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Abstract The negative effective magnetic pressure instability discovered recently in direct
numerical simulations (DNSs) may play a crucial role in the formation of sunspots and ac-
tive regions in the Sun and stars. This instability is caused by a negative contribution of
turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent con-
tributions) and results in the formation of large-scale inhomogeneous magnetic structures
from an initially uniform magnetic field. Earlier investigations of this instability in DNSs
of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of
large plasma β are now extended into the regime of larger scale separation ratios where the
number of turbulent eddies in the computational domain is about 30. Strong spontaneous
formation of large-scale magnetic structures is seen even without performing any spatial
averaging. These structures encompass many turbulent eddies. The characteristic time of
the instability is comparable to the turbulent diffusion time, L2/ηt, where ηt is the turbu-
lent diffusivity and L is the scale of the domain. DNSs are used to confirm that the effec-
tive magnetic pressure does indeed become negative for magnetic field strengths below the
equipartition field. The dependence of the effective magnetic pressure on the field strength
is characterized by fit parameters that seem to show convergence for larger values of the
magnetic Reynolds number.
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1. Introduction

The 11-year solar activity cycle manifests itself through a periodic variation of the sunspot
number. Sunspots consist of vertical magnetic fields with a strength of up to 3 kG in their
center (see, e.g., Parker, 1979; Ossendrijver, 2003). It is generally believed that these fields
also continue in a similarly concentrated fashion beneath the surface in the form of mag-
netic flux tubes or fibers (Parker, 1982). It was thought that fibral magnetic fields constitute
a lower energy state and might therefore be preferred (Parker, 1984). Tube-like magnetic
fields were frequently seen in hydromagnetic turbulence simulations (Nordlund et al., 1992;
Brandenburg, Procaccia, and Segel, 1995; Brandenburg et al., 1996), yet those tubes were
similar to the vortex tubes in hydrodynamic turbulence. Such vortex tubes have typical di-
ameters comparable to the viscous length; similarly, the aforementioned magnetic tubes seen
in simulations have a thickness comparable to the resistive length. However, for the Sun, the
resulting tube thickness would be too small to be relevant for sunspots.

At the surface, strong magnetic flux concentrations also form in regions of strong flow
convergence, but the size of these regions is too small for sunspots, because sunspots are
usually much bigger than a single granular convection cell. In fact, a typical sunspot can
have a diameter of some 30 pressure scale heights. The tremendous size of sunspots has
therefore been used as an argument that they do not form near the surface, but at much
greater depths near the bottom of the convection zone. At the bottom of the convection zone
the convection cells are big enough and could in principle be responsible for producing
much bigger flux concentrations. Magnetic flux tubes can also form through the action of
shear, as shown by various simulations (Cline, Brummell, and Cattaneo, 2003; Guerrero and
Käpylä, 2011). However, again it is possible that the size of such flux structures is related to
the resistive scale and therefore too small. While shear is likely an important ingredient of
the solar dynamo, it remains unclear whether the resulting magnetic tubes are really able to
produce sunspots as a result of their piercing through the solar surface and, more importantly,
whether one should consider them as being tied to the deep shear layers of the Sun.

In this paper we discuss an alternative scenario in which sunspots are shallow phenomena
that are not anchored at the bottom of the convection zone. Various mechanisms have been
discussed, but of particular interest here are mechanisms that are based on the suppression of
turbulence by magnetic fields. In the mechanism of Kitchatinov and Mazur (2000) it is the
suppression of the turbulent heat flux, while in the mechanism of Rogachevskii and Kleeorin
(2007) it is the suppression of the turbulent hydromagnetic pressure. Both mechanisms lead
to a linear large-scale instability in a stratified medium. However, these mechanisms may be
of different importance in different layers.

