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Negative effective magnetic pressure in turbulent convection
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ABSTRACT
We investigate the effects of weakly and strongly stratified turbulent convection on the mean
effective Lorentz force, and especially on the mean effective magnetic pressure. Earlier studies
with isotropically forced non-stratified and stratified turbulence have shown that the contribu-
tion of the turbulence to the mean magnetic pressure is negative for mean horizontal magnetic
fields that are smaller than the equipartition strength, so that the effective mean magnetic
pressure that takes into account the turbulence effects can be negative. Compared with earlier
cases of forced turbulence with an isothermal equation of state, we find that the turbulence
effect is similar to or even stronger in the present case of turbulent convection. This is argued
to be due to the anisotropy of turbulence in the vertical direction. Another important difference
compared with earlier studies is the presence of an evolution equation for the specific entropy.
Mean-field modelling with entropy evolution indicates that the negative effective magnetic
pressure can still lead to a large-scale instability which forms local flux concentrations, even
though the specific entropy evolution tends to have a stabilizing effect when applied to a stably
stratified (e.g. isothermal) layer. It is argued that this large-scale instability could be important
for the formation of solar large-scale magnetic structures such as active regions.
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1 IN T RO D U C T I O N

The spatial and temporal coherence of the large-scale magnetic field
of the Sun is manifested by sunspots appearing within a certain
range of latitudes from one cycle to the next. A hydromagnetic dy-
namo is commonly held responsible for the generation and mainte-
nance of large-scale magnetic fields (cf. Moffatt 1978; Parker 1979;
Krause & Rädler 1980; Rüdiger & Hollerbach 2004; Brandenburg &
Subramanian 2005). Some models (Parker 1955, 1982, 1984;
Spiegel & Weiss 1980; Spruit 1981; Schüssler et al. 1994; Dikpati &
Charbonneau 1999), known as flux transport dynamos, rely on the
existence of strong magnetic flux tubes at the base of the convection
zone or somewhat below; see also reviews by Hughes (2007) and To-
bias & Weiss (2007). These concentrations of the magnetic field are
thought to become unstable once the field strength exceeds a critical
value. The subsequent rise of magnetic flux tubes to the surface is
used to explain active regions and sunspots. Such models, however,
face a number of serious issues: first, the required strength of the
magnetic flux tubes is of the order of 105 G (D’Silva & Choudhuri
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1993), which is expected to be a hundred times the equipartition
strength which is at odds with estimates that the tachocline becomes
unstable already when fields of the order of 103 G are present (e.g.
Arlt, Sule & Rüdiger 2005). Such strong fields are also hard to
produce by a turbulent dynamo (Guerrero & Käpylä 2011).

An alternative scenario for the large-scale solar magnetic field is
that it is maintained within the convection zone by a distributed dy-
namo, which generates diffuse sub-equipartition strength magnetic
fields (e.g. Stix 1976; Brandenburg 2005; Käpylä, Korpi & Tuomi-
nen 2006). Unlike the flux-transport dynamo, a distributed dynamo
does not directly explain the existence of sunspots and active re-
gions. The alternative idea that sunspots have their origin within the
convection zone and that they might thus be shallow phenomena
is supported by observations showing that the rotation rate of the
Sun, as measured by sunspots, depends monotonically on their age
so that young spots are the fastest and oldest spots are the slowest
(Pulkkinen & Tuominen 1998; Brandenburg 2005). If one imagines
sunspots floating in the plasma, the rotation rate of the youngest
spots corresponds to roughly that at r = 0.95 R�. The decreas-
ing rotation rate as a function of age is consistent with older spots
being anchored at increasingly higher layers where � is smaller
due to its negative radial gradient near the surface; see fig. 4 of
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Benevolenskaya et al. (1999). This suggests that sunspots may form
near the surface of the Sun rather than through the buoyant rise of
coherent flux tubes from the tachocline. This is therefore compati-
ble with the distributed dynamo picture provided the diffuse fields
within the convection zone can form concentrations like sunspots
near the surface (Brandenburg 2005).

A promising mechanism that can form strong concentrations from
an initially uniform magnetic field was suggested by Kleeorin et al.
(1989) and Kleeorin, Rogachevskii & Ruzmaikin (1990) who con-
sidered the effects of turbulence or turbulent convection on the
large-scale Lorentz force. This work has been elaborated upon in
a number of subsequent papers (Kleeorin & Rogachevskii 1994;
Kleeorin, Mond & Rogachevskii 1996; Rogachevskii & Kleeorin
2007). They find that, for a given range of large-scale magnetic
field strengths, there is a negative turbulence contribution to the
mean magnetic pressure, and the effective mean magnetic pressure
that accounts for the turbulence effects can be negative. This results
in an excitation of a large-scale instability. The growth rate of the
instability increases as a function of density stratification (Kemel
et al. 2012b). In the Sun the density drops steeply in the outermost
layers, which favours the development of this instability there.

The strongly stratified large-eddy simulations of Ustyugov (2009)
and Kitiashvili et al. (2010) may already have detected magnetic
flux concentrations in turbulent convection formed from initially
uniform vertical magnetic fields. Note also that a segregation into
strongly and weakly magnetized regions in magneto-convection has
been observed in numerical simulations at large aspect ratios by Tao
et al. (1998) and Tian & Petrovay (2012), which may have its ori-
gin in some mean-field effect of the type considered here. Also,
simulations of Stein et al. (2011) with a horizontal uniform field at
the bottom of the domain show emergence of magnetic flux struc-
tures, while a number of numerical studies (e.g. Schüssler & Vögler
2006; Martı́nez, Hansteen & Carlson 2008; Rempel, Schüssler &
Knölker 2009) use strongly non-uniform fields as initial or bound-
ary conditions. The origin of such non-uniform fields is therefore
not addressed in these latter studies.

Direct numerical simulations (DNS) of homogeneous (Branden-
burg, Kleeorin & Rogachevskii 2010, hereafter BKR) and density
stratified (Brandenburg et al. 2012, hereafter BKKR) forced turbu-
lence have shown that the effective magnetic pressure is negative for
field strengths below about 40 per cent of the equipartition value,
provided the magnetic Reynolds number exceeds unity. However,
definitive proof of an instability associated with the negative effec-
tive magnetic pressure phenomenon came only more recently with
DNS of forced turbulence that have sufficiently many turbulent ed-
dies in the simulation domain (Brandenburg et al. 2011; Kemel
et al. 2012a). This work has only become possible due to earlier
DNS (BKR; Kemel et al. 2012b) exploring first the relevant pa-
rameter regime. In the present study, we investigate the effect of
turbulent convection on the effective mean Lorentz force in DNS
and study the formation of large-scale magnetic structures in mean-
field models.

2 EF F E C T I V E M E A N LO R E N T Z F O R C E

In this section we state the underlying equations, highlighting the
difference to earlier work where anisotropic contributions from
gravity were either weak or absent.

2.1 Governing equations

In this study we are mainly interested in the effects of turbulent
convection on the mean Lorentz force. To this end, we consider the

momentum equation

∂

∂t
ρ Ui = − ∂

∂xj

�ij + ρgi, (1)

where g is the acceleration due to gravity,

�ij = ρ UiUj + δij

(
p + 1

2
B2

)
− BiBj − 2νρ Sij (2)

is the momentum stress tensor, U and B are the velocity and mag-
netic fields, p and ρ are the fluid pressure and density, δij is the
Kronecker tensor, ν is the kinematic viscosity, and

Sij = 1

2
(∂iUj + ∂jUi) − 1

3
δij∇ · U (3)

is the trace-free rate of strain tensor. Throughout this paper, we
have adopted units where the vacuum permeability μ0 is set to
unity, although we do include it in some expressions for clarity.

Neglecting correlations between velocity and density fluctuations
for low-Mach number turbulence, the averaged momentum equation
is
∂

∂t
ρ Ui = − ∂

∂xj

�ij + ρ gi, (4)

where ρ is the mean fluid density, U is the mean fluid velocity,

�ij = �
m
ij + �

f
ij is the mean momentum stress tensor split into

contributions resulting entirely from the mean field (indicated by
superscript m) and those of the fluctuating field (indicated by su-
perscript f). The tensor �

m
ij has the same form as equation (2), but

all quantities have now attained an overbar, i.e.

�
m
ij = ρ UiUj + δij

(
p + 1

2
B2

)
− BiBj − 2νρ Sij , (5)

where B is the mean magnetic field and p is the mean fluid pressure.

The contributions, �
f
ij , which result from the fluctuations of velocity

u = U − U and magnetic fields b = B − B, are determined by

�
f
ij = ρ uiuj + 1

2
δij b2 − bibj . (6)

This contribution, together with the one from the mean field, �
m
ij ,

comprises the total mean momentum tensor. The contribution from
the fluctuating fields is split into parts that are independent of the
mean magnetic field (which determine the turbulent viscosity and
background turbulent pressure) and parts that do depend on the
mean magnetic field.

In the present study, we consider turbulent convection with an
imposed uniform horizontal magnetic field, B0 = (B0, 0, 0), that
is perpendicular to the direction of gravity. This modifies the stress

tensor from �
f,0
ij to �

f,B
ij , so only the difference,

��
f
ij ≡ �

f,B
ij − �

f,0
ij , (7)

depends on the mean magnetic field B and can be parametrized as
(Rogachevskii & Kleeorin 2007)

��
f
ij = qs B2B̂i B̂j −

(
1

2
qp δij + qg ĝi ĝj

)
B2, (8)

where ĝ is the vertical unit vector directed along the gravity field,
B̂j = Bj/B is the unit vector directed along the mean magnetic
field, qs, qp and qg are functions of magnetic Reynolds and Prandtl
numbers as well as the modulus of the normalized mean field,

β = B/Beq, where B = |B|, and Beq = (ρu2)1/2 (9)

is the equipartition field strength. To derive equation (8), we use
equations (A22)–(A24) of Rogachevskii & Kleeorin (2007). The
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parametrization (8) also follows from symmetry arguments which
allow us to construct a symmetric tensor with two preferential per-
pendicular directions along the horizontal magnetic field B̂ and
vertical gravity field ĝ. Such symmetric tensor is a linear com-
bination of symmetric tensors δij, B̂i B̂j and ĝi ĝj . (In the case of
an oblique imposed magnetic field, there would be an additional
contribution.)

