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ABSTRACT

To understand the basic mechanism of the formation of magnetic flux concentrations, we determine by direct
numerical simulations the turbulence contributions to the mean magnetic pressure in a strongly stratified isothermal
layer with large plasma beta, where a weak uniform horizontal mean magnetic field is applied. The negative
contribution of turbulence to the effective mean magnetic pressure is determined for strongly stratified forced
turbulence over a range of values of magnetic Reynolds and Prandtl numbers. Small-scale dynamo action is shown
to reduce the negative effect of turbulence on the effective mean magnetic pressure. However, the turbulence
coefficients describing the negative effective magnetic pressure phenomenon are found to converge for magnetic
Reynolds numbers between 60 and 600, which is the largest value considered here. In all these models, the turbulent
intensity is arranged to be nearly independent of height, so the kinetic energy density decreases with height due to
the decrease in density. In a second series of numerical experiments, the turbulent intensity increases with height
such that the turbulent kinetic energy density is nearly independent of height. Turbulent magnetic diffusivity and
turbulent pumping velocity are determined with the test-field method for both cases. The vertical profile of the
turbulent magnetic diffusivity is found to agree with what is expected based on simple mixing length expressions.
Turbulent pumping is shown to be down the gradient of turbulent magnetic diffusivity, but it is twice as large as
expected. Corresponding numerical mean-field models are used to show that a large-scale instability can occur in
both cases, provided the degree of scale separation is large enough and hence the turbulent magnetic diffusivity
small enough.

Key words: magnetic fields – magnetohydrodynamics (MHD) – sunspots – turbulence

Online-only material: color figures

1. INTRODUCTION

In a stratified layer, magnetic fields do not normally stay
in equilibrium but tend to become buoyantly unstable (e.g.,
Newcomb 1961; Parker 1966, 1979a; Gilman 1970a, 1970b;
Hughes & Proctor 1988; Cattaneo & Hughes 1988; Wissink et al.
2000; Isobe et al. 2005; Kersalé et al. 2007), see also reviews by
Hughes (2007) and Tobias & Weiss (2007). This mechanism,
related to magnetic buoyancy, is generally invoked in order to
understand magnetic flux emergence at the solar surface (e.g.,
Hood et al. 2009). The mechanism does not explicitly rely upon
the existence of turbulence, except that the origin of the Sun’s
magnetic field is generally believed to be turbulent in nature
(see Solanki et al. 2006 for a recent review).

Turbulent dynamos work under a variety of circumstances
and are able to produce weakly nonuniform large-scale magnetic
fields (see Brandenburg & Subramanian 2005a for a review). At
first glance, this generation process is counter-intuitive, because
it works against the well-known concept of turbulent mixing
(Taylor 1921; Prandtl 1925). However, it is now well established
that turbulence can also cause non-diffusive effects. In addition
to the well-known α effect that is generally believed to be
responsible for the Sun’s large-scale field (Moffatt 1978; Parker
1979b; Krause & Rädler 1980), there is also the Λ effect that
is responsible for driving the differential rotation of the Sun
(Rüdiger 1980, 1989; Rüdiger & Hollerbach 2004). Yet another
import effect is turbulent pumping or γ effect (Rädler 1969),
which corresponds to the advection of mean magnetic field
that is not associated with any material motion. The γ effect
appears, for example, in non-uniform turbulence and transports

mean magnetic field down the gradient of turbulent intensity,
which is usually downward in turbulent convection. However,
this effect can also be modified by the mean magnetic field itself
(Kitchatinov et al. 1994; Rogachevskii & Kleeorin 2006), which
can then correspond to a mean-field buoyancy effect.

When invoking the concept of magnetic buoyancy, one
must ask what the effect of turbulence is in this context. The
turbulent pressure associated with the convective fluid motions
and magnetic fluctuations is certainly not negligible and reacts
sensitively to changes in the background magnetic field. The
main reason for this is that the kinetic energy density in isotropic
turbulence contributes to the total turbulent dynamic pressure
twice as much as turbulent magnetic energy density (Kleeorin
et al. 1989, 1990; Rogachevskii & Kleeorin 2007, hereafter
referred to as RK07):

Pturb = 1

3
ρu2 +

1

6
b2/μ0. (1)

Here, Pturb is the total turbulent dynamic pressure caused by
velocity and magnetic fluctuations, u and b, respectively, μ0
is the vacuum permeability, ρ is the fluid density, and overbars
indicate ensemble averaging. On the other hand, any rise in local
turbulent magnetic energy density must be accompanied by an
equal and opposite change of turbulent kinetic energy density
in order to obey approximate energy conservation, i.e.,

1

2
ρu2 +

1

2
b2/μ0 ≡ Etot ≈ const. (2)

Direct numerical simulations (DNSs) in open systems with
boundaries (Brandenburg et al. 2010, hereafter BKR) show
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that when the mean magnetic field B is much smaller than the
equipartition field strength, Beq, the total energy is conserved,
while when B � Beq, Etot decreases slightly with increasing
mean field, and it varies certainly less than either ρu2 or b2 (see
Figure 1 of BKR). This clearly implies that, upon generation
of magnetic fluctuations, the total turbulent dynamic pressure
shows a reversed (destabilizing) feedback (Kleeorin et al. 1990),
i.e.,

