the shock after it has gyrated approximately 1/Γs

of its gyroradius rg � Γ2
smic

2/eB0, at which point its motion
along the shock normal is less than that of the shock, so the
shock overtakes it. Thus, it has moved a distance of Δr =
rg/Γs = Γsmic

2/eB0, whereas the shock has moved by βsΔr .
The thickness of the precursor is then (1−βs)Δr � mic

2/ΓseB0.
The time over which a parcel of fluid at radius R is exposed

to the reflected ion flux is

Δt = Δr(1 − βs)/c, (43)

and its ratio to the Alfvén crossing time across the precursor is

Δt

R/vA
= vA/c. (44)

Due to numerical limitations, it remains unclear how much
magnetic field amplification can take place. While we have
shown that perturbations can grow by many orders of magnitude,
we do not have any runs in which the final magnetic field was
more than a factor of 10 or so more than the original field. As we
do not understand the nonlinear dissipation of magnetic field,
so we do not know a priori how the limiting field scales with J .
Yet we argue on theoretical grounds that the α2-dynamo should
be able to amplify the field at relativistic or near-relativistic

shocks by a large factor, as it apparently does in many compact
objects, and the existence of such a dynamo is ultimately due
to the left–right asymmetry of the magnetic turbulence that is
generated by the CRs.

5.3. Cosmic Rays in the Galaxy

Let us now consider systems with lifetimes that are large
compared to the Alfvén crossing time, such as the Galaxy. Here,
there is enough time for the standard αΩ mean-field dynamo to
work if there is a source of right–left asymmetric turbulence
(Ruzmaikin et al. 1988; Brandenburg & Subramanian 2005).
In any system where the magnetic energy has attained rough
equipartition between magnetic field and CR pressure, the ratio
on the right-hand side of Equation (1) obeys 8πP cr/B2 � 1.
The first ratio on the right-hand side of Equation (1), us/c,
must also be less than unity. The third ratio in Equation (1)
must also be less than unity for the assumption for the Bell
instability (small deflection of the current-bearing CRs) to be
valid. It follows that for the above assumptions, the left-hand
side J = 4πJ cr/ck1B0 � 1. This, however, means that the
Bell instability does not occur, as seen from Equation (9);
rather, the effect of the CRs is to slightly decrease the phase
velocity of stable Alfvén waves. It follows that Bell turbulence
cannot amplify the magnetic field to near equipartition with the
CR pressure. Some estimates in the literature use a CR density
of ∼109 cm−3. It would follow that J � 1. However, the
problem here is that this value for the CR density includes
low-energy (GeV) CRs, which satisfy the assumption for small
deflection only at extremely small spatial scales. It is doubtful
that such modes should even be Bell-unstable at all because of
the −ηk2 damping term in the imaginary part of the frequency,
as expressed by Equation (9), which grows with k faster than
the growth term, and which should therefore dominate at small
spatial scales.

As discussed in the introduction, the factor 3P cr/(B2/4π ) is
of the order of unity for the Galaxy as a whole if all relativistic
CRs are included. The anisotropy us/c is bounded by observa-
tions to be at most 10−3. Finally, the term eB/kΓmic

2 must be
less than unity to satisfy the small CR deflection criterion that
is the basis for the Bell instability. Altogether it follows that
the quantity J in Equation (1) is less than unity in the Galac-
tic disk. This, however, implies Bell stability by Equation (9).
So, whereas the standard αΩ mean-field dynamo (Ruzmaikin
et al. 1988; Brandenburg & Subramanian 2005) and tangling
the Galactic magnetic field with CR streaming instabilities may
be viable ways to amplify the Galactic magnetic field, reso-
nant CR streaming instabilities seem the more promising way
to do it over large volumes, where 3P cr/(B2/4π ) is of the order
of unity. Resonant CR streaming instabilities produce Alfvén
modes of preferential circular polarization, just as the Bell insta-
bility does, so the theoretical mechanisms for field amplification
that are discussed in this paper apply to them as well.

We conclude that dynamo activity in the Galactic disk from
the twisting of the field by collective CR interactions can take
place in principle. The numbers seem marginal, so more careful
investigation is needed to settle this point.

5.4. Unconfined Intergalactic Cosmic Rays

In intergalactic space, the CR pressure is comparable to the
magnetic pressure and there is then the chance that J greatly
exceeds unity. Assuming that streaming instabilities keep the
streaming velocity below the Alfvén velocity vA, we can replace
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us with vA, so in principle the field can be amplified to the point
where the magnetic pressure B2/4π is of the order of P crvA/c.