The effective mean Lorentz force that takes into account the
turbulent convection effects reads

ρ FM
i = −∇j

(
1

2
B2δij − BiBj + ��

f
ij

)

= − 1

2
∇i

[
(1 − qp) B2

] + ĝi ∇z

(
qg B2

)
+ B · ∇ [

(1 − qs) B
]
. (10)

The analytic expressions for the non-linear quenching functions,
qp(β), qs(β) and qg(β), for turbulent convection have been derived
in Rogachevskii & Kleeorin (2007). Their asymptotic formulae are
given below. For weak mean magnetic fields, 4β � R−1/4

m , the
functions qp, qs and qg are given by

qp(β) = 4

5

(
ln Rm + 4

45

)
− 7

3
a∗ + 16 
2

0

9 H 2
ρ

,

qs(β) = 8

15

(
ln Rm + 2

15

)
, qg(β) = 8a∗ − 8 
2

0

3 H 2
ρ

;

for R−1/4
m � 4β � 1, these functions are

qp(β) = 16

25

[
5| ln(4β)| + 1 + 32 β2

]
− 7

3
a∗ + 16 
2

0

9 H 2
ρ

,

qs(β) = 32

15

[
| ln(4β)| + 1

30
+ 12β2

]
,

qg(β) = 8a∗ − 8 
2
0

3 H 2
ρ

,

while for strong fields, 4β � 1, they are

qp(β) = 1

6β2

(
1 + 3 
2

0

H 2
ρ

)
+ πa∗

80β
,

qs(β) = π

48β3
+ 3πa∗

160β
, qg(β) = 3πa∗

40β3
− 3 
2

0

4 H 2
ρ β2

.

Here, Rm = 
0 uums/η is the magnetic Reynolds number based on the
integral scale of turbulent convection, 
0, and the root-mean-square
(rms) value of the velocity, urms, η is the magnetic diffusion due to
the electrical conductivity of the fluid, and Hρ is the density scale
height. The parameter a∗ characterizes turbulent convection and is
determined from the budget equation for the total energy, yielding

a−1
∗ = 1 + [

νt(∇U)2 + ηt(∇ B)2/ρ
]
/gF∗,

where ν t is the turbulent viscosity, ηt is the turbulent magnetic
diffusivity, F∗ = uz s ′ is the vertical heat flux from the background
turbulent convection, and s′ are fluctuations of the specific entropy.

2.2 Turbulent contributions to effective Lorentz force

To study the effects of turbulent convection on the Reynolds and
Maxwell stresses, and hence on the effective Lorentz force from
the mean field, we need to determine the functions qp(β), qs(β)

and qg(β) in DNS. Allowing here for the possibility of small-scale
dynamo action, equations (6)–(8) yield

�ρuiuj + 1

2
δij�b2 − �bibj

=
[
qsB̂i B̂j −

(
1

2
qp δij + qg ĝi ĝj

)]
B2.

(11)

Here, �ρuiuj = ρuiuj−ρu0iu0j and �bibj = bibj−b0ib0j , where
subscripts 0 indicate values in the absence of the mean magnetic
field. To obtain thee independent equations for the three unknowns,
we multiply equation (11):

(i) by ĝi ĝj ,

�ρu2
z + 1

2
�b2 − �b2

z = −
(

1

2
qp + qg

)
B2, (12)

(ii) by B̂i B̂j (defining uB̂ = u · B̂0 and bB̂ = b · B̂0):

�ρu2
B̂

+ 1

2
�b2 − �b2

B̂
= −

(
1

2
qp − qs

)
B2, (13)

(iii) and compute the trace of equation (11),

�ρu2 + 1

2
�b2 = −

(
3

2
qp + qg − qs

)
B2. (14)

Equations (12)–(14) yield the functions qp(β), qs(β) and qg(β):

qp(β) B
2 = −2�ρu2

y − �b2 + 2�b2
y, (15)

qs(β) B
2 = −�ρu2

y + �ρu2
x + �b2

y − �b2
x, (16)

qg(β) B
2 = −�ρu2

z + �ρu2
y + �b2

z − �b2
y . (17)

Using equations (15)–(17), we determine the functions qp(β), qs(β)
and qg(β) from DNS in Section 3. In all those cases, overbars
denote averages over x, y and t during the statistically steady state,
corresponding to a time interval �t of up to a thousand turnover
times, i.e. �turmskf = O(1000).

3 D I R E C T N U M E R I C A L S I M U L AT I O N S

3.1 DNS model

We use two different set-ups when studying the effects of convec-
tion on the mean Lorentz force: (i) a weakly stratified model, similar
to that used in Käpylä, Korpi & Brandenburg (2010), without over-
shoot layers; and (ii) a strongly stratified set-up, similar to that in
Käpylä, Korpi & Brandenburg (2009), including upper and lower
overshoot layers. In both cases, we use a Cartesian domain with
Lx = Ly = 5d, where d is the depth of the convectively unstable
layer. The convective layer is situated at 0 < z < d in both set-ups. In
the strongly stratified set-up, the z-coordinate runs from −0.85d <

z < 1.15. We solve a set of hydromagnetic equations

∂A
∂t

= U × B − ημ0 J, (18)

DU
Dt

= − 1

ρ
∇p + g + 1

ρ
J × B + 1

ρ
∇ · 2νρS, (19)

D ln ρ

Dt
= −∇ · U, (20)

T
Ds

Dt
= 1

ρ
∇ · K∇T + 2νS2 + ημ0

ρ
J2 − �cool, (21)
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where D/Dt = ∂/∂t + U · ∇ is the advective time derivative, A is
the magnetic vector potential, B = ∇ × A + B0 is the magnetic
field, B0 = (B0, 0, 0) is the imposed field, J = μ−1

0 ∇ × B is the
current density, η and ν are the magnetic diffusivity and kinematic
viscosity, respectively, K is the heat conductivity, ρ is the density,
U is the velocity, s is the specific entropy, and g = −g ẑ is the
gravitational acceleration. The fluid obeys an ideal gas law p =
ρe(γ − 1), where p and e are the pressure and internal energy,
respectively, and γ = cP/cV = 5/3 is the ratio of specific heats at
constant pressure and volume, respectively. The specific internal
energy per unit mass is related to the temperature via e = cVT , and
the rate of strain tensor S is given by equation (3). The stratification
in the hydrostatic initial state can be described by a polytrope with
index m = 1 in the weakly stratified case, and the stratified three-
layer set-up is described by polytropic indices (m1, m2, m3) = (3,
1, 1). In the latter set-up, a cooling term �cool operates in the region
z > 1, keeping the layer isothermal. The density contrast across
the full domain, �ρ = ρbot/ρ top, is 1.2 (runs A) and 320 (runs B,
see Table 1). In the latter case, the density changes by a factor
of roughly 13 within the convectively unstable layer. Typical flow
patterns from both set-ups are shown in Fig. 1. In all simulations,
we use the PENCIL code.1

The horizontal boundaries are periodic. In the weakly stratified
case, we keep the temperature fixed at the top and bottom bound-
aries, whereas in the more strongly stratified set-up the upper bound-
ary is isothermal and a constant flux of energy is applied at the lower
boundary by fixing the temperature gradient. For the velocity we
apply impenetrable, stress-free conditions according to

∂zUx = ∂zUy = Uz = 0. (22)

For the magnetic field, we use vertical field conditions

Bx − B0 = By = 0. (23)

Dimensionless quantities are obtained by setting

d = g = ρ0 = cP = μ0 = 1, (24)

where ρ0 is the fluid density at zm = 1
2 d . The units of length, time,

velocity, density, specific entropy and magnetic field are then

[x] = d, [t] = √
d/g, [U ] = √

dg,

[ρ] = ρ0, [s] = cP, [B] = √
dgρ0μ0. (25)

The simulations are controlled by the following dimensionless pa-
rameters: thermal and magnetic diffusion in comparison to viscosity
are measured by the Prandtl numbers

Pr = ν

χ0
, Pm = ν

η
, (26)

where χ0 = K/(cPρ0) is the reference value of the thermal diffu-
sion coefficient measured in the middle of the layer (zm) of the
non-convecting hydrostatic reference initial state. The efficiency of
convection is characterized by the Rayleigh number

Ra = gd4

νχ0

(
− 1

cP

ds

dz

)
zm

, (27)

which is again determined from the initial non-convecting state at
zm. The entropy gradient can be presented in terms of logarithmic
temperature gradients(

− 1

cP

ds

dz

)
zm

= ∇ − ∇ad

HP
, (28)

1 http://pencil-code.googlecode.com

Table 1. Summary of the runs. Here, Ma = urms/
√

dg,
and the imposed field in normalized form is given by B̃0 =
B0/Beq, where Beq is the volume-averaged equipartition
field. The last column gives the density contrast, �ρ, over
the entire domain. The Prandtl number is equal to unity in
all runs. We use grid resolutions 1282 × 64 (runs A1–A24),
2562 × 128 (runs A25–A29) and 2562 × 192 (runs B1–B8).

Run Ma Ra Rm Pm B̃0 �ρ

A0h 0.068 106 – – – 1.2

A1 0.068 106 11 0.2 0.07 1.2
A2 0.066 106 11 0.2 0.15 1.2
A3 0.059 106 9 0.2 0.34 1.2
A4 0.055 106 9 0.2 0.54 1.2
A5 0.052 106 8 0.2 0.78 1.2
A6 0.053 106 8 0.2 0.95 1.2
A7 0.059 106 9 0.2 1.17 1.2
A8 0.066 106 11 0.2 1.52 1.2

A9 0.068 106 22 0.4 0.07 1.2
A10 0.065 106 21 0.4 0.15 1.2
A11 0.055 106 18 0.4 0.36 1.2
A12 0.051 106 16 0.4 0.59 1.2
A13 0.048 106 15 0.4 0.83 1.2
A14 0.059 106 16 0.4 1.01 1.2
A15 0.061 106 19 0.4 1.15 1.2
A16 0.066 106 21 0.4 1.51 1.2

A17 0.065 106 51 1.0 0.08 1.2
A18 0.061 106 49 1.0 0.16 1.2
A19 0.051 106 41 1.0 0.39 1.2
A20 0.047 106 37 1.0 0.64 1.2
A21 0.047 106 37 1.0 0.86 1.2
A22 0.050 106 39 1.0 1.01 1.2
A23 0.059 106 47 1.0 1.18 1.2
A24 0.069 106 55 1.0 1.46 1.2

A25h 0.058 4.2 × 106 – – – 1.2

A25 0.058 4.2 × 106 92 1.0 0.09 1.2
A26 0.044 4.2 × 106 70 1.0 0.46 1.2
A27 0.040 4.2 × 106 63 1.0 0.76 1.2
A28 0.042 4.2 × 106 66 1.0 0.96 1.2
A29 0.047 4.2 × 106 75 1.0 1.07 1.2

B0h 0.032 1.2 × 107 – – – 320
B1 0.032 1.2 × 107 51 1.0 0.01 320
B2 0.031 1.2 × 107 49 1.0 0.07 320
B3 0.028 1.2 × 107 45 1.0 0.23 320
B4 0.027 1.2 × 107 43 1.0 0.32 320
B5 0.027 1.2 × 107 43 1.0 0.41 320
B6 0.026 1.2 × 107 42 1.0 0.61 320
B7 0.025 1.2 × 107 40 1.0 0.78 320
B8 0.025 1.2 × 107 40 1.0 0.92 320

with ∇ = (∂ ln T /∂ ln p)zm , ∇ad = 1 − 1/γ , and HP being the
pressure scale height at z = zm.

The effects of viscosity and magnetic diffusion are quantified
respectively by the fluid and magnetic Reynolds numbers

Re = urms

νkf

, Rm = urms

ηkf

= Pm Re, (29)

where urms is the rms value of the velocity and kf = 2π/d is the
wavenumber corresponding to the depth of the convectively unstable
layer. Again, it is convenient to measure the magnetic field strength
in terms of the equipartition value. The values of these parameters
used in different runs are given in Table 1.
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Figure 1. Velocity component Uz at the periphery of the domain from hydrodynamical runs A25h (�ρ = 1.2, left) and B0h (�ρ = 320, right). In both cases
the top and bottom slices show Uz near the top and bottom of the convectively unstable layer, respectively.

3.2 Effective mean Lorentz force from DNS

We now turn to DNS models of turbulent convection to determine
the coefficients qp, qs and qg using equations (15)–(17). First, we
perform purely hydrodynamical simulations to determine the turbu-
lent background velocity u2 in the absence of magnetic fields. No
dynamo action occurs in runs A1–A16 and B1–B8, whereas in runs
A17–A24 the dynamo is growing very slowly, and in A25–A29 a
small-scale dynamo is operating. We find that the critical Rm for
Pm = 1 is between 50 and 60, which is almost two times higher than
in the case Pm = 5 studied earlier (Käpylä, Korpi & Brandenburg
2008). The hydrodynamical simulations have been run sufficiently
long (roughly 250 turnover times) so that it is thermally relaxed and
the turbulence is statistically steady. The last snapshot of the hy-
drodynamical run is used as the initial condition for all subsequent
simulations where a uniform magnetic field is imposed.

Next, we consider an imposed horizontal field, B0 = (B0, 0, 0).
Earlier numerical studies have shown that the effective mean mag-
netic pressure that takes into account turbulence effects is negative
when the mean magnetic fields are smaller than the equipartition
strength in non-stratified (BKR) and stratified (BKKR) forced tur-
bulence. In the present study we investigate this issue for turbulent
convection with weak and strong density stratification. Let us define
the dimensionless effective mean magnetic pressure Peff as

Peff = 1

2
(1 − qp)B

2
/B2

eq, (30)

where qp = qp(B/Beq) and Beq = Beq(z). Following earlier work
(BKKR; Kemel et al. 2012a), we characterize our numerical results
for qp by a fit of the form

qp = qp0

1 + B2/B2
p

, (31)

where qp0 and Bp are fit parameters, which are determined by match-

ing the shape of Peff near its minimum and where dPeff/dB
2

< 0,
which is the range relevant to the negative magnetic pressure in-
stability (Rogachevskii & Kleeorin 2007; BKKR). We also use the
same ansatz for qs and qg, and define in this way the fit parameters

Figure 2. Effective magnetic pressure as a function of the mean magnetic
field from weakly stratified runs A1–A29 with an imposed horizontal field
B0 = B0 x̂. The black stars, red diamonds, blue crosses and yellow triangles
denote simulations with Rm ≈ 10, 20, 50 and 70, respectively. We omit
points near the boundaries at z/d < 0.35 and z/d > 0.65. The two curves
correspond to approximate fits determined by equation (31), with qp0 = 40
and Bp = 0.1Beq (upper curve, small Rm), and qp0 = 130 and Bp = 0.08Beq

(lower curve, larger Rm), respectively.

qs0, qg0, Bs and Bg. Note that, due to turbulent pumping effects, the
mean magnetic field B in general also depends on height – even in
the absence of a large-scale dynamo; see Käpylä et al. (2010) and
BKKR.

Results for the effective mean magnetic pressurePeff from weakly
and strongly stratified runs are shown in Figs 2–3. Since B and Beq

are functions of z, we obtain for each combination of imposed field
strength and Rm a family of solutions for qp, qs and qg. We neglect
points near the top and bottom boundaries to avoid boundary effects.
The result is shown in Fig. 2. For weak stratification (runs A1–
A29), a negative contribution of turbulent convection to the mean
magnetic pressure is found if the mean magnetic field is smaller
than the equipartition value. The maximum of this contribution is
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Figure 3. Same as Fig. 2 but for runs B1–B8 for Rm = 40–50. The solid
line corresponds to a fit with qp0 = 95 and Bp = 0.04Beq.

attained near B ≈ 0.5Beq x̂ and it tends to be somewhat stronger for
larger magnetic Reynolds number.

In the strongly stratified runs (see Fig. 3), we also find a negative
contribution of turbulent convection to the mean magnetic pressure,
but it is constrained to somewhat lower values (B < 0.4Beq x̂) of
the mean magnetic field, and the effective mean magnetic pressure,
Peff , has a weaker minimum than in the weakly stratified case.
It appears that we find universal scaling for Peff as a function of
B/Beq as was obtained in BKKR for stratified forced turbulence,
provided that only data points near the middle (0.35 < z/d < 0.65)
of the convectively unstable layer are used. Furthermore, our highly
stratified simulations show that the minimum of Peff and the range
of the mean magnetic field in which Peff is negative are roughly
consistent with those found by BKKR.

Due to anisotropy of turbulent convection, there is a significant
contribution to the effective mean magnetic pressure characterized
by the term qg. This function affects the vertical component of the
effective mean Lorentz force; see the second term on the right-
hand side of equation (10). Our DNS shows that the dimensionless
quantity qg is mostly positive (see Figs 4 and 5), which implies
that this effect increases the negative contribution of anisotropic
turbulent convection to the effective mean magnetic pressure. Note
that the DNS in stratified forced turbulence of BKKR has not found
strong anisotropic contributions as characterized by the term qg. On

Figure 4. qg as a function of the mean magnetic field from runs A1–A29.
The symbols and colours are the same as in Fig. 2. The solid line applies to
the fit parameters qg0 = 200 and Bg = 0.025Beq.

Figure 5. Same as Fig. 4 but for runs B1–B8. The fit parameters are qg0 =
3 and Bg = 0.5Beq.

Figure 6. Effective magnetic tension parameter as a function of the mean
magnetic field from runs A1–A29. The symbols and colours are the same
as in Fig. 2. The solid line applies to the fit parameters qs0 = −30 and Bs =
0.07Beq.

the other hand, the negative contribution of anisotropic turbulent
convection to the effective mean magnetic tension, as characterized
by positive values of qs, has neither been found in our DNS (see
Figs 6 and 7) nor in those of BKKR.

In Fig. 8 we show the magnetic field component Bx from run
B3 with an imposed horizontal magnetic field B ≈ 0.23Beq x̂. The
structure of the magnetic field, however, does not show clear signs
of magnetic flux concentrations in the DNS. Even after additional
averaging over time and along the x-direction no spatial modulation
of the magnetic field is seen. The simulations of Brandenburg et al.
(2011) strongly suggest that the reason for this is related to lack
of scale separation. As demonstrated in fig. 17 of BKKR, at larger
scale separation the turbulent diffusivity on the scale of the domain
becomes weak enough to allow for the development of large-scale
magnetic structures.

4 ENTRO PY EVOLUTI ON IN MEAN-FI EL D
M O D E L S

4.1 Mean-field equations

We now apply a mean-field model similar to that of BKR for adi-
abatic stratification and those of BKKR and Kemel et al. (2012b)
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Figure 7. Same as Fig. 6 but for runs B1–B8. The solid line applies to the
fit parameters qs0 = −8 and Bs = 0.09Beq.

Figure 8. Magnetic field component Bx from run B3 with an imposed
horizontal field B0 x̂ at Rm = 45, Pm = 1, a density contrast of 320, and
B0/Beq = 0.23.

for isothermal stratification. Both types of models are in principle
able to display a large-scale instability provided the domain is big
compared with the typical size of turbulent eddies, i.e. the scale
separation ratio is large. In the mean-field calculations of BKKR it
was shown that in models with too low scale separation ratio the
turbulent magnetic diffusivity and turbulent viscosity (which are
proportional to the scale of the energy-carrying turbulent eddies)
was too large, so the instability is too weak or not excited. Even
if the scale separation ratio is big enough, the instability can only
develop if dPeff/dβ2, taken at the value of the imposed field, is
negative inside the domain (BKKR; Kemel et al. 2012b). If these
conditions are satisfied, the maximum growth rate of the instability
was shown to be independent of the strength of the imposed field
for models with isothermal background stratification.

Whenever the instability is possible, its non-linear development
appears to be rather similar for isothermal and adiabatic background
stratification. In particular, Kemel et al. (2012b) found that for qs =
0, the eigenmode shows no variation along the direction of the ap-
plied magnetic field. Conversely, if the model is two-dimensional
with no extent in the y-direction, which will be assumed here, the
results are independent of the value of qs0, so we take in the fol-
lowing qs0 = 0. Furthermore, for large magnetic Reynolds number,
simulations at different scale separation ratios (Kemel et al. 2012a)
suggest qp0 = 40 and βp = 0.05, which were therefore also the
fiducial parameters used in the study of Kemel et al. (2012b) and
will therefore also be used here. The results of the DNS presented
here suggest somewhat larger values of qp0 of 130 for set A and 95

for set B, but this could be a consequence of intermediate magnetic
Reynolds numbers for which qg0 is known to reach a peak (see fig.
10 of Kemel et al. 2012a). The dependence on the parameter qg0

has not yet previously been determined, so this will be done at the
end of Section 4.3. In all other cases, we keep qg0 = 0. The imposed
field strength B0 is chosen such that the minimum of Peff occurs
near the top boundary and thus dPeff/dβ2 < 0 in the domain. We
express B0 in units of Beq0 = Beq(0), which is the equipartition field
strength at z = 0.

The novel aspect of the present work is that an evolution equa-
tion for the mean specific entropy is included. Thus, we solve the
following system of equations for the mean vector potential A, the
mean velocity U , the mean density ρ and the mean specific entropy
s, in the form

∂A
∂t

= U × B − ηTμ0 J, (32)

∂U
∂t

= −U · ∇U − 1

ρ
∇p + g + FM + FK

tot, (33)

∂ρ

∂t
= −U · ∇ρ − ρ∇ · U, (34)

∂s

∂t
= −U · ∇s − 1

ρT
∇ · F + 2νT S

2 + ηtμ0

ρ
J

2 − 1

T
�cool, (35)

where B = B0 + ∇ × A is the mean magnetic field including the
imposed field, ηT = ηt + η and νT = ν t + ν are total (turbulent and
microphysical) magnetic diffusivity and viscosity, respectively, the
effective mean Lorentz force is given by equation (10), and the total
viscous force, FK

tot = (2/ρ)∇ · (ρνT S). We assume ν t/ηt = 1 for the
turbulent magnetic Prandtl number. The mean temperature obeys
(γ − 1)cpT = γp/ρ = c2

s . The boundary conditions are stress-free
for the velocities, and perfect conductor boundary conditions for the
magnetic field as in previous mean field models. In the following,
we consider two types of background stratification: isothermal and
adiabatic.

4.2 Isothermal background stratification

We begin by assessing the effects of entropy evolution in the
isothermal models studied by BKKR and Kemel et al. (2012b).
In general, the gas will not stay isothermal, because the tempera-
ture changes due to adiabatic expansion and compression. Indeed,
in an isothermally stratified layer a rising blob cools adiabatically,
becomes denser or heavier, and thus experiences a restoring force
with the Brunt–Väisälä frequency N, where N2 = −g · ∇s/cp =
(γ − 1)g/γHρ , with Hρ being the density scale height. It turns out
that in such a case the negative effective magnetic pressure insta-
bility can be stabilized. To study this in more detail, we allow for
cooling term of the form �cool = (T − T0)/cpT τ , where T is the
mean temperature, T0 is the reference temperature of the layer and
τ is a cooling time. For the energy flux F, we assume F = −K∇T .

In Fig. 9 we show the evolution of the normalized rms value of
the mean flow, U rms/urms, for different cooling times τ and B0 =
0.1Beq0. The instability is found to operate only when τN is less
than a critical value of the order of unity. The largest growth rate
seen in Fig. 9 is ≈ 60ηtk

2
1 . The earlier results with an isothermal

equation of state are recovered in the limit τN → 0, in which case a
growth rate of ≈ 110ηtk

2
1 is found; see fig. 4 of Kemel et al. (2012b),

where the growth rate is normalized by (νt + ηt)k2
1 .
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Figure 9. Evolution of U rms/urms for different cooling times τ normalized
by the Brunt–Väisälä frequency N.

4.3 Adiabatic background stratification

Owing to the stabilizing properties of stable stratification, we now
study the evolution of the instability in an adiabatically stratified
layer, where this stabilizing effect is absent and the squared sound
speed is given by c2

s = g(z − z∞). Our set-up is similar to that of
BKR, who considered a reference height z = 0, at which initially
cs = cs0 and ρ = ρ0, where cs0 and ρ0 are normalization constants.
Length is normalized with respect to the density scale height Hρ0 =
c2

s /g at z = 0. This implies that z∞ = (3/2)Hρ0. In BKR, the domain
extended in the x-direction from −5Hρ0 to +5Hρ0, but the resulting
horizontal wavelength of the fastest growing eigenfunction was
then about half the x extent. Therefore, we consider here a smaller
domain, with −3Hρ0 < x < 3Hρ0 and −5Hρ0 < z < Hρ0. As in
BKR, we choose B0/Beq0 = 0.01. Here we use F = −χtρT ∇s

for the energy flux which is appropriate for a turbulent layer, and
ν t/χ t = 1 is the turbulent Prandtl number, where χt is the turbulent
heat conductivity.

It turns out that heating is weak, so we ignore the cooling term,
i.e. τ → ∞. In Fig. 10 we show velocity vectors together with By as
well as s for three different times close to saturation. Note that there
is a weak enhancement of s at the location where the instability
develops a positive maximum. This mean entropy enhancement is
associated with turbulent viscous heating, in particular the contribu-
tion ∼ νT(∇ · U), which is important near the surface, even though
the magnetic flux concentration later descends to greater depths.

Finally, we use this model to assess the dependence on the pa-
rameter qg0, which can directly contribute to the negative effec-
tive magnetic pressure instability. According to the DNS, we have
qg0 ≈ 200 with βg ≡ Bg/Beq = 0.025 for set A (Fig. 4) and qg0

≈ 3 with βg = 0.5 for set B (Fig. 5). Fig. 11 indicates that the qg

effect would be detrimental to the instability for set A, and negli-
gible for set B. Furthermore, near qg0 = 0 the dependence of the
growth rate on qg0 is not monotonous: for qg0 = 3 the growth rate is
slightly enhanced and for qg0 = 10 it is decreased, but enhanced for
qg0 = −10 by a similar amount. The saturation level is only weakly
affected by the value of qg0. We also checked that, as expected from
earlier work (Kemel et al. 2012b), the value of qs0 affects neither
the growth rate nor the saturation value of U rms.

5 C O N C L U S I O N S

The present simulations have demonstrated that for weak strati-
fication, and magnetic fields less than the equipartition value, a

Figure 10. Velocity vectors superimposed on colour scale representations
of By (left) as well as colour scale representations of s (right) for three
different times close to saturation. Specific entropy is shown in units of s0 =
10−4cp.

Figure 11. Evolution of U rms/urms for adiabatic stratification using differ-
ent combinations of qg0 and βg = Bg/Beq.

destabilising contribution to the mean Lorentz force is obtained in
the presence of turbulent convection. A similar effect is found for
strong density stratification, although the effect is weaker and lim-
ited to a narrower range in magnetic fields. Our DNS results agree at
least qualitatively with those from non-stratified (BKR) and strat-
ified (BKKR) forced turbulence and with theoretical predictions
(Rogachevskii & Kleeorin 2007), although the minimum effective
magnetic pressure can now be even more negative and the range
where it is negative extends now to nearly 0.5Beq.

Such negative contributions to the effective magnetic pressure
facilitate an instability that can lead to the generation of flux con-
centrations from an initially uniform magnetic field. This could
explain the origin of active regions and sunspots. However, no clear
signs of instability are found from DNS in turbulent convection.
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A possible reason is that the scale separation in the DNS is
insufficient, as has been demonstrated by Brandenburg et al. (2011),
who found conclusive evidence of the operation of the negative ef-
fective magnetic pressure instability in DNS in forced turbulence
with a scale separation ratio of 15, using also spatial–temporal av-
eraging. For a scale separation ratio of 30, the effect is stronger and
flux concentrations can already be seen without averaging (Kemel
et al. 2012a). On the other hand, if the scale separation ratio is as
low as 5, no flux concentrations have been found (BKKR).

So far, all studies of the negative effective magnetic pressure ef-
fect have only considered the case of a horizontal mean field. While
this is the most relevant case in view of applications to stars with
differential rotation, the case of a vertical field is also of interest
and might lead to additional effects. Another important extension of
our work is to the case where small-scale dynamo action becomes
important. This effect is expected to lower the relative importance
of the negative effective magnetic pressure effect, although this will
depend on the value of the magnetic Prandtl number, which is yet
another important parameter whose effect on the instability is not
yet sufficiently well understood. Finally, we have mentioned the
possibility of finite scale separation effects, which would mean that
the scale of the magnetic structure will be important in determin-
ing the efficiency of the negative effective magnetic pressure effect.
The hope is that such considerations will provide some insight as
to why we have not yet seen clear evidence for the negative effec-
tive magnetic pressure instability in the present DNS. Once these
various issues are better understood, it becomes timely to improve
mean-field modelling. Obviously, all the mean-field models of the
negative effective magnetic pressure instability have ignored real-
istic profiles of density and turbulent intensity. Also, the mean-field
models should really be three-dimensional to include the possibility
that magnetic structures break up along the direction of the mean
field and form bipolar regions, as was seen in models of BKR.
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