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ABSTRACT

Context. The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-
scale instability resulting in the formation of nonuniform magnetic structures, can be excited on the scale of many (more than ten)
turbulent eddies (or convection cells). This instability is caused by a negative contribution of turbulence to the effective (mean-field)
magnetic pressure and has previously been discussed in connection with the formation of active regions.
Aims. We want to understand the effects of rotation on this instability in both two and three dimensions.
Methods. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic
pressure instability have previously been found to agree with properties of direct numerical simulations.
Results. We find that the instability is already suppressed for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby
numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with
propagation in the prograde direction at the equator with additional poleward migration away from the equator.
Conclusions. We speculate that the prograde rotation of the magnetic pattern near the equator might be a possible explanation for
the faster rotation speed of magnetic tracers relative to the plasma velocity on the Sun. In the bulk of the domain, kinetic and current
helicities are negative in the northern hemisphere and positive in the southern.
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1. Introduction

In the outer parts of the Sun, energy is transported through turbu-
lent convection. The thermodynamic aspects of this process are
well understood through mixing length theory (Vitense 1953).
Also reasonably well understood is the partial conversion of ki-
netic energy into magnetic energy via dynamo action (Parker
1979; Zeldovich et al. 1983). Most remarkable is the possibility
of generating magnetic fields on much larger spatial and tem-
poral scales than the characteristic turbulence scales. This has
now been seen in many three-dimensional turbulence simula-
tions (Brandenburg 2001; Brandenburg & Subramanian 2005),
but the physics of this is best understood in terms of mean-field
theory, which encapsulates the effects of complex motions in
terms of effective equations for mean flow and mean magnetic
field (Moffatt 1978; Parker 1979; Krause & Rädler 1980).

The effects of stratification are usually only included to lead-
ing order and often only in connection with rotation, because the
two together give rise to the famous α effect, which is able to
explain the generation of large-scale magnetic fields (Krause &
Rädler 1980). In recent years, however, a completely different
effect arising from strong stratification alone has received atten-
tion: the suppression of turbulent pressure by a weak mean mag-
netic field. This effect mimics a negative effective (mean-field)
magnetic pressure owing to a negative contribution of turbu-
lence to the mean magnetic pressure. Under suitable conditions,
this leads to the negative effective magnetic pressure instability
(NEMPI), which can cause the formation of magnetic flux con-
centrations. In turbulence simulations, this instability has only

been seen recently (Brandenburg et al. 2011), because signifi-
cant scale separation is needed to overcome the effects of turbu-
lent diffusion (Brandenburg et al. 2012). Mean-field considera-
tions, however, have predicted the existence of NEMPI for a long
time (Kleeorin et al. 1989, 1990, 1996; Kleeorin & Rogachevskii
1994; Rogachevskii & Kleeorin 2007; Brandenburg et al. 2010).

One of the remarkable insights is that NEMPI can occur at
any depth, depending just on the value of the mean magnetic
field strength. However, for a domain of given depth the insta-
bility can only occur in the location where the dependence of ef-
fective turbulent pressure on the ratio of field strength to equipar-
tition value has a negative slope. Once this is obeyed, the only
other necessary condition for NEMPI to occur is that the turbu-
lent diffusivity is low enough. In practice this means that there
are enough turbulent eddies within the domain of investigation
(Brandenburg et al. 2012; Kemel et al. 2012c).

Despite the potential importance of NEMPI, many additional
effects have not yet been explored. The idea is that NEMPI
would interact with the global dynamo producing the large-scale
magnetic field for NEMPI to act upon. Thus, the field needs to be
self-consistently generated. Ideally, global geometry is needed,
and such calculations should be three-dimensional (3D), be-
cause one expects flux concentrations not to be two-dimensional
(2D) or axisymmetric. New mean-field coefficients will appear
in such a more general case, and not much is known about them.
Nevertheless, although other terms may appear, it will be inter-
esting to investigate the evolution of NEMPI in more realistic
cases with just the leading term responsible for the instability.
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The goal of the present paper is to include the effects of rota-
tion in NEMPI in a local Cartesian domain at a given latitude in
the Sun. To this end we determine the dependence of growth rate
and saturation level of NEMPI on rotation rate and latitude, and
to characterize rotational effects on the resulting flux concentra-
tions. We restrict ourselves to a mean-field treatment and denote
averaged quantities by an overbar. Furthermore, we make the as-
sumption of an isothermal equation of state. This is of course
quite unrealistic, as far as applications to the Sun are concerned.
However, it has been found earlier that NEMPI has similar prop-
erties both for an isothermal layer with an isothermal equation
of state and a nearly isentropic one with the more general per-
fect gas law (Käpylä et al. 2012). Given that our knowledge of
NEMPI is still rather limited, it is useful to consider the new ef-
fects of rotation within the framework of the conceptually sim-
pler case of an isothermal layer.

We begin with the model equations, discuss the linear the-
ory of NEMPI in the presence of rotation, and consider 2D
and 3D numerical models.

2. The model

We consider here an isothermal equation of state with constant
sound speed cs, so the mean gas pressure is p = ρc2

s . The evo-
lution equations for mean velocity U, mean density ρ, and mean
vector potential A, are

DU
Dt
= −2Ω × U − c2

s∇ ln ρ + g + FM + FK, (1)

Dρ
Dt
= −ρ∇ · U, (2)

∂A
∂t
= U × B − (ηt + η)J, (3)

where D/Dt = ∂/∂t+U·∇ is the advective derivative, ηt and η are
turbulent and microscopic magnetic diffusivities, g = (0, 0,−g)
is the acceleration due to the gravity field,

FK = (νt + ν)
(
∇2U + 1

3∇∇ · U + 2S∇ ln ρ
)

(4)

is the total (turbulent plus microscopic) viscous force with νt
being the turbulent viscosity, and Si j =

1
2 (Ui, j +U j,i)− 1

3δi j∇ ·U
is the traceless rate of strain tensor of the mean flow. The mean
Lorentz force, FM, is given by

ρFM = J × B + 1
2∇(qpB2), (5)

where J = ∇ × B/μ0 the mean current density, μ0 is the vac-
uum permeability, and the last term, 1

2∇(qpB2), on the righthand
side of Eq. (5) determines the turbulent contribution to the mean
Lorentz force. Following Brandenburg et al. (2012) and Kemel
et al. (2012a), the function qp(β) is approximated by:

qp(β) =
β2
	

β2
p + β2

, (6)

where β	 and βp are constants, β = B/Beq is the modulus of
the normalized mean magnetic field, and Beq =

√
μ0ρ urms the

equipartition field strength. The angular velocity vector Ω is
quantified by its scalar amplitude Ω and colatitude θ, such that

Ω = Ω (− sin θ, 0, cos θ) . (7)

In this arrangement, z corresponds to radius, x to colatitude,
and y to azimuth.

Following the simplifying assumption of recent direct nu-
merical simulations of NEMPI (Brandenburg et al. 2011), we
assume that the root-mean-square turbulent velocity, urms, is con-
stant in space and time. For an isothermal density stratification,

ρ = ρ0 exp(−z/Hρ), (8)

where Hρ = c2
s/g is the density scale height, we then have Beq(z).

To quantify the strength of the imposed field, we also define
Beq0 = Beq(z = 0). The value of urms is also related to the val-
ues of ηt and νt, which we assume to be equal, with ηt = νt =
urms/3kf, where kf is the wavenumber of the energy-carrying ed-
dies of the underlying turbulence. This formula assumes that the
relevant correlation time is (urmskf)−1, which has been shown to
be fairly accurate (Sur et al. 2008).

3. Linear theory of NEMPI with rotation

In this section we study the effect of rotation on the growth
rate of NEMPI. Following earlier work (e.g., the appendix of
Kemel et al. 2012c), and for simplicity, we neglect dissipation
processes, use the anelastic approximation, ∇ · ρU = 0, and as-
sume that the density scale height Hρ = const. We consider the
equation of motion, ignoring the U · ∇U nonlinearity,

∂U(t, x, z)
∂t

= −2Ω × U − 1
ρ
∇ptot + g, (9)

where ptot = p + peff is the total pressure consisting of the sum
of the mean gas pressure p, and the effective magnetic pres-

sure, peff = (1 − qp)B
2
/2, where B = |B|. Here and elsewhere

the vacuum permeability is set to unity. We assume for simplic-
ity that ∂y = 0, and that the mean magnetic field only has a
y-component, B = (0, By(x, z), 0), so the mean magnetic tension,
B · ∇B in Eq. (9) vanishes.

Taking twice the curl of Eq. (9), and noting further that ẑ ·
∇ × ∇ × U = −ΔUz + ∇z∇ · U, we obtain

∂

∂t

[
ΔUz + ∇z(U · ∇ ln ρ)

]
= −2Ω · ∇(∇ × U)z

+∇x

[(
∇z

ptot

ρ

) ∇xρ

ρ
−

(
∇x

ptot

ρ

) ∇zρ

ρ

]
, (10)

where we have used the anelastic approximation in the form
∇ · U = −U · ∇ ln ρ and the fact that under the curl the gradient
can be moved to ρ. We have also taken into account that Ωy = 0
and have used Eq. (30) of Kemel et al. (2012c) to relate the dou-
ble curl of (∇ptot)/ρ to the last term in Eq. (10). The first term on
the righthand side of Eq. (10) for Uz is proportional to (∇ ×U)z.
Taking the z component of the curl of Eq. (9) we obtain the fol-
lowing equation for (∇ × U)z:

∂

∂t
(∇ × U)z = 2

(
Ω · ∇ − Ωz

Hρ

)
Uz. (11)

The induction equation for By(x, z) is given by

DBy
Dt
= −By∇ · U, (12)
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where D/Dt = ∂/∂ + U · ∇ is the advective derivative. For a
magnetic field with only a y-component, but ∂/∂y = 0, there is
no stretching term, so there is no term of the form B · ∇U.

We linearize Eqs. (10)−(12), indicating small changes by δ.
We consider an equilibrium with a constant magnetic field of
the form (0, B0, 0), a zero mean velocity, and the fluid density
as given by Eq. (8). We take into account that the function qp =

qp(β) depends both on B and on ρ, which implies that (Kemel
et al. 2012c)

δ

(
ptot

ρ

)
= 1

2 v
2
A

(
1 − qp − dqp

dln β2

) ⎛⎜⎜⎜⎜⎜⎝2δByB0
− δρ
ρ

⎞⎟⎟⎟⎟⎟⎠ , (13)

while

∇z

(
ptot

ρ

)
= 1

2 v
2
A

(
1 − qp − dqp

dln β2

)
1

Hρ
· (14)

The linearized system of equations reads as

∂

∂t

(
Δ− 1

Hρ
∇z

)
δUz = 2

v2A
Hρ

dPeff

dβ2

∇2
xδBy
B0
−2Ω · ∇(∇ × δU)z, (15)

∂

∂t
(∇ × δU)z = 2

(
Ω · ∇ − Ωz

Hρ

)
δUz, (16)

∂δBy
∂t
= −B0

δUz

Hρ
, (17)

where Peff(β) = 1
2

[
1 − qp(β)

]
β2 is the effective magnetic pres-

sure normalized by the local value of B2
eq.

Introducing a new variable Vz =
√
ρ δUz in Eqs. (15)−(17)

and after simple transformations we arrive at the following equa-
tion for one variable Vz:

∂2

∂t2

⎛⎜⎜⎜⎜⎝Δ − 1
4H2
ρ

⎞⎟⎟⎟⎟⎠ Vz +

⎛⎜⎜⎜⎜⎝(2Ω · ∇)2 − Ω
2
z

H2
ρ

⎞⎟⎟⎟⎟⎠ Vz = λ
2
0∇2

xVz, (18)

where

λ2
0(z) = −2

v2A(z)

H2
ρ

dPeff(z)
dβ2

· (19)

In the WKB approximation, which is valid when kz Hρ � 1, i.e.,
when the characteristic scale of the spatial variation of the per-
turbations of the magnetic and velocity fields are much smaller
than the density height length, Hρ, the growth rate of the large-
scale instability (NEMPI) is given by

λ =

[
λ2

0
k2

x

k2
− ω2

inert

]1/2

, (20)

where ωinert = 2Ω · k̂ is the frequency of the inertial waves.
Here, k̂ = k/k is the unit vector of k. A necessary condition for
the instability is

dPeff

dβ2
< 0. (21)

NEMPI can be excited even in a uniform mean magnetic field,
and the source of free energy of the instability is provided by the
small-scale turbulence. In contrast, the free energy in Parker’s
magnetic buoyancy instability (Parker 1966) or in the inter-
change instability (Tserkovnikov 1960; Priest 1982) is drawn
from the gravitational field. Both instabilities are excited in a

plasma when the characteristic scale of variations in the original
horizontal magnetic field is smaller than the density scale height.
As seen from Eq. (20), λ is either real or purely imaginary, so
no complex eigenvalues are possible, as would be required for
growing oscillatory solutions.

Without rotation the growth rate of NEMPI is (Kleeorin et al.
1993; Rogachevskii & Kleeorin 2007; Kemel et al. 2012d)

λ = λ0
kx

k
· (22)

The rotation reduces the growth rate of NEMPI, which can be
excited when kx/k > ωinert/λ0 and dPeff/dβ2 < 0. In the op-
posite case, kx/k < ωinert/λ0, the large-scale instability is not
excited, while the frequency of the inertial waves is reduced by
the effective negative magnetic pressure.

For an arbitrary vertical inhomogeneity of the density, we
seek a solution to Eq. (18) in the form Vz(t, x, z) = V(z) exp(λt +
ikx x) and obtain an eigenvalue problem
⎡⎢⎢⎢⎢⎣∇2

z +
8ΩxΩz

λ2 + 4Ω2
z

ikx ∇z − Λ2 k2
x −

1
4H2
ρ

⎤⎥⎥⎥⎥⎦ V(z) = 0, (23)

where

Λ2 =
λ2 − λ2

0(z) + 4Ω2
x

λ2 + 4Ω2
z

, (24)

and λ is the eigenvalue. Equation (23) can be reduced to
the Schrödinger type equation, Ψ′′ − Ũ(R)Ψ = 0, via the
transformation

Ψ(R) =
√

R V(z) exp

(
i

4ΩxΩz

λ2 + 4Ω2
z

kxz

)
, (25)

R(z) =
v2A0

u2
rmsβ

2
p

ez/Hρ , (26)

where vA0 = B0/
√
ρ0 is the Alfvén speed based on the averaged

density, the potential Ũ(R) is

Ũ(R)=
k2

xH2
ρ

R(λ2 + 4Ω2
z )

⎡⎢⎢⎢⎢⎢⎣λ
2

R

(
λ2 + 4Ω2

λ2 + 4Ω2
z

)
+

u2
rmsβ

2
p

H2
ρ

(
1− qp0

(1 + R)2

)⎤⎥⎥⎥⎥⎥⎦ ,
(27)

and we have used Eq. (6) for qp with β	 = βp
√

qp0 and qp0 =

qp(β = 0). As follows from Eq. (27), the potential, Ũ(R), is pos-
itive for R → 0 and R → ∞. Therefore, for the existence of the
instability, the potential should have a negative minimum. This
is possible when qp0 > (1 + R)2. When the potential Ũ(R) has
a negative minimum, there are two points R1 and R2 (the so-
called turning points) in which Ũ(R = R1,2) = 0. Figure 1 shows
tanh Ũ(R) for different values of Ω. This representation allows
us to distinguish the behavior for low values of Ũ(R).

Using Eq. (27) and the condition Ũ(R = R1,2) = 0, we esti-
mate the maximum growth rate of the instability as

λ =
1√
2

[
λ2
∗ − 4Ω2 +

[(
λ2
∗ − 4Ω2

)2
+ 8Ω2

zλ
2
∗
]1/2

]1/2

, (28)

where

λ∗ =
β	 urms

Hρ

[R1R2(2 + R1 + R2)]1/2

(1 + R1)(1 + R2)
· (29)
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Fig. 1. tanh Ũ(R) for λ̃ ≡ λ/λ∗ = 0.02, θ = 0, and Ω = 0.01 (dotted
line), 0.1 (dashed-dotted line), and 1 (solid line).

Fig. 2. Theoretical dependence of λ/λ∗ on θ for different values of σ
using Eq. (30). The inset shows the dependence of λ/λ∗ on 2Ω/λ∗ =
σ1/2 for θ = 0◦ (solid), 45◦ (dotted), and 90◦ (dashed).

By defining σ = 4Ω2/λ2∗, Eq. (28) can also be written as

λ/λ∗ =
1√
2

[
1 − σ +

(
1 − 2σ sin2 θ + σ2

)1/2
]1/2
. (30)

For σ � 1, we obtain λ/λ∗ = cos θ/
√

2, which is independent of
the value of σ. In Fig. 2 we plot the dependence of λ/λ∗ on θ for
different values of σ and on 2Ω/λ∗ = σ1/2 for different values
of θ (inset).

Unfortunately, the asymptotic analysis does not allow full
information about the system. Therefore we turn in the follow-
ing to numerical simulations of the full 2D and 3D mean-field
equations.

4. Numerical results

In this section we discuss numerical mean-field modeling. We
consider computational domains of size L2 or L3 with periodic
boundary conditions in the horizontal direction(s) and stress-free
perfect conductor boundary conditions in the vertical direction.
The smallest wavenumber that fits horizontally into the domain
has the wavenumber k1 = 2π/L. The numerical simulations are
performed with the Pencil Code1, which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time
stepping method (Brandenburg & Dobler 2002). As units of
length we use k−1

1 , and time is measured in units of (csk1)−1.

1 http://pencil-code.googlecode.com

Fig. 3. Dependence of λ/λ∗0 on 2Ω/λ∗0 for three values of θ for 2D sim-
ulations with B0/Beq0 = 0.1.

An important nondimensional parameter is the Coriolis num-
ber, Co = 2Ω/urmskf . Using kf = urms/3ηt, we can express this
in terms of the parameter CΩ = Ω/ηtk2

1, which is often used in
mean-field dynamo theory. Thus, we have

Co = 6ηtΩ/u
2
rms = 6 (ηtk1/urms)

2CΩ. (31)

Motivated by the analytic results of the previous section we nor-
malize the growth rate of the instability alternatively by a quan-
tity λ∗0 ≡ β	urms/Hρ. In the following we take urms/cs = 0.1.
Furthermore, we use νt = ηt = 10−3cs/kf , so that kfHρ ≈ 33
and ηtk1/urms = 10−2. This also means that for Ω = 0.01, for
example, we have 2Ω/λ∗0 = 0.27 and Co = 0.006.

For the models presented below, we use qp0 = 20 and
βp = 0.167, which corresponds to β	 = 0.75, and is appropri-
ate for the parameter regime in which Rm ≈ 18 and kf/k1 = 30
(Kemel et al. 2012d). We use either B0/Beq0 = 0.1 or 0.05. We
recall, however, that the growth rate does not depend on this
choice, provided the bulk of the eigenfunction fits into the do-
main, which is the case here for both values of B0. For the lower
value of B0 the maximum of the magnetic structures (i.e., the
maximum of the eigenfunction in z) is slightly higher up in
the domain, but in both cases the maximum is contained within
the domain.

We discuss first the Ω and θ dependence of 2D and 3D solu-
tions. Using θ = 0◦, 45◦, and 90◦, corresponding to 90◦, 45◦,
and 0◦ latitude, we find that NEMPI is suppressed for rota-
tion rates around Ω ≈ 0.01csk1 and 0.025 in 2D and 3D, as
can be seen in Figs. 3 and 4. This corresponds to Co = 0.006
and 0.015, which are remarkably low values. We note a similar
behavior in 2D and 3D: NEMPI is suppressed for even lower
values of 2Ω/λ∗0 as θ increases. Moreover, there is qualitative
agreement between the results of mean-field simulations and the
predictions based on asymptotic analysis, even though in the for-
mer case we normalized by λ∗0, while in the latter we normalized
by λ∗; see Eq. (30).

Next, we vary θ. As expected from the results of Sect. 3,
and as already seen in Figs. 3 and 4, the largest growth rates
occur at the poles (θ = 0◦), and NEMPI is the most strongly
suppressed at the equator. The growth rate as a function of θ is
given in Fig. 5 for two values of 2Ω/λ∗0, showing a minimum
at θ = 90◦ (i.e., at the equator). In the upper panel of Fig. 5,
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Fig. 4. Dependence of λ/λ∗0 on 2Ω/λ∗0 for three values of θ for 3D sim-
ulations with B0/Beq0 = 0.05.

Fig. 5. Dependence of λ/λ∗0 on θ for two values of 2Ω0/λ∗0 in 2D (up-
per panel) and comparison of 2D and 3D cases (lower panel).

we have used 2D results, i.e. we restricted ourselves to solutions
with ∂/∂y = 0, as was also done in Sect. 3. However, this is
only an approximation of the fully 3D case. The usefulness of
this restriction can be assessed by comparing 2D and 3D results;
see the lower panel of Fig. 5. While the θ dependence is roughly
similar in the 2D and 3D cases, the growth rates are by at least a
factor of two lower in the 2D case.

To determine the oscillatory frequency, we consider the
values of Uy(x1, t) and By(x1, t) at a fixed point x1 within the
domain. As can be seen in Figs. 6 and 7, their frequency and
amplitude depend on both Ω and θ. The oscillations are not al-
ways harmonic ones, and can be irregular with variable periods,
making the period determination more difficult. Nevertheless,
the frequencies for Uy and By are similar over broad parame-
ter ranges. For Ω0/λ∗0 > 0.25 at θ = 60◦, NEMPI is no longer
excited, but there are still oscillations in Uy(x1, t), which must
then have some other cause. We find a substantial variation in
the amplitude for the maximum growth rate for Ω = 0.01 and
Ω = 0.02. (The high frequency in Uy and By in Fig. 6 corre-
sponds to a random small-amplitude change.) The frequency of
the oscillations is very low at the poles, but it reaches a maxi-
mum at θ = 45 and decreases again toward the equator.

Fig. 6. Frequency and amplitude as a function of Ω for θ = 60◦ and
B0/Beq0 = 0.1 in the saturated regime.

Fig. 7. Frequency and amplitude θ dependence for Ω = 0.01 and
B0/Beq0 = 0.1.

In summary, the oscillation frequency decreases (and the pe-
riod increases) for faster rotation as the growth rate diminishes.
Furthermore, the oscillation frequency is systematically lower at
low latitudes (below 45◦) and higher closer to the poles. We re-
call that these oscillations occur only in the nonlinear regime, so
no meaningful comparison with linear theory is possible.

Given the combined presence of rotation and stratification,
we expect the resulting velocity and magnetic fields to be heli-
cal. We plot relative kinetic, current, and cross helicities in the
upper panel of Fig. 8. These are here abbreviated in terms of the
function

H(p, q) = 〈p · q〉/
√
〈p2〉〈q2〉, (32)

where p and q are two arbitrary vectors. Here, 〈·〉 denotes xy
averaging. The relative kinetic helicity, H(W,U), where W =

∇ × U is the mean vorticity, varies between nearly +1 in the
lower part and −1 in the upper part. This change of sign is famil-
iar from laminar convection where upwellings expand to pro-
duce negative helicity in the upper parts, and downwellings also
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Fig. 8. Dependence of various relative helicities and relative amplitudes
on z for the case with θ = 0◦ and Co = 0.03.

expand as they hit the bottom of the domain (e.g. Brandenburg
et al. 1990). However, in the lower part of the domain both U
and W are relatively small, as can be seen by considering their
relative amplitudes,A(U) andA(W), where

A(p) = 〈p2〉/〈〈p2〉〉, (33)

with 〈〈·〉〉 being defined as volume averages.
It will be important to compare the present predictions of

large-scale kinetic and magnetic helicity production with results
from future DNS. One might expect differences between the two,
because our current mean-field models ignore turbulent transport
coefficients that are associated with helicity; see the discussion
at the end of Kemel et al. (2012b).

We finally turn to the spatial structure of NEMPI. In Fig. 9
we compare By at different times and latitudes for the 2D runs.
In the exponentially growing phase of NEMPI, the structures do
not propagate (or move only very slowly). Traveling wave solu-
tions occur mainly in a later stage of NEMPI, i.e., in the satu-
rated regime. Next, we consider the 3D case. In Fig. 10 we show
visualizations of the magnetic field on the periphery of the com-
putational domain for four different times for θ = 0. Magnetic
structures are inclined in the xy plane. This is a direct result of
rotation. As expected, the inclination is opposite for negative val-
ues of Ω; see Fig. 11. The modulus of the inclination angle is
about 30◦, corresponding to 0.5 radians, which is not compat-
ible with the value of Co ≈ 0.03, but it is closer to the value
of Ω/λ∗0 ≈ 0.65. However, in this connection we should stress
that we have imposed periodic boundary conditions in the y di-
rection, which means that the inclination angles only change in
discrete steps. In the 2D runs, shown in Fig. 9, no inclination in
the xy plane is possible at all.

Returning to the case of positive values of Ω, but θ � 0, we
note a slow migration of the magnetic pattern to the left (here
for θ = 45◦), corresponding to poleward migration; see Fig. 12.
Also the field is still tilted in the xy plane. Finally, for θ = 90◦
we see that the pattern speed corresponds to prograde motion;
see Fig. 13.

Fig. 9. Evolution of By in the xz plane in a 2D simulation for Ω0 = 0.01
(corresponding to Co = 0.006) and B0/Beq0 = 0.1 for θ = 0◦, θ = 45◦,
and θ = 90◦ near the time when the instability saturates. The direction
of Ω is indicated in the last row.

5. Conclusions

Although the physical reality of NEMPI has recently been con-
firmed by direct numerical simulations, its potential role in pro-
ducing large-scale magnetic structures in the Sun is still unclear.
This paper begins the task of investigating its properties under
conditions that are astrophysically important. Rotation is ubiq-
uitous and clearly important in the Sun. The present work has
now shown that the instability is suppressed already for rather
slow rotation. This is rather surprising, because rotational ef-
fects normally become significant only when Ω is comparable
to the inverse turnover time, which is defined here as urmskf .
The instability growth rate scale might explain this behaviour,
since it is closer to the turbulent diffusive time than to the in-
verse turnover, which is faster by the square of the scale sepa-
ration ratio (Brandenburg et al. 2011). However, our work now
suggests that this is not quite right either and that the correct an-
swer might be something in between. Indeed, we find here that
growth rate and critical rotation rate are close to the parameter
λ∗0 = β	urms/Hρ, which can be smaller than the aforementioned
turnover time by a factor of 40, although in solar convection,
where kf Hρ ≈ 2.4 (Kemel et al. 2012d) and β	 ≈ 0.23 (Kemel
et al. 2012c), it is estimated to be only ≈10 times smaller.

The suppression is strongest at the equator, where Ω is per-
pendicular to the direction of the gravity field, i.e.,Ω ·g = 0, and
less strong at the poles where Ω and g are either parallel (south
pole) or antiparallel (north pole). In the absence of rotation, the
mean magnetic field only varies in a plane that is normal to the
direction of the imposed mean magnetic field, i.e., k · B0 = 0,
where k stands for the wave vector of the resulting flow and mag-
netic field. However, in the presence of rotation the orientation
of this plane changes such that now k · (B0 + λ

−1
∗0Ω × B0) = 0.
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Fig. 10. Visualization of By on the periphery of the computational domain for 4 times (normalized in terms of Tη) during the nonlinear stage of the
instability for θ = 0◦ (corresponding to the north pole) and Co = 0.03, corresponding to 2Ω/λ∗0 ≈ 1.3. Time is here given in units of Tη = (ηtk2

1)−1.

Fig. 11. Same as Fig. 10, but for a negative value of Ω, i.e., Co = −0.03, corresponding to 2Ω/λ∗0 ≈ −1.3.

Fig. 12. Visualization of By on the periphery of the computational domain for 4 times (normalized in terms of Tη) during the nonlinear stage of the
instability for θ = 45◦ and Co = 0.03, corresponding to 2Ω/λ∗0 ≈ 1.3.

Fig. 13. Visualization of By on the periphery of the computational domain for 4 times (normalized in terms of Tη) during the nonlinear stage of the
instability for θ = 90◦ (corresponding to the equator) and Co = 0.013, corresponding to 2Ω/λ∗0 ≈ 0.5.

At intermediate latitudes, i.e., when the angle spanned by Ω
and g is in the range of 0◦ to 90◦ colatitude, the magnetic field
pattern propagates slowly in the negative x direction, corre-
sponding to poleward migration. The significance of this result
is unclear. Had it been equatorward migration, one might have
been tempted to associate this with the equatorward migration of
the magnetic flux belts in the Sun from which sunspots emerge.
On the other hand, at the equator this migration corresponds

to prograde rotation, which is a clear effect seen in the Sun
where magnetic tracers are seen to rotate faster than the ambient
plasma, i.e., in the prograde direction (Gizon et al. 2003). Even
sunspots rotate faster than the gas itself (Pulkkinen & Tuominen
1998).

One of our goals for future work is to verify the present find-
ings in direct numerical simulations. Such simulations would
also allow us to determine new turbulent transport coefficients,
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similar to the qp parameter invoked in the present study. Such
additional parameters yield new effects, some of which could be
important for applications to the Sun.

Finally, we end with a comment on the issue of scale separa-
tion. As discussed above, in solar mixing length theory, the cor-
relation length of the turbulent eddies is expected to scale with
the pressure scale height such that kfHρ is constant and about 2.4
(Kemel et al. 2012d). Theoretical considerations have shown fur-
ther that the growth rate of NEMPI is proportional to kfHρ. Since
rotation is known to decrease the size of the turbulent eddies,
i.e., to increase the value of kf , one might be tempted to specu-
late that rotation could even enhance the growth rate of NEMPI.
However, in view of the present results, this now seems unlikely.
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