We use the following parameters for plasma and CR particles:
we assume ucr = 3 × (106–107) cm s−1 for the drift velocity
of CR particles, ncr = 10−9 to 10−10 cm−3 for the number
density of CR particles, ni = 10−4 to 10−2 cm−3 for the mean
number density of plasma ions, B∗ = 1 μG for the equilibrium
mean magnetic field, and �0 = 3 × 1018 cm for the turbulent
length scale. The Alfvén speed is vA = 108–109 cm s−1, and the
dimensionless J parameter is

4π

c

J cr�0

B∗
≈ 102–105, (45)

which is comparable to the values studied in this paper.

6. CONCLUSIONS

We have investigated the mean-field dynamo mechanisms in
a turbulent plasma with a CR current. We find a linear growth
stage, corresponding to the Bell instability, and then a nonlinear
stage corresponding to the production of a fully developed
MHD turbulence and generation of larger-scale magnetic field.

In the nonlinear stage, the level of MHD turbulence continues
to grow (see Figures 2 and 4), and the correlation length
increases with time (see Figure 9). The turbulence develops
an EM(k) ∝ k−5/3 spectrum, despite the fact that the initial
spectrum is EM(k) ∝ k4. These effects were far from obvious,
even given the stirring by the counter-J cr ×B forces on the fluid,
which is the basis of the Bell instability.

We suggest that this combination of magnetic field amplifica-
tion and large-scale ordering is due to the α2 dynamo instability,
in which the original field is stretched by unstable Alfvén modes,
and then the stretched component is itself stretched by unstable
circularly polarized Alfvén modes. This effect is to be contrasted
with the long-wavelength linear instability discussed by Bykov
et al. (2011), because their growth rate vanishes when the per-
turbations are independent of z. According to the simulations,
the level of magnetic field on any scale can be enhanced by a
factor of several within one expansion time, even at the largest
scales, but there is no direct numerical evidence at present that
it can be enhanced by much more than that. Nevertheless, the
analysis presented here predicts that much larger enhancement,
via exponential growth to the α effect, is possible.

We have also used DNS and the test-field method to confirm
our analysis. DNS shows that the instability has three stages. In
the first stage, the Bell instability is excited; in the intermediate
stage the linear growth continues among the high-k modes, while
mode coupling feeds the low-k, large-scale modes. In the third
stage, growth on large scale continues, apparently due to the α2

dynamo.
We find, as expected, that the value of α, which has units

of velocity, can never be much greater than the rms turbulent
velocity, urms. The rms turbulent velocity, urms, by energy
conservation must be less than the shock velocity us, probably
much less. Thus, the maximum scale to which the α2 dynamo
can operate efficiently must be limited to α/us � 1 of the
radius of the blast wave R; because α � urms � us , there is not
enough time in a single expansion time to stretch or move the
field significantly over the characteristic expansion time R/us

of the blast wave. There is enough time only to greatly amplify
the field on scales much smaller than R. Similar remarks would
apply to accretion shocks, since material is swept out of the
region of field amplification over a timescale of R/us .

In blast waves from GRBs, on the other hand, this maximum
scale of amplification, αΔ/c (where Δ is the scale of the
CR precursor), could be much larger than the ion skin depth,
so dynamo activity in the precursors of such blast waves could
significantly increase the magnetic correlation length relative to
what is produced by the Weibel instability, so that the ohmic
dissipation downstream would not be so devastating.

The maximum energy to which CRs can be accelerated
by expanding SNRs, which is proportional to B0R without
magnetic field amplification, is not greatly enhanced by large-
scale field amplification (not, at least, in the parameter regime
we have explored), since the increase in field strength comes
at the cost of decreased correlation length L, and the product
BL is enhanced far less than B. However, quantification of this
point, made in greater detail by Eichler & Pohl (2011), would
require a more extensive library of simulations, for all values
of the ion current parameter J that could conceivably occur
in nature, and such simulations become very difficult for high
J . Clearly if the pressure of initial field is sufficiently small
relative to the CR pressure, then extremely large values of J
are possible, and the range J � 103 has not been explored
numerically. On the basis of extrapolation of the two values ofJ
(J = 80 or 800) for which we run high-resolution simulations,
the e-folding timescale for field amplification t(J , k) over
scale πk−1 is approximately C[vAkJ δ]−1 (C ∼ 1, δ ∼ 0.7),
while we expect on the basis of Equation (1) that the largest
allowable value of J , which occurs at eB/[kΓmic

2] ∼ 1,
scales as v−2

A . So the timescale for field amplification scales as
v−1+2δ

A k−1 ∼ v0.4
A k−1 ∝ B0.4

0 k−1. Clearly this timescale can be
made small enough for sufficiently weak fields and sufficiently
small spatial scales (i.e., high k). How field amplification at these
scales and field strengths would ultimately affect the capability
of shock acceleration remains an important question for future
research.