Pturb = −1

6
b2/μ0 + 2Etot/3, (3)

so both an increase of b2, as well as an increase of the imposed
field, which decreases Etot, tend to lower the value of Pturb. For
strongly anisotropic turbulence, Equation (3) is also valid ex-
cept for the change of the 1/6 factor into 1/2 (RK07). This
phenomenology was supported by analytical studies using the
spectral τ relaxation approximation (Kleeorin et al. 1990) and
the renormalization approach (Kleeorin & Rogachevskii 1994)
and led to the realization that the effective mean magnetic pres-
sure force (the sum of turbulent and non-turbulent contributions)
is reduced and can be reversed for certain mean magnetic field
strengths. Under certain conditions (e.g., strong density strat-
ification), this can cause a magnetic buoyancy instability via
perturbations of a uniform mean magnetic field in stratified tur-
bulence (Kleeorin et al. 1993, 1996). Later, when considering
the effect of turbulent convection on the mean Lorentz force,
RK07 suggested that magnetic flux concentrations in the Sun
such as active regions and even sunspots might be formed by
this reversed feedback effect.

Most of the numerical simulations on magnetic flux emer-
gence (e.g., Stein & Nordlund 2001; Schüssler & Vögler 2006;
Martı́nez et al. 2008; Rempel et al. 2009) have been done us-
ing initial conditions with an already existing strongly inho-
mogeneous large-scale magnetic field. Recent simulations by
BKR, Kitiashvili et al. (2010), and Käpylä et al. (2012) study
the formation of large-scale magnetic structures from an ini-
tially uniform large-scale magnetic field. In particular, large-
eddy simulations of solar magneto-convection by Kitiashvili
et al. (2010) give indications that the spontaneous formation
of long-lived magnetic flux concentrations from an initial ver-
tical uniform magnetic field might be possible, although the
underlying mechanism in their simulations still remains to be
clarified. A similar type of magnetic flux concentration with
vertical imposed field has been seen in convection simulations
at large aspect ratios by Tao et al. (1998), which show a seg-
regation into magnetized and weakly magnetized regions. One
of the differences compared with BKR is the vertical orienta-
tion of the imposed magnetic field in turbulent convection. In
forced and convection-driven turbulence simulations of BKR
and Käpylä et al. (2012), respectively, the imposed magnetic
field was a horizontal one. Other possibilities for causing flux
concentrations include turbulent thermal collapse, whereby the
magnetic field suppresses the convective energy flux, leading to
local cooling, and thus to contraction and further enhancement
of magnetic flux (Kitchatinov & Mazur 2000). By considering
an isothermal equation of state with isothermal stratification, we
will exclude this possibility in our present work, allowing thus
a more definitive identification of the effect of density-stratified
turbulence on the mean Lorentz force.

Meanwhile, DNSs of forced turbulence with an imposed hor-
izontal magnetic field have demonstrated conclusively that in a
simulation with an isothermal equation of state and an isother-
mal density stratification, spontaneous formation of magnetic

structures (Brandenburg et al. 2011; Kemel et al. 2012a) does
indeed occur. Those simulations used a scale separation ratio
of 1:15 and 1:30, i.e., the computational domain must be big
enough to encompass at least 15 (or even 30) turbulent eddies
in one coordinate direction. It does then become computation-
ally expensive to achieve large Reynolds numbers, because their
value is based on the size of the energy-carrying turbulent eddies
rather than the size of the computational domain. In the present
paper, we restrict ourselves to a scale separation ratio of 1:5 and
are thereby able to demonstrate convergence of the turbulence
coefficients describing the negative effective magnetic pressure
phenomenon for magnetic Reynolds numbers between 60 and
600.

The basic phenomenon of magnetic flux concentration by the
effect of turbulence on the mean Lorentz force has been studied
by BKR based on numerical solutions of the mean-field mo-
mentum and induction equations. They demonstrated the exis-
tence of a linear instability for sufficiently strong stratification.
This instability was followed by nonlinear saturation at near-
equipartition strengths. Using DNSs of forced turbulence, BKR
also verified the validity of the phenomenology highlighted by
Equation (3). However, their DNS ignored the effects of strati-
fication which would lead to additional effects such as turbulent
pumping that might oppose the instability.

Extending the DNS of BKR to the case with stratification is
therefore one of the main goals of the present paper. This will
allow us to make a meaningful comparison between DNS in a
stratified fluid and mean-field modeling. We are now also able
to present data for cases in which small-scale dynamo action is
possible. This requires that the magnetic Reynolds number be
large enough. As alluded to above, it is then advantageous to
choose a scale separation ratio that is not too extreme. While
structure formation by the negative effective magnetic pressure
phenomenon becomes impossible for small-scale separation
ratios, there is then also the advantage that the analysis becomes
more straightforward in that horizontal and time averages can
be employed. This would become problematic in the presence
of structures that would break the assumptions of stationarity
and homogeneity in the horizontal direction.

There are two other possible caveats that may result from
the simplification of using an isothermal equation of state with
isothermal stratification. First, the effects of convection and a
convectively unstable stratification on the mean Lorentz force
are ignored. Fortunately, those turn out to be weak, as shown in
a separate paper by Käpylä et al. (2012). Second, owing to the
spatial uniformity of the forcing function, u2 is nearly uniform,
so the effects of turbulent pumping down the gradient of u2 are
ignored. We refer to these as models of type U. Furthermore,
because of strong stratification of ρ, the equipartition field
strