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Abstract
The Lagrangian properties of the velocity field in a magnetized fluid are studied using
three-dimensional simulations of a helical magnetohydrodynamic dynamo. We compute the
attracting and repelling Lagrangian coherent structures (LCS), which are dynamic lines and
surfaces in the velocity field that delineate particle transport in flows with chaotic streamlines
and act as transport barriers. Two dynamo regimes are explored, one with a robust coherent
mean magnetic field and the other with intermittent bursts of magnetic energy. The LCS and
the statistics of the finite-time Lyapunov exponents indicate that the stirring/mixing properties
of the velocity field decay as a linear function of magnetic energy. The relevance of this study
to the solar dynamo problem is also discussed.

PACS numbers: 47.52.+j, 47.65.Md, 95.30.Qd

(Some figures may appear in colour only in the online journal)

1. Introduction

The transport in chaotic flows is governed by a combination
of stirring and diffusion. Stirring refers to the transport,
stretching, twisting and folding of fluid elements and,
consequently, of scalar or vector quantities advected by the
flow, such as the temperature, light particles or magnetic field
lines in a magnetohydrodynamic (MHD) system. This process
creates complex tracer patterns in the flow, including filaments
and sheets, as the fluid elements are deformed in different
directions. Diffusion is responsible for homogenizing the
distribution of tracers and blurring the patterns created by
the chaotic stirring, being usually more important in small
scales [1]. This paper deals with the problem of chaotic
stirring in magnetized flows. Throughout this paper we use
the terms ‘stirring’ and ‘mixing’ interchangeably.

Passive scalars are quantities that are passively advected
by the flow, i.e. their back-reaction on the advecting velocity
field is disregarded. They constitute a powerful way to study

the transport in hydrodynamical and MHD flows (for a
review, see [2]). We employ passive scalars to investigate
how a magnetic field can affect particle transport and
the stirring/mixing properties of a velocity field in MHD
simulations through the Lorentz force. We adopt direct
numerical simulations of resistive three-dimensional (3D)
compressible MHD equations with a helical forcing, which
has been used elsewhere as a prototype of the α2 dynamo
model of mean field dynamo theory [3, 4].

In the Lagrangian approach to turbulent transport, the
dynamics of fluids is studied by following the trajectories
of a large number of fluid elements or tracer particles.
The specific trajectories of individual particles are not very
useful in this type of investigation of chaotic flows, since the
sensitivity to initial conditions means that those particles that
are arbitrarily close to each other may experience exponential
divergence with time. However, it is possible to detect certain
material lines in the flow that repel or attract fluid elements.
These repelling and attracting material lines are time

0031-8949/12/018405+09$33.00 Printed in the UK & the USA 1 © 2012 The Royal Swedish Academy of Sciences

http://dx.doi.org/10.1088/0031-8949/86/01/018405
mailto:rempel@ita.br
http://stacks.iop.org/PhysScr/86/018405


Phys. Scr. 86 (2012) 018405 E L Rempel et al

dependent, analogous to the stable and unstable manifolds
of hyperbolic fixed points in dynamical systems theory, and
form transport barriers in flows with chaotic streamlines,
being called Lagrangian coherent structures (LCS). The LCS
have been used to describe hydrodynamic turbulence in 3D
numerical simulations [5], laboratory experiments [6, 7] and
observational data on oceans [8, 9] and the atmosphere [10],
as well as 2D numerical simulations of magnetized fusion
plasmas [11], magnetic reconnection [12], and 3D MHD
simulations of conservative [13] and dissipative [4] fields.

One of the most widely used Lagrangian tools is the
finite-time Lyapunov exponents (FTLE), also known as direct
Lyapunov exponents. The FTLE are a measure of local
chaos and quantify the dispersion of particles in a region
of the flow during a finite time. In the context of dynamo
theory, the stretching rate of material lines in a fluid can be
used to explain the amplification of magnetic fields by the
mechanism of stretch–twist–fold dynamo [14]. Examples of
the applications of the FTLE in dynamo simulations include
the growth of seed magnetic fields in the kinematic dynamo
problem [15–17], nonlinear MHD dynamos [18–20] and the
amplification of interstellar magnetic fields and turbulent
mixing by supernova-driven turbulence in compressible MHD
simulations [21]. It has been shown by Haller [22] that FTLE
can also be used to identify repelling and attracting LCS.

We present the detection of LCS for two different
dynamo regimes in the 3D compressible MHD equations with
the isotropic and helical Arnold–Beltrami–Childress (ABC)
forcing. We focus on the change in transport and mixing
properties of the flow when the system undergoes a transition
whereby a large-scale spatially coherent magnetic field loses
its stability. The transition, which occurs after an increase in
the magnetic diffusivity, results in strongly intermittent time
series of magnetic energy. In the intermittent regime, the lower
magnetic energy causes chaotic mixing to increase, resulting
in higher stretching rates of material lines. Chaotic mixing
is quantified by the FTLE, which show a linear dependence
on the magnetic energy. In section 2 of this paper, we define
LCS and how they relate to chaotic stirring in fluids; section 3
describes the model of MHD dynamo adopted; the numerical
analysis is discussed in section 4, and section 5 presents the
conclusions and possible ways of applying our techniques to
observational data on the solar dynamo.

2. Lagrangian coherent structures

Let D ⊂ R3 be the domain of the fluid to be studied, let
x(t0) ∈ D denote the position of a passive particle at time t0
and let u(x, t) be the velocity field defined on D. The motion
of the particle is given by the solution of the initial value
problem

ẋ = u(x, t), x(t0) = x0. (1)

Let us define the following flow map: φ
t0+τ
t0 :

x(t0) 7→ x(t0 + τ). The deformation gradient is given by
J = dφ

t0+τ
t0 (x)/dx and the finite-time right Cauchy–Green

deformation tensor is given by 4 = J T J . Let λ1 > λ2 > λ3

be the eigenvalues of 4. Then, the FTLE or direct Lyapunov
exponents of the trajectory of the particle are defined as [23]

σ
t0+τ
i (x) =

1

|τ |
ln

√
λi , i = 1, 2, 3. (2)

The maximum FTLE gives the finite-time average of
the maximum rate of divergence or stretching between the
trajectories of a fiducial particle at x and its neighboring
particles. The maximum stretching is found when the
neighboring particle y is such that δx = x − y is initially
aligned with the eigenvector of 4 associated with λ1. A
positive σ1 is the signature of chaotic streamlines in the
velocity field. The other exponents provide information on
stretching/contraction in other directions and can be useful
in interpreting the local dynamics of the fluid. In an ideal
conductive fluid, the frozen-in condition implies that a
magnetic line aligned with an infinitesimal vector connecting
two close fluid elements will evolve as this vector [24]. As
pointed out by Balsara and Kim [21], for finite resistivity and
compressible flows, flow regions with three positive Lyapunov
exponents expand in all three directions and tend to dilute
out the magnetic field; regions with two positive Lyapunov
exponents and one negative exponent tend to concentrate the
magnetic fields into sheet-like structures; regions with one
positive and two negative exponents tend to mold the magnetic
fields into filamentary structures; compression in all directions
is found when all exponents are negative. On the other hand,
local minima in the maximum FTLE field might provide a way
to detect the position of the center of vortices in the velocity
field, since vortices may be viewed as material tubes of low
particle dispersion [25].

FTLE are also useful in detecting attracting and repelling
material lines that act as barriers to particle transport in the
velocity field. A material line is a smooth curve of fluid
particles advected by the velocity field [22]. These attracting
and repelling material lines are the analogues of stable and
unstable manifolds of time-independent fields. The study of
2D flows is helpful in understanding the role of material
lines. Consider a 2D steady flow, where the velocity field
does not change with time. In the presence of counter-rotating
vortices, hyperbolic (saddle) points are expected to be found,
such as the one illustrated in figure 1(a). The trajectories
of passive scalars follow the velocity vectors in the vicinity
of the hyperbolic point. Thus, particles lying in the stable
manifold (green line) are attracted to the saddle point in
the forward-time dynamics and trajectories on the unstable
manifold (red line) converge to the saddle point in the
backward-time dynamics.

Two particles are said to straddle a manifold if the
line segment connecting them crosses the manifold. The
maximum FTLE has particularly high values on the stable
manifold in forward-time, since nearby trajectories straddling
the manifold will experience exponential divergence when
they approach the saddle point, as shown in figure 1(b).
Similarly, the FTLE field exhibits a local maximizing
curve (ridge) along the unstable manifold in backward-time
dynamics, since trajectories straddling the unstable manifold
diverge exponentially when they approach the saddle point
in reversed-time, as in figure 1(c). Thus, ridges in the
forward-time FTLE field mark the stable manifolds of
hyperbolic points and ridges in the backward-time FTLE field
mark the unstable manifolds.

Similarly, for a time-dependent velocity field, regions
of maximum material stretching generate ridges in the
FTLE field. Thus, repelling material lines (finite-time stable
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a)

b) c)

dt < 0dt > 0

Figure 1. (a) Velocity vector field with a saddle point (black circle)
and its stable (green) and unstable (red) manifolds; (b) schematic
drawing of the forward-time trajectories (dashed lines) of two
passive particles that straddle the stable manifold of a saddle point;
(c) schematic drawing of the backward-time trajectories (dashed
lines) of two passive particles that straddle the unstable manifold of
a saddle point.
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Figure 2. (a) Heteroclinic connection between saddle points S1 and
S2. There can be no transport of scalars between regions A and B.
(b) Homoclinic connections. Again, there is no transport between
regions A and B. (c) Heteroclinic tangle between the unstable
manifold of S1 and the stable manifold of S2. Transport of particles
between regions A and B is possible through lobe dynamics.

manifolds) produce ridges in the maximum FTLE field in the
forward-time system and attracting material lines (finite-time
unstable manifolds) produce ridges in the backward-time
system [11, 22, 23]. These material lines are called LCS.

Stable and unstable manifolds are invariant sets, which
means that a particle on the manifold will stay on it for
all time. They form natural barriers to transport between
different regions of a fluid, as seen in figure 2. Figure 2(a)
shows a topological configuration where one branch of the
unstable manifold of the saddle point S1 smoothly joins the
stable manifold of another saddle point S2 in a heteroclinic
connection. Simultaneously, the two branches of the unstable

manifold of S2 are connected to the stable manifold of S1,
enclosing regions A and B. Particles trapped in A or B
cannot cross the barriers formed by the manifolds, since
these are invariant sets. Figure 2(b) shows another type of
trapping region, formed by a homoclinic connection, where
one branch of the unstable manifold of a saddle point joins
its own stable manifold. Trajectories in regions A and B
usually circulate around a focus, as the manifolds mark the
borders of vortices in the velocity field. Transport between
different vortices is only possible when there is a transversal
crossing between stable and unstable manifolds, through a
mechanism called lobe dynamics [26, 27]. It is easier to
understand this mechanism with a periodic flow. Suppose
that the velocity field is time dependent but periodic, such
that u(x, t) = u(x, t + T ), where T is the period. Let F be
the stroboscopic Poincaré map defined by F(x(t)) = φt+T

t (x).
There are still points where the velocity is instantly zero, but
now they are moving. Since these points are not fixed, they are
called stagnation points. After T time units a stagnation point
will return to its original position. Therefore, under the map F
a stagnation point is seen as a fixed point. Figure 2(c) shows
a heteroclinic tangle, where two hyperbolic fixed points of F
have associated stable and unstable manifolds which intersect
at a number of points, forming a set of lobes that protrude from
one region to the other. At time t0, lobes A1 and A2 belong to
region A and lobes B1 and B2 to region B. Particles trapped in
each lobe cannot cross their bordering manifolds, but as time
goes by the dynamic manifolds are transported and deformed
by the flow, since they are material lines. After one period,
lobe A1 is mapped onto the lobe marked as F(A1), which
belongs to region B. The same happens to lobe A2, which is
mapped onto F(A2). Further iterations of the Poincaré map F
may cause lobes F(A1) and F(A2) to be deeply immersed into
region B. Similarly, lobes B1 and B2 in region B are mapped
to lobes F(B1) and F(B2) in region A.

3. The model

A compressible isothermal gas is considered, with constant
sound speed cs, constant dynamical viscosity µ, constant
magnetic diffusivity η and constant magnetic permeability µ0.
The following set of compressible MHD equations is solved:

∂t ln ρ + u · ∇ ln ρ + ∇ · u = 0, (3)

∂t u + u·∇u = −∇ p/ρ + J × B/ρ

+ (µ/ρ)(∇2u + ∇∇ · u/3) + f, (4)

∂t A = u × B − ηµ0J, (5)

where ρ is the density, u is the fluid velocity, A is the magnetic
vector potential, J = ∇ × B/µ0 is the current density, p is
the pressure, f is an external forcing and ∇ p/ρ = c2

s ∇ ln ρ,
where c2

s = γ p/ρ is assumed to be constant. Nondimensional
units are adopted, such that cs = ρ0 = µ0 = 1, where ρ0 =

〈ρ〉 is the spatial average of ρ. Equations (3)–(5) are solved
with the PENCIL CODE6 in a box with sides L = 2π and
6 http://pencil-code.googlecode.com
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Figure 3. Bifurcation diagrams as a function of η: (a) kinetic (black
circles) and magnetic (red triangles) energies; (b) kinetic (black
circles) and magnetic (red triangles) helicities.

periodic boundary conditions, so the smallest wavenumber is
k1 = 1. The time unit is (csk1)

−1 and the unit of viscosity
ν and magnetic diffusivity η is cs/k1. The initial conditions
are ln ρ = u = 0, and A is a set of normally distributed,
uncorrelated random numbers with zero mean and standard
deviation equal to 10−3. The forcing function f is given by the
strongly helical ABC flow,

f(x) =
Af
√

3
[sin kfz + cos kf y, sin kfx

+ cos kfz, sin kf y + cos kfx], (6)

where Af is the amplitude and kf the wavenumber of the
forcing function.

Following Rempel et al [3, 4], we use Af = 0.1, kf = 5
and the numerical resolution varies between 643 and 1283.
Spatial averages are denoted by 〈·〉 and time averages by
〈·〉t . References to kinetic (Re) and magnetic (Rm) Reynolds
numbers are based on the forcing scale

Re = λfU/ν, Rm = λfU/η, (7)

where ν = µ/ρ0 is the average kinematic viscosity, λf =

2π/kf is the forcing spatial scale and U = 〈u2
〉

1/2 is the mean
velocity at a time when the magnetic field is saturated. The
turnover time τ = λf/urms varies between τ ≈ 3 and τ ≈ 4.5
for our range of η.
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Figure 4. Time series for urms (upper panel) and Brms (lower panel)
for ν = 0.005 and η = 0.01.
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Figure 5. Time series for urms (upper panel) and Brms (lower panel)
for ν = 0.005 and η = 0.05.

4. Results

4.1. Bifurcation diagrams

We choose η as the control parameter and fix ν = 0.005,
which in the absence of magnetic fields corresponds to a
spatiotemporally chaotic flow with Re ≈ 100. Figure 3(a)
shows the bifurcation diagrams for the time-averaged
magnetic (〈Em〉t , red triangles) and kinetic (〈Ek〉t , black
circles) energies as a function of η (lower axes) or Rm (upper
axes). Averages are computed after an initial transient is
dropped. For large values of η, the seed magnetic field decays
rapidly and there is no dynamo. At the onset of dynamo
action at η ∼ 0.053 (Rm ∼ 9.5), the magnetic energy starts
growing at the expense of kinetic energy, until it saturates.
Figure 3(b) shows in the upper panel the time-averaged kinetic
helicity, Hk = 〈u · ω〉, where ω = ∇ × u is the vorticity, and
in the lower panel the time-averaged magnetic helicity,
Hm = 〈A · B〉. For helically forced flows, the magnetic
helicity is expected to have the same sign as the kinetic
helicity in scales smaller than the energy injection scale and
the opposite sign in larger scales [28]. Most of the magnetic
helicity in our simulations is concentrated in large scales,
as happens with the magnetic energy [3]; thus, Hm has the
opposite sign as Hk in figure 3(b). These quantities are crucial
for the emergence of a large-scale mean field, as they are
related to the α-effect in mean-field dynamo theory, which is

4



Phys. Scr. 86 (2012) 018405 E L Rempel et al

a) η = 0.01

b) η = 0.05

t = 400 t = 600 t = 800 t = 1000

t = 6000t = 2400 t = 5600t = 2100

Figure 6. (a) Intensity plots of Bz at four different times, showing the evolution of a large-scale coherent pattern modulated along the
x-direction for η = 0.01; (b) the same as (a) but for η = 0.05, showing intermittent switching between ordered and disordered patterns.

x

y

t = 1000η = 0.01,

b)

a)

d)

c) e)

f)

Figure 7. (a) LIC plot showing the streamlines of the xy-components of the velocity field at t = 1000 for η = 0.01; (b) the attracting LCS
(red); (c) the repelling LCS (green); (d) superposition of (b) and (c); (e) magnified view of the square region of (a); (f) enlargement of the
square region of (d).

responsible for the generation of a mean electromotive force
along the mean magnetic field by turbulent fluctuations of
the velocity and magnetic fields [29, 30]. The presence of
kinetic helicity is thought to be responsible for the inverse
transfer of magnetic energy from small scales to large scales,
as well as the inverse transfer of magnetic helicity from the
energy injection scale to larger scales [28]. In figure 3(b), Hk

is high for large values of η and Hm is null, since there is no
dynamo and a maximally helical (Beltrami) forcing is applied
to the flow. After the onset of dynamo, the magnetic field
starts contributing to the flow dynamics through the Lorentz
force (the second term on the right in equation (4)) and Hk

decreases with η, as |Hm| grows.
We focus on two values of η. For η = 0.01 the magnetic

field is close to equipartition after saturation, as seen in
the comparison between the time series of Brms and urms in

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

σ1 ∼ 0.24

σ

3

2σ  ∼ 0.

σ  ∼ −0.24

t = 1000

PD
F

η = 0.01

Figure 8. PDFs of the FTLE at t0 = 1000 and τ = 10 for η = 0.01.
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x
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t = 2100

e)
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Figure 9. (a) LIC plot showing the streamlines of the xy-components of the velocity field at t = 2100 for η = 0.05; (b) the attracting LCS
(red); (c) the repelling LCS (green); (d) superposition of (b) and (c); (e) magnified view of the square region of (a); (f) enlargement of the
square region of (d).
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b)
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t = 2400

c)

d)

e)

f)

Figure 10. (a) LIC plot showing the streamlines of the xy-components of the velocity field at t = 2400 for η = 0.05; (b) the attracting LCS
(red); (c) the repelling LCS (green); (d) superposition of (b) and (c); (e) magnified view of the square region of (a); (f) enlargement of the
square region of (d).

figure 4. For η = 0.05, close to the onset of dynamo action, the
magnetic energy is almost an order of magnitude smaller than
the kinetic energy and the time series are strongly intermittent,
as shown in figure 5. Two pairs of vertical lines in figure 5
mark the beginning and apex of two bursts of magnetic energy
around times t = 2400 and t = 6000. This is a type of on–off
intermittency due to a blow-out bifurcation, as discussed by
Rempel et al [3].

The magnetic field structures are depicted in figure 6 for
the two values of η and different times. For η = 0.01 (upper
panel) there is a robust coherent large-scale Bz component
accompanied by small-scale turbulent fluctuations. For η =

0.05 (lower panel), the magnetic field displays intermittent
switching between coherent and incoherent large-scale
structures (figure 6(b)) and there is no preferred direction for
field alignment.
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4.2. Lagrangian analysis

The contrast between the Eulerian and Lagrangian analyses
is depicted in figure 7 for η = 0.01, when the magnetic field
has settled to a spatially regular mean field. Figure 7(a) shows
the LIC plot [31] for the velocity field at z = 0. The LIC plot
reveals the streamlines of the (ux , u y) velocity components
on this plane at t = 1000. Arrays of counter-rotating vortices
found in the ABC flow can still be seen, intermixed with
long streaks and displaced vortices. To obtain the LCS we
compute the maximum FTLE field. For the attracting LCS
(finite-time unstable manifolds) we need to integrate the
compressible MHD equations backward in time, which is
a major problem, since the system is dissipative. We resort
to interpolation of recorded data to compute these fields.
A run of equations (3)–(5) from t0 − τ to t0 + τ is conducted
and full 3D snapshots of the velocity fields are saved at
each dt = 0.5 time interval. Following [11] and [32], linear
interpolation in time and third-order Hermite interpolation
in space are used to obtain the continuous set of vector
fields necessary for obtaining the particle trajectories by
integration of equation (1). For backward integration, ẋ =

−u(x, t) is solved instead, as snapshots are read from t0
to t0 − τ . Figure 7(b) shows the backward-time maximum
FTLE field computed with τ = −10 and t0 = 1000. Bright
colors correspond to large values of σ1 and dark regions to
low values. The ridges seen as bright red lines approximate
the attracting LCS. Figure 7(c) shows the forward-time
maximum FTLE field for τ = 10, whose ridges provide the
repelling LCS. Figure 7(d) is a superposition of panels (b)
and (c) and represents the so-called ‘Lagrangian skeleton of
turbulence’ [32]. Figures 7(e) and (f) are magnified views of
the square regions in figures 7(a) and (d), respectively. Note

Table 1. Mean values and standard deviations of FTLE.

η = 0.01 η = 0.05

t = 1000 t = 2100 t = 2400 t = 5600 t = 6000

σ̄1 0.249 0.328 0.298 0.332 0.303
σ̄2 0.006 0.030 0.017 0.032 0.021
σ̄3 −0.245 −0.328 −0.292 −0.333 −0.299
std(σ1) 0.096 0.125 0.123 0.125 0.124
std(σ2) 0.067 0.098 0.089 0.098 0.091
std(σ3) 0.098 0.137 0.124 0.138 0.127

that the LIC plot of the velocity field in figure 7(e) shows a
structure similar to the homoclinic connections of figure 2(b).
Here, the arrows point to two hyperbolic stagnation points
in the (ux , u y) field. On the other hand, when one moves to
the Lagrangian frame (figure 7(f)) the picture becomes much
more complex, with a number of homoclinic and heteroclinic
crossings, as in figure 2(c). The two larger arrows point
to the same location of the stagnation points. The smaller
arrows indicate two lobes that cross other LCS and permit the
transport of particles between vortices through lobe dynamics.
The LCS in figure 7 were computed using 384 × 384 fiducial
particles uniformly distributed on the plane z = 0. For each
fiducial particle, the trajectories of six near-neighboring
particles are computed to obtain the deformation gradient by
second-order centered finite differences.

In order to quantify the degree of particle dispersion or
chaotic mixing in the flow, figure 8 shows the probability
distribution functions (PDFs) of the three FTLE for the same
state shown in figure 7. The PDFs were obtained from a
set of 643 initial conditions uniformly distributed in the box
at t0 = 1000, with τ = 10. There is a considerable number
of trajectories with two positive Lyapunov exponents; thus
sheet-like magnetic field structures are expected. The broad
tails in σ1 are due to initial conditions that are very close
to the repelling material lines, which are regions where the
stretching is stronger than the average. On the other hand,
the broad tails in negative values of σ3 reflect contraction in
the vicinity of the attracting material lines. Since the flow
is weakly compressible, with the Mach number below 0.4,
for almost all initial conditions one of the exponents is close
to zero. The PDF for σ2 shows a Gaussian distribution. The
overbars on σ denote average values.

For η = 0.05 the time series of Brms and urms are
intermittent. To understand the influence of B on u, the FTLE
are computed for different initial times marked by vertical
lines in figure 5. Figure 9 shows the LIC and LCS plots
at t = 2100, just before a burst of magnetic energy in the
time series of figure 5(b). In comparison with η = 0.01, there
seems to be less order in the distribution of vortices in the
LIC plot of figure 9(a) than in figure 7(a) and the greater
complexity in the distribution of material lines in the LCS
plots of figures 9(b)–(d) and (f) indicates that the transport
of passive scalars is enhanced due to the frequent crossings of
attracting and repelling lines. This is as expected, since Brms

is much lower for η = 0.05 and has a smaller impact on the
velocity field.

At t = 2400 the time series of Brms has a peak of energy
burst. As seen in figure 10, there is a stronger impact of this
magnetic energy release on the velocity field in comparison
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Figure 12. Maximum FTLE of the velocity field (σ̄1) as a function
of Brms using data from table 1. The fitted line has slope
γ ∼ −0.345.

with t = 2100 (figure 9). The LIC plot of figure 10(a) does
not show much difference in relation to figure 9(a). However,
the LCS plots of figures 10(b)–(d) show wider regions of
low particle dispersion. This is clearer in figure 10(f), which
shows an intermediate level of complexity in comparison
with figures 7(f) and 9(f). Thus, a stronger magnetic field
diminishes chaotic mixing in the velocity field, which is
measured by the PDFs of the FTLE, shown in figure 11.

One can see that the PDFs for the intermittent dynamo
(figures 11(a) and (b)) are wider than for the regular
mean-field dynamo (figure 8). They also have a larger σ̄1,
revealing that the flow is more chaotic for η = 0.05 than for
η = 0.01. Moreover, broader tails in the PDFs of figure 11
mean that more intermittency is to be expected in the evolution
of passive scalars at η = 0.05. A summary of the results can
be found in table 1, which shows σ̄1,2,3 and their standard
deviations for η = 0.01 at t = 1000 and for η = 0.05 at four
values of t representing the beginning and the apex of the
two magnetic energy bursts indicated in figure 5. The mean
value σ̄1 and the standard deviation decrease at both bursts.
Figure 12 is a plot of σ̄1 as a function of Brms using only
data from table 1, which are fitted with the linear equation
σ̄1 ≈ 0.348 − 0.345Brms. Although we need more statistics to
draw conclusions, our preliminary results suggest that the
decay of chaoticity in the velocity field is proportional to Brms.

5. Conclusions

We have used LCS and the statistics of FTLE to study the
chaotic stirring in 3D MHD dynamo simulations with helical
forcing. Attracting LCS provide pathways that are more likely
to be followed by passive scalars, and their crossings with
repelling LCS provide the mechanism for transport between
different regions of the fluid. The PDFs of FTLE provide
a quantification of chaotic mixing in the flow. We explored
the impact of a magnetic field on the velocity field in a
saturated nonlinear dynamo and in an intermittent dynamo,
and the maximum FTLE was shown to be a linear function
of magnetic energy. The increase in the flow’s chaoticity
when the magnetic diffusivity is increased from η = 0.01
to η = 0.05 is the result of a reduction in the effect of
the Lorentz force on the velocity field. Enhanced chaoticity
leads to stronger line stretching and field amplification, and

the ‘competition’ between this effect and the destruction of
magnetic flux due to magnetic diffusion seems to be the
main cause of the intermittent time series of magnetic energy
observed when η = 0.05, which is close to the critical value
for dynamo action.

Our analysis has direct applications in astrophysics,
where the equipartition strength magnetic fields observed
in planets and stars are thought to be the result of a
dynamo process, whereby kinetic energy from the motion of
a conducting fluid is converted into magnetic energy [33].
Experimental detection of LCS and computation of FTLE
in the solar surface can be performed using velocity fields
estimated from observational data. Such estimations can be
obtained from digital images using the optical flow algorithm,
employed by Colaninno and Vourlidas [34] to extract the
velocity field from images of coronal mass ejections obtained
with the SOHO LASCO C2 coronagraph. Recently, horizontal
velocity fields in the photosphere were inferred from Hinode
images [35] and the Swedish Vacuum Solar Telescope [36].
Solar subsurface flows can be inferred from helioseismic
data [37]; thus LCS can also aid the tracing of particle
transport by turbulence in stellar interiors.
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