We have also considered the potential of this dynamo process
in steady situations where newly created magnetic flux does
not quickly sweep through the region where CRs stream. An
example of this could be the Galaxy itself, with escaping
CR providing a steady flux over the lifetime of the Galaxy. If
we assume that the CRs that provide current for growth on
scale k−1 must satisfy eB/[kΓmic

2] � 1, then, by Equation (1),
the condition that J � 1 requires that P cr � (B2/8π )(c/us)
(where us now stands for CR streaming velocity), so the dynamo
can only bring the magnetic pressure to within a fraction
us/c of the CR pressure. On the other hand, this may be
interesting, because it could “sprout” a seed magnetic field to
a sufficiently large amplitude that some other mechanism, such
as the magnetorotational instability, could further raise the field
pressure to its present value, ∼P cr.

We have also noted that resonant CR streaming instability,
coupled with differential rotation, remains a possible way to
promote an αΩ dynamo in the Galactic disk.
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APPENDIX

DERIVATION OF EQUATION FOR TOTAL α EFFECT

We determine the contributions to the mean EMF, E(B) =
u×b, caused by CR particles in homogeneous turbulent plasma.
The procedure of the derivation of equation for the mean EMF is
as follows. We use a mean-field approach in which the magnetic
and velocity fields are divided into the mean and fluctuating
parts, where the fluctuating parts have zero mean values. The
momentum and induction equations for the turbulent fields are
given by

ρ
∂u(t, x)

∂t
= − ∇ptot +

1

4π
[(b · ∇)B + (B · ∇)b]

− 1

c
J cr×b +

1

c
encr (

u×B
)

+ Nu, (A1)

∂b(t, x)

∂t
= (B · ∇)u − (u · ∇)B − B (∇ · u) + Nb, (A2)

where u and b are fluctuations of velocity and magnetic field,
B is the mean magnetic field, J cr is the mean density of the
electric current of CR particles, Nu and Nb are the nonlinear
terms which include the molecular dissipative terms, ptot =
p + (B · b)/4π are the fluctuations of total pressure, and p are
the fluctuations of fluid pressure. To exclude the pressure term
from the equation of motion (A1), we calculate ∇×(∇×u).
Then we rewrite the obtained equation and Equation (A2) in
Fourier space.

A.1. Two-scale Approach

We apply the two-scale approach, e.g., a correlation function,

ui(x)uj ( y) =
∫

dk1 dk2 ui(k1)uj (k2) exp{i(k1 · x + k2 · y)}

=
∫

dk d K fij (k,K) exp(ik · r + i K · R)

=
∫

dk fij (k, R) exp(ik · r)

(see, e.g., Roberts & Soward 1975). Hereafter, we omitted
argument t in the correlation functions, fij (k, R) = L̂(ui; uj ),
where

L̂(a; c) =
∫

a(k + K/2)c(−k + K/2) exp (i K · R) d K ,

and we introduced new variables R = (x + y)/2, r = x − y,
K = k1+k2, k = (k1−k2)/2. The variables R and K correspond
to the large scales, while r and k correspond to the small scales.
This implies that we assumed that there exists a separation of
scales, i.e., the maximum scale of turbulent motions �0 is much
smaller than the characteristic scale LB of inhomogeneity of the
mean magnetic field.

A.2. Equations for the Second Moments

We derive equations for the following correlation functions:
fij (k, R) = L̂(ui; uj ), hij (k, R) = (4π ρ)−1 L̂(bi; bj ), and
gij (k, R) = L̂(bi; uj ). The equations for these correlation
functions are given by

∂fij (k)

∂t
= i(k · B)Φij + Dim(k1)fmj + Djm(k2)fim

+ Aim(k1)gmj (k) + Ajm(k2)gim(−k) + I
f

ij + f N
ij ,

(A3)

∂hij (k)

∂t
= − i(k · B)Φij + ikn[gin(k) Bj

− gjn(k) Bi] + Ih
ij + hN

ij , (A4)

∂gij (k)

∂t
= i(k · B)

[
fij (k) − hij (k) − h

(H )
ij

] − ikmBi fmj

+ Djm(k2)gim(k) + (4πρ) Ajm(k2)him + I
g

ij + gN
ij ,

(A5)

where Φij (k) = (4π ρ)−1 [gij (k) − gji(−k)]. Hereafter, we
omitted argument R in the correlation functions and neglected
terms ∼O(∇2

R),

Dij = 2εijpΩ̃cr
q kpq , Aij = 2εijpJ cr

q kpq ,

�̃
cr = encr B

2c ρ
, J cr = J cr

2c ρ
, (A6)

εijn is the fully antisymmetric Levi–Civita tensor; the terms
f N

ij , hN
ij , and gN

ij are determined by the third moments appearing

due to the nonlinear terms; the source terms I
f

ij , Ih
ij , and I

g

ij ,
which contain the large-scale spatial derivatives of the mean
magnetic and velocity fields, are given by Equations (A3)–(A6)
in Rogachevskii & Kleeorin (2004). These terms determine
turbulent magnetic diffusion and effects of nonuniform mean
velocity on mean EMF. In the present study, we neglect small
effects of CR particles on the turbulent magnetic diffusion.

For the derivation of Equations (A3)–(A5) we use an approach
that is similar to that applied in Rogachevskii & Kleeorin (2004).
We took into account that the terms with symmetric tensors
with respect to the indices i and j in Equation (A5) do not
contribute to the mean EMF because Em = εmji gij . We split
all tensors into non-helical, hij , and helical, h

(H )
ij , parts. The

helical part of the tensor of magnetic fluctuations h
(H )
ij depends

on the magnetic helicity, and the equation for h
(H )
ij follows

from the magnetic helicity conservation arguments (see, e.g.,
Rogachevskii & Kleeorin 2004; Brandenburg & Subramanian
2005, and references therein).

A.3. τ -approach

The second-moment Equations (A3)–(A5) include the first-
order spatial differential operators N̂ applied to the third-order
moments M (III). A problem arises how to close the system, i.e.,
how to express the set of the third-order terms N̂M (III) through
the lower moments M (II). We use the spectral τ approximation,
which postulates that the deviations of the third-moment terms,
N̂M (III)(k), from the contributions to these terms afforded by
the background turbulence, N̂M (III,0)(k), are expressed through
the similar deviations of the second moments:

N̂M (III)(k) − N̂M (III,0)(k) = − 1

τ (k)
[M (II)(k) − M (II,0)(k)]

(A7)

(Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990;
Rogachevskii & Kleeorin 2004), where τ (k) is the scale-
dependent relaxation time, which can be identified with the
correlation time of the turbulent velocity field. The quantities
with the superscript (0) correspond to the background turbulence
(see below). We apply the spectral τ approximation only for the
non-helical part hij of the tensor of magnetic fluctuations.
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A.4. Solution of Equations for the Second Moments

First we solve Equations (A3)–(A5) neglecting the sources
I

f

ij , I h
ij , I

g

ij with the large-scale spatial derivatives. Then we will
take into account the terms with the large-scale spatial deriva-
tives by perturbations. We subtract from Equations (A3)–(A5)
the corresponding equations written for the background turbu-
lence, use the spectral τ approximation, and neglect the terms
with the large-scale spatial derivatives. We assume that the
CR velocity is much larger than fluid velocity, so that the terms
∝Dij in Equations (A3)–(A5) vanish. Next, we neglect the ef-
fect related to the compressibility of the turbulent velocity field.
Such effects are important when the Mach number is of the order
of or larger than 1. We also assume that the characteristic time of
variation of the second moments is substantially larger than the
correlation time τ (k) for all turbulence scales. This allows us to
get a stationary solution for the equations for the second-order
moments, M (II). Thus, we arrive to the following steady-state
solution of Equations (A3)–(A5):

f̂ij (k) ≈ f
(0)
ij (k) + iτ (k · B)Φ̂ij (k)

+ τ [Aim ĝmj (k) + Ajm ĝim(−k)], (A8)

ĥij (k) ≈ h
(0)
ij (k) − iτ (k · B)Φ̂ij (k), (A9)

ĝij (k) ≈ g
(0)
ij (k) + iτ (k · B)[f̂ij (k) − ĥij (k)]

+ τ (4πρ) Ajm ĥim(k), (A10)

where f̂ij , ĥij , and ĝij are solutions without the sources I
f

ij , I h
ij ,

and I
g

ij . In the present study we consider linear effects in
perturbations of the mean magnetic field. The nonlinear mean-
field modeling in turbulent compressible MHD flows with CRs
is a subject of a separate ongoing study.

A.5. Model for the Background Turbulence

Now we need a model for the background anisotropic tur-
bulence (see Equations (A8)–(A10)). The anisotropy is caused
by the equilibrium mean magnetic field B∗. Generally, a model
of an anisotropic turbulence with one preferential direction can
be constructed as a combination of three-dimensional isotropic
turbulence and two-dimensional turbulence in the plane per-
pendicular to the preferential direction (see, e.g., Elperin et al.
2002). Also we take into account that the tensor f

(0)
ij (k) is the

sum of non-helical and helical parts of the turbulence. A non-
zero kinetic helicity is caused by the Bell instability. To relate
the velocity fluctuations’ tensor f

(0)
ij (k) with the magnetic fluc-

tuations’ tensor h
(0)
ij (k) and the cross-helicity tensor g

(0)
ij (k), we

use the relation between the magnetic and the velocity fields
in the Bell mode: b(0)(k) = i(k · B∗) u(0)(k)/γB, where γB is
determined by Equation (9). We use the following model for the
background anisotropic homogeneous and helical turbulence
caused by the Bell instability:

f
(0)
ij (k) ≡ u

(0)
i (k) u

(0)
j (−k)

= E(k)

8πk2

{ [
(1 − ε) (δij − kij ) + 2ε

(
δij − eiej − k⊥

ij

)]
× [u(0)]2 − i

k2
εijn kn u(0) · (∇ × u(0))

}
, (A11)

h
(0)
ij (k) ≡ b

(0)
i (k) b

(0)
j (−k)

4πρ
= (

Lcr k
)

f
(0)
ij (k), (A12)

g
(0)
ij (k) ≡ b

(0)
i (k) u

(0)
j (−k) = (4πρ Lcr k)1/2 i(k · B∗)

|k · B∗|
f

(0)
ij (k),

(A13)

where Lcr = c B∗/(4πJ cr), E(k) = (q − 1) �0 (�0 k)−q is the
energy spectrum function, the length �0 is the maximum scale
of turbulent motions, e is the unit vector directed along the
equilibrium mean magnetic field B∗, δij is the Kronecker unit
tensor, 0 < ε � 1 is the anisotropy parameter of turbulence, k =
k⊥ + kz e, kz = (k · e), kij = kikj /k2, and k⊥

ij = k⊥
i k⊥

j /(k⊥)2.
The turbulent correlation time is τ (k) = Cτ τ0 (�0 k)−μ, where

the time τ0 = �0/u0, u0 =
√

[u(0)]2 is the characteristic
turbulent velocity in the scale �0, and Cτ is the coefficient.
For the background turbulence with a constant dissipation rate
of turbulent energy in inertial range of scales, the exponent
μ = q − 1, the energy spectrum E(k) ∝ −dτ/dk, and the
coefficient Cτ = 2.

Using the solution of the derived second-moment
Equations (A8)–(A10), we determine the contributions to
the mean EMF, Ecr

i = εimn

∫
bn(k) um(−k) dk, caused by

CR particles in homogeneous turbulent plasma.

A.6. Derivations of Contributions to the α Effect

We take into account effects that are linear in the per-
turbations of the mean magnetic field: B̃ = B − B∗, i.e.,
we consider a kinematic mean-field dynamo. Substituting
Equations (A8)–(A9) into Equation (A10), we obtain

ĝij (k) ≈ ĝ
(I )
ij (k) + ĝ

(II )
ij (k) + ĝ

(III )
ij (k), (A14)

ĝ
(I )
ij (k) ≈ iτ (k · B̃)

[
f̂

(0)
ij (k) − ĥ

(0)
ij (k)

]
, (A15)

ĝ
(II )
ij (k) ≈ iτ 2(k · B̃)

[
Aim ĝ

(0)
mj (k) + Ajm ĝ

(0)
im (−k)

− (4πρ) Ajm Φ(0)
ij (k)

]
= iτ 2(k · B̃)