In this study we focus mainly on the second mechanism, which has recently been studied
in direct numerical simulations (DNSs) as well as in mean-field calculations. This mecha-
nism is called the negative effective magnetic pressure instability (NEMPI). It is a convective
type instability that is similar to the interchange instability in plasmas (Tserkovnikov, 1960;
Newcomb, 1961; Priest, 1982) and the magnetic buoyancy instability (Parker, 1966). How-
ever, the free energy in interchange and magnetic buoyancy instabilities is due to the gravi-
tational field, while in NEMPI it is provided by the small-scale turbulence. NEMPI is caused
by the suppression of turbulent hydromagnetic pressure by the mean magnetic field. When
the hydrodynamic Reynolds number is larger than unity and the mean magnetic field is
less than the equipartition field strength, the negative turbulent contribution to the mean
Lorentz force is large enough so that the effective mean magnetic pressure (the sum of
turbulent and non-turbulent contributions) becomes negative (Kleeorin, Rogachevskii, and
Ruzmaikin, 1989, 1990; Rogachevskii and Kleeorin, 2007). This is the main reason for the
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excitation of the large-scale instability that results in the formation of large-scale inhomo-
geneous magnetic structures.

The effect of the suppression of the turbulent heat flux has not yet been studied as ex-
tensively as NEMPI. An exception is the work of Kitchatinov and Olemskoy (2006), who
have used the model of Kitchatinov and Mazur (2000) to study the decay of sunspots. More-
over, there is now some evidence that the effects anticipated by Kitchatinov and Mazur
(2000) may have already been in operation in various simulations of solar convection where
the spontaneous formation of pores has been seen (Stein et al., 2011). Such pores are of
the size of several granules, but one may hope that the step toward structures of the size
of active regions is a quantitative one that is controlled by the amount of flux present.
Another example is the large-eddy simulation of Kitiashvili et al. (2010), where an im-
posed vertical large-scale magnetic field is concentrated into giant vortices. This result is
reminiscent of that of Tao et al. (1998), who found a segregation into magnetized and
nearly unmagnetized regions in stratified convection simulations. However, it has not yet
been possible to obtain large-scale magnetic structures resembling sunspots, except in mod-
els with a strong imposed magnetic flux tube structure at the bottom of the domain (see,
e.g., Rempel, Schüssler, and Knölker, 2009; Rempel et al., 2009; Cheung et al., 2010;
Rempel, 2011a, 2011b). Such simulations demonstrate quite clearly that many aspects of
sunspot formation are now well understood. However, the physics involved in these simu-
lations must become part of a larger picture in which the need for manually imposed flux
concentrations is relaxed by self-consistently modeling their formation. Whether such flux
concentrations originate from the tachocline (e.g., Cally, Dikpati, and Gilman, 2003) or from
the upper layers remains an open question (Brandenburg, 2005). Here we focus on the latter
scenario, where both NEMPI and the suppression of convective heat flux have been dis-
cussed.

In the rest of this paper, we focus on NEMPI, which was first found in mean-field calcula-
tions of a stratified layer (Kleeorin, Mond, and Rogachevskii, 1996; Rogachevskii and Klee-
orin, 2007; Brandenburg, Kleeorin, and Rogachevskii, 2010; Kemel et al., 2012). However,
those results remained unconvincing until NEMPI was also discovered in DNS (Branden-
burg et al., 2011, hereafter BKKMR). It is therefore most appropriate to begin our discussion
with the latter.

2. The Model

Following the earlier work of BKKMR, we solve the equations for the velocity U, the mag-
netic vector potential A, and the density ρ,

ρ
DU
Dt

= −c2
s ∇ρ + J × B + ρ(f + g) + ∇ · (2νρS), (1)

∂A
∂t

= U × B + η∇2A, (2)

∂ρ

∂t
= −∇ · ρU, (3)

where ν is the kinematic viscosity, η is the magnetic diffusivity due to Spitzer conductiv-
ity of the plasma, B = B0 + ∇ × A is the magnetic field, B0 = (0,B0,0) is the imposed
uniform field, J = ∇ × B/μ0 is the current density, μ0 is the vacuum permeability, and
Sij = 1

2 (∂iUj + ∂jUi) − 1
3δij∇ · U is the traceless rate of strain tensor. The forcing func-

tion f consists of random, white-in-time, non-polarized plane waves with a certain average
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wavenumber kf. The forcing strength is such that the turbulent rms velocity is approximately
independent of z with urms = 〈u2〉1/2 ≈ 0.1cs. We consider a domain of size Lx × Ly × Lz

in Cartesian coordinates (x, y, z), with periodic boundary conditions in the x and y direc-
tions and stress-free perfectly conducting boundaries at top and bottom (z = ±Lz/2). The
volume-averaged density is therefore constant in time and equal to its initial value, ρ0 = 〈ρ〉.
The gravitational acceleration g = (0,0,−g) is chosen such that k1Hρ = 1, which leads to a
density contrast between bottom and top of exp(2π) ≈ 535, where k1 = 2π/Lz is the lowest
wavenumber in the domain and Hρ = c2

s /g is the density scale height. Thus Lz/Hρ = 2π ,
so the domain extends in the vertical direction over approximately six scale heights.

Our simulations are characterized by the scale separation ratio, kf/k1, the fluid Reynolds
number Re ≡ urms/νkf, the magnetic Prandtl number PrM = ν/η, and the magnetic Reynolds
number ReM ≡ Re PrM. Following earlier work (Brandenburg et al., 2012), it is clear that
NEMPI is more effective for small values of PrM, so here we choose PrM = 0.5 and ReM

in the range 0.7 – 70. The magnetic field is expressed in units of the local equipartition field
strength, Beq = √

μ0ρurms, while B0 is specified in units of the volume-averaged value,
Beq0 = √

μ0ρ0urms. Note that Beq(z) = Beq0
√

ρ(z)/ρ0. In addition to visualizations of the
actual magnetic field, we also monitor �By = By − B0, where By is an average over y and
a certain time interval �t . Time is expressed in eddy turnover times, τto = (urmskf)

−1. This
is the relevant adjustment time to the application of a magnetic field, for example. It is also
the relevant time scale for small-scale dynamo action. For comparison, we also consider
the turbulent-diffusive time scale, τtd = (ηt0k

2
1)

−1, where ηt0 = urms/3kf is the estimated
turbulent magnetic diffusivity. This is the time scale relevant for mean-field phenomena such
as those discussed here. Another diagnostic quantity is the rms magnetic field in the Fourier
mode of k = k1, referred to as B1, which is taken here as an average over 2 ≤ k1z ≤ 3, and is
close to the top at k1z = π (note that B1 does not include the imposed field B0 at k = 0). We
have chosen this z range because it is the one where the instability appears first; therefore,
it is best seen in that range.

The simulations are performed with the PENCIL CODE,1 which uses sixth-order explicit
finite differences in space and a third-order accurate time stepping method. We use numer-
ical resolutions of 1283 and 2563 mesh points when Lx = Ly = Lz, and 1024 × 1282 when
Lx = 8Ly = 8Lz. To capture mean-field effects on the slower turbulent-diffusive time scale,
which is τtd/τto = 3k2

f /k2
1 times slower than the dynamical time scale, we perform simula-

tions for several thousand turnover times.

3. Results

In simulations, the clearest indication of a spontaneous flux concentration is seen when the
scale separation ratio is large. In BKKMR, we only used kf/k1 = 15. Here we consider
calculations where this ratio is twice as large. A useful diagnostic is the magnetic field
averaged along the direction of the imposed field, i.e., along the y direction. In particular,
we shall be looking at the y component of the field, i.e., 〈�By〉y/Beq. To see the effect even
more clearly, we perform an additional time average over about 100 turnover times. This
average is then referred to as 〈�By〉yt . In Figure 1 we show 〈�By〉yt /Beq for kf/k1 = 30. The
other parameters are ReM = 18 and PrM = 0.5. An inhomogeneous magnetic structure forms
first near the surface (at t/τtd = 0.79), but then the structure propagates downward. This is

1http://pencil-code.googlecode.com.

http://pencil-code.googlecode.com
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Figure 1 Visualizations of 〈�By 〉y(x, z, t) for different times. Time is indicated in turbulent–diffusive
times, (ηt0k2

1)−1, corresponding to about 5000 turnover times, i.e., t = 5000/urmskf, and the dimensions
in the horizontal and vertical directions are in units of Hρ . ReM = 18 and PrM = 0.5.

consistent with our interpretation that this is caused by negative effective magnetic pressure
operating on the scale of many turbulent eddies. Indeed, a local decrease of the effective
magnetic pressure must be compensated by an increase in gas pressure, which implies higher
density, so the structure becomes heavier and sinks in the nonlinear stage of NEMPI. This
is also seen in three-dimensional visualizations without averaging; see Figure 2 with the
same parameters as in Figure 1. The top view of this figure justifies our assumption that
the structures are two dimensional, and that averaging over the y direction was therefore
meaningful.

To confirm that NEMPI really is a large-scale instability, we would expect to see an ex-
ponential growth phase. This is shown in the right-hand panel of Figure 3, where we show
the growth of B1 versus time. We recall that B1 measures the magnetic field variation near
the top layer in 2 ≤ k1z ≤ 3; note that the equipartition field used for normalization is also
averaged over this layer. We give time both in turbulent-diffusive times (lower abscissa)
as well as in eddy turnover times (upper abscissa). We do see that there is an exponen-
tial growth phase which lasts for about one turbulent-diffusive time; i.e., the growth rate is
comparable to (ηt0k

2)−1, where ηt ≈ urms/3kf is the expected turbulent magnetic diffusivity
(Sur, Brandenburg, and Subramanian, 2008). However, compared with the eddy turnover
time, (urmskf)

−1, the turbulent-diffusive time scale is 3(kf/k1)
2 times slower. This illustrates

that NEMPI is indeed a very slow process compared with, for example, the saturation of the
overall rms magnetic field (left-hand panel of Figure 3).
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Figure 2 Visualizations of By on the periphery of the domain for different times, indicated in turbulent–
diffusive times, for the same run as in Figure 1.

Figure 3 Time dependence of Brms (left panel) and B1 (right panel) for the same run as in Figure 1, where
kf/k1 = 30 and B0/Beq0 = 0.05.

Given that the magnetic field structures sink through this layer during the late nonlinear
evolution, it is not surprising that B1 in Figure 3 drops after having reached a maximum at
tηt0k

2
1 ≈ 1.

While the rate of NEMPI may be too slow to explain the relatively rapid appearance of
sunspots on a time scale of days, it would explain how one can produce magnetic structures
on length and time scales much bigger than the naturally occurring scales in the upper layers
of the Sun. This size discrepancy is exactly one of the reasons why one normally places the



Spontaneous Formation of Magnetic Flux Concentrations 327

Figure 4 Time dependence of Brms (left panel) and B1 (right panel) for a run used in BKKMR with
kf/k1 = 15 and B0/Beq0 = 0.05, but for a resolution of 2563 mesh points.

Figure 5 Same as Figure 1, but for the run with kf/k1 = 15. ReM = 36 and PrM = 0.5.

formation of active regions at the bottom of the convection zone (Golub et al., 1981). Here
we see a clear example that this conclusion may not be correct.

Next, we turn to a simulation where the scale separation ratio, kf/k1, is only half as big,
i.e., kf/k1 = 15. In that case we also see an exponential growth phase, but the growth is
slower (even in terms of turbulent-diffusive times), lasts longer, and amplifies B1 only by
about one order of magnitude; see Figure 4. Although there is also a slight decline of B1

after the end of the exponential growth phase, this decline appears to be milder and the
structures do not seem to sink to the same extent as in the case with kf/k1 = 30, as can be
seen from visualizations of 〈�By〉yt in Figure 5. These structures are also poorly discernible
in individual snapshots; see Figure 6.