[
Aim ĝ

(0)
mj (k) − 3Ajm ĝ

(0)
mi (k)

]
, (A16)

ĝ
(III )
ij (k) ≈ g

(0)
ij (k) + τ (4πρ) Ajm h

(0)
ij (k), (A17)

where we have taken into account that ĝ
(0)
ij (k) = ĝ

(0)
ji (k) =

−ĝ
(0)
ij (−k). The mean EMF is given by Ecr

i = εimn

∫
ĝnm(k) dk,

where the tensor ĝij (k) is determined by Equation (A14). There
are two contributions to the α effect caused by

1. non-zero kinetic helicity produced by Bell instability; this
contribution is determined by the tensor ĝ

(I )
ij (k), where the

background turbulence f̂
(0)
ij (k) is described by the term

∝−(i/k2) εijn kn u(0) · (∇ × u(0)) in Equation (A12); and
2. interaction of the mean CR current with small-scale turbu-

lence; this contribution is determined by the tensor ĝ
(II )
ij (k),

where the background turbulence f̂
(0)
ij (k) is determined by

the term [(1 − ε)(δij − kij ) + 2ε(δij − eiej − k⊥
ij )][u(0)]2 in

Equation (A12).
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The first contribution to the mean EMF caused by a non-zero
kinetic helicity effect in the Bell turbulence is given by

E (I )
i = εimn

∫
ĝ(I )

nm(k) dk

= iεimn

∫
τ (k) (k · B̃) f̂ (0)

nm (k) dk = α
(I )
ij B̃j , (A18)

where α
(I )
ij = αcr

1 δij and αcr
1 is determined by Equation (27).

In the derivation of Equation (A18) we have taken into account
that Lcr k1 = J −1 � 1, which allows us to drop contributions
∝ĥ

(0)
ij (k) in comparison with that proportional to f̂

(0)
ij (k).

The second contribution to the mean EMF, E (II )
i , is caused by

the non-helical part of the turbulence:

E (II )
i = εimn

∫
ĝ(II )

nm (k) dk = 4 i εinm

×
∫

τ 2(k) (k · B̃) Amp g(0)
np (k) dk = α

(II )
ij B̃j , (A19)

where the tensor α
(II )
ij = αcr

2 (δij + eiej ) and αcr
2 is determined

by Equation (14). The third contribution to the mean EMF,
E (III )

i = εimn

∫
ĝ(III )

nm (k) dk, is constant and, therefore, does not
affect the large-scale dynamo.

A.7. Integrals Used in Section A.6

To integrate over the angles in k space, we used the following
identities:∫

kijn sgn(kz) sin θ dθ dϕ = π

2
[Pin(e) ej + Pjn(e) ei

+ Pij (e) en + 2eiej en], (A20)

∫
k⊥
i kj kn

k3
sgn(kz) sin θ dθ dϕ = π

2
[Pij (e) en + Pin(e) ej ],

(A21)

where Pin(e) = δij − eiej and kz = k cos θ .

A.8. The Realizability Condition

Let us consider the case when the spectral functions for the
kinetic helicity, χ (k), and turbulent kinetic energy, u2

0 E(k), are
different, where u(0) · (∇ × u(0)) = ∫

χ (k) dk and [u(0)]2 =
u2

0

∫
E(k) dk. The realizability condition for the kinetic helicity

(Moffatt 1978) reads

χ (k) � u2
0 E(k)k. (A22)

Let us determine the explicit expression for the function χ (k)
using Equation (26) for the estimate for the kinetic helicity
u(0) · (∇ × u(0)) for the Bell background turbulence:

u(0) · (∇ × u(0)) ∝ τ J cr
j

c ρ
u

(0)
n ∇j b

(0)
n =

(
4π

c

J cr �0

B∗

)1/2

× V A
u2

0

2�2
0

∫
(�0 k)3/2 τ (k) E(k) dk,

(A23)

where E(k) = (q − 1) �0 (�0 k)−q and τ (k) = 2 τ0 (�0 k)1−q .
Therefore, the function χ (k) is given by

χ (k) = √
J V A

u0

�0
(�0 k)5/2−q E(k), (A24)

and the realizability condition for the kinetic helicity yields

√
J

V A

u0
� (�0 k)q−3/2 , (A25)

where

J = 4π

c

J cr �0

B∗
, (A26)

and the Kolmogorov spectrum corresponds to q = 5/3.
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