Again, in agreement with related work involving the suppression of turbulent heat flux,
the most unstable mode has a horizontal wavelength comparable to the vertical scale height
of the layer; see Figure 2 of Kitchatinov and Mazur (2000). For NEMPI this is shown in
Figure 7, where we compare an instantaneous plot of 〈�By〉y(x, z) with a time-averaged
one, 〈�By〉yt , making the appearance of large-scale structures more pronounced. Next, in
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Figure 6 Visualizations of By on the periphery of the domain for the run with kf/k1 = 15 and two times
that are also shown in Figure 5. Note some slight enhancement of the field in the left part of the domain at
late times.

Figure 7 Visualization of By(x, z) for an elongated box (1024 × 1282 mesh points) with ReM = 36 at
a time during the statistically steady state. The top panel shows the y average 〈�By 〉y/Beq at one time
while the lower panel shows an additional time average 〈�By 〉yt /Beq covering about 80 turnover times. The
dimensions in the horizontal and vertical directions are Hρ , so the extent is 16πHρ × 2πHρ .

Figure 8 we compare cross sections of �By(x) (for fixed values of y, z, and t ; top panel)
with corresponding y averages (middle panel) and yt averages (bottom panel). Here, ReM =
36, kf/k1 = 15, and B0/Beq0 = 0.05. Without averaging, no clear magnetic structure is seen
yet, but the structures become clearly more pronounced with y and t averaging. Runs with
similar parameters have been shown in BKKMR for a computational domain whose x extent
is 2π/k1 instead of 16π/k1.

The large-scale flux concentrations have an amplitude of only B1 ≈ 0.1Beq and are there-
fore not easily seen in single snapshots, where the field reaches peak strengths compara-
ble to Beq. Furthermore, as for any linear instability, the flux concentrations form a repeti-
tive pattern, and are in that sense similar to flux concentrations seen in the calculations of
Kitchatinov and Mazur (2000) that were based on the magnetic suppression of the turbulent
heat flux. However, there are indications that, at larger values of ReM, flux concentrations
occur more rarely, which might be more realistic in view of astrophysical applications.

4. Quantifying the Negative Effective Magnetic Pressure Effect

An important condition for the formation of structures by the mechanisms of Kitchatinov
and Mazur (2000) and Rogachevskii and Kleeorin (2007) is sufficient scale separation. In
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Figure 8 x dependence of the
field for an elongated box
(1024 × 1282 mesh points) with
ReM = 36 at k1z = 2 (i.e., near
the top of the domain) showing
�By/Beq at y = 0 (top panel),
its y average 〈�By 〉y/Beq
(middle panel), as well as an
additional time average
〈�By 〉yt /Beq (bottom panel)
covering about 80 turnover times.
The dash-dotted line gives the
level of the imposed field.

other words, both the suppression of convective heat flux and the suppression of total effec-
tive pressure have in common that they only work if a substantial number of eddies is in-
volved in a turbulent structure under consideration. If this is not the case, turbulent transport
coefficients become increasingly inefficient. This is a natural feature of large-scale effects
such as this one. Here, we mean by turbulent transport coefficients any of the mean-field
coefficients that relate correlation functions of small-scale quantities to expressions given in
terms of large-scale quantities.

Small- and large-scale quantities refer here simply to a suitably defined averaging proce-
dure so that the velocity U, for example, can be split into a mean (or large-scale) quantity
U and a fluctuation u = U − U. An important example of a turbulent transport coefficient
is the turbulent viscosity that emerges when relating the Reynolds stress uiuj to the spatial
derivatives of the mean flow U in the averaged momentum equation,

∂

∂t
ρ Ui = − ∂

∂xj

(ρ UiUj + ρ uiuj + · · ·). (4)

Here, ρ is the average density, and correlations with density fluctuations are neglected. The
simplest parameterization for uiuj is

uiuj = −νt(Ui,j + Uj,i) − μtδij∇ · U, (5)

where νt is the turbulent shear viscosity and μt is the turbulent bulk viscosity. This relation is
also known as the Boussinesq ansatz, especially when contrasted with representations where
the 
 effect is included, which is responsible for producing differential rotation in the Sun
(Rüdiger, 1989). However, here we shall focus on magnetic effects.

In general, when there are magnetic fields, the right-hand side of equation of motion (4)
must be replaced by the sum of Reynolds and Maxwell stresses

�
f
ij ≡ ρ uiuj − bibj /μ0 + 1

2
b2/μ0, (6)

where the superscript f indicates contributions from the fluctuating field. In the absence of a

mean magnetic field, this stress, �
f,0
ij , has finite contributions from νt, μt, the 
 effect, and

perhaps other terms. We are now interested in the excess,

��
f
ij = �

f,B
ij − �

f,0
ij , (7)
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that is caused solely by the presence of B. The only tensors that can be constructed with B

are those proportional to δij B
2

and BiBj . This leads to the ansatz

��
f
ij = qsBiBj/μ0 − 1

2
qpδij B

2
/μ0. (8)

Note in particular the definition of the signs of the terms involving the functions qs(B)

and qp(B). This becomes clear when writing down the mean Maxwell stress resulting from
both mean and fluctuating fields, i.e.,

−BiBj/μ0 + 1

2
δij B

2
/μ0 + ��

f
ij = −(1 − qs)BiBj/μ0 + 1

2
(1 − qp)δij B

2
/μ0 + · · · (9)

Thus, the signs are defined such that for positive qs and qp the effects of magnetic stress
and magnetic pressure are reduced and the signs of the net effects may even change.
Equations (8) and (9) have been derived using the spectral τ relaxation approach (Klee-
orin, Rogachevskii, and Ruzmaikin, 1990; Kleeorin, Mond, and Rogachevskii, 1996;
Rogachevskii and Kleeorin, 2007) and the renormalization procedure (Kleeorin and Ro-
gachevskii, 1994).

A broad range of different DNSs in stratified turbulence (Brandenburg et al., 2011, 2012)
or turbulent convection (Käpylä et al., 2011) have now confirmed that qp is positive for
ReM > 1, but qs is small and perhaps even negative. A positive value of qs (but with large
error bars) was originally reported for unstratified turbulence (Brandenburg, Kleeorin, and
Rogachevskii, 2010). Later, stratified simulations with isothermal stable stratification (Bran-
denburg et al., 2012) and convectively unstable stratification (Käpylä et al., 2011) have
shown that it is small and negative. Nevertheless, qp(B) is consistently larger than unity
provided ReM > 1 while B/Beq is below a certain critical value that is around 0.5. This is
shown in Figure 9, where we plot the effective magnetic pressure,

Peff(β) = 1

2

[
1 − qp(β)

]
β2 versus β ≡ |B|/Beq (10)

for different values of ReM using PrM = 0.5 and kf/k1 = 15. Note that the minimum of
Peff(β) is deeper for the case with ReM = 11 and then becomes shallower.

Note that βcrit is well below unity. This implies that it is probably not possible to pro-
duce flux concentrations stronger than half the equipartition field strength. As such, mak-
ing sunspots with this mechanism alone may be unlikely, and other effects such as that of
Kitchatinov and Mazur (2000) may be needed. Such a mechanism would possibly work pref-
erentially in the uppermost layers, provided that enough flux has already been accumulated.
This may then be achieved with NEMPI, which also works in somewhat lower layers.

To compare the resulting functions Peff(β) in a systematic fashion for different parame-
ters, we use the fit formula (Kemel et al., 2012)

qp(β) = qp0

1 + β2/β2
p

= β2
�

β2
p + β2

, where β2
� = qp0β2

p. (11)

To describe NEMPI accurately in a mean-field model, the fit should be good at low values
of β. In Figure 9 we overplot fits where the parameters qp0 and βp have been determined
such that the minimum is well reproduced. However, note that then the fit becomes poor at
larger values of β, provided ReM 	 1.

The resulting dependencies βp(ReM), β�(ReM), and qp0(ReM) are shown in Figure 10 and
compared with the results of Brandenburg et al. (2012) for kf/k1 = 5. We see that β�(ReM)

varies relatively little between 0.1 and 0.2 and is typically around 0.15. For small values of
ReM, βp(ReM) drops from 1 to 0.1 and then stays approximately constant, while qp0(ReM)
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Figure 9 Normalized effective
magnetic pressure, Peff(β), for
low (upper panel) and higher
(lower panel) values of ReM. The
solid lines represent the fits to the
data shown as dotted lines.

Figure 10 ReM dependence of
βp, β� , and qp0 for PrM = 0.5
and kf/k1 = 15 (filled symbols)
compared with those for
kf/k1 = 5 (open red symbols) of
Brandenburg et al. (2012).
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rises proportional to Re2
M for ReM ≤ 10 and then levels off at a value around 40. The values

of βp and β� are slightly bigger for larger scale separation, while the values of qp0 are more
similar.

The significance of a positive qs value comes from mean-field simulations with qs > 0 in-
dicating the formation of three-dimensional (non-axisymmetric) flux concentrations (Bran-
denburg, Kleeorin, and Rogachevskii, 2010). This result was later identified to be a direct
consequence of having qs > 0 (Kemel et al., 2012). Before making any further conclusions,
it is important to assess the effect of other terms that have been neglected. Two of them are
related to the vertical stratification, i.e. additional terms in Equation (8) that are proportional
to gigj and giBj + gjBi with g being gravity. The coefficient of the former term seems
to be small (Käpylä et al., 2011), and the second only has an effect when there is a verti-
cal or inclined imposed magnetic field. However, there could be other terms such as J iJ j

when the scale separation is not large enough. Furthermore, in astrophysically relevant sit-
uations, the flow will possess helicity, so there can be pseudo-scalar coefficients in front of
pseudo-tensors such as J iBj and J jBi . Again, none of these effects is well explored yet.

5. Conclusions

In this paper we have performed detailed investigations of NEMPI detected recently by
BKKMR. Most notably, we have extended the values of the scale separation ratio, kf/k1,
from 15 to 30. In this case, the spontaneous formation of magnetic structures becomes par-
ticularly evident and can be clearly noticed even without any averaging. Whether or not the
particular structures seen in DNS really have a correspondence to phenomena in the Sun
cannot be answered at the moment, because our model is still quite unrealistic in many re-
spects. For example, in the Sun, kf and urms change with depth, which is not currently taken
into account in DNS. Also, of course, the stratification is not isothermal, but convectively
unstable. However, DNSs in turbulent convection by Käpylä et al. (2011) have shown that
Peff(β) still has a negative minimum in that case, and it may even be deeper and wider than
in the isothermal case.

Regarding the production of sunspots, it is likely that NEMPI will shut off before the
magnetic energy density has reached values comparable with the internal energy of the gas,
as is the case in sunspots. Thus, some other mechanism is still needed to push the field of flux
concentrations into that regime. One likely candidate is the mechanism of Kitchatinov and
Mazur (2000), where the suppression of convective heat flux by the magnetic field is crucial.
This impression is further justified by recent calculations of Stein et al. (2011), where pores
are seen to form spontaneously in a simulation where horizontal magnetic fields are injected
at the bottom of the domain.

Pores are small sunspots, with scales of a few granules, so something else is needed
to make these structures bigger and to amplify this mechanism further. Again, the answer
could be related to larger scale separation, which would allow NEMPI to operate and to
concentrate the magnetic field on scales encompassing many turbulent granules. Thus, even
though NEMPI may not suffice to amplify fields to sunspot strengths, it would still be needed
to produce active regions out of which sunspots grow by mechanisms such as convective flux
suppression, as seen in models of Kitchatinov and Mazur (2000) and simulations of Stein
et al. (2011). Thus, it is important to undertake detailed investigations of instabilities in
strongly stratified layers with finite heat flux and finite magnetic field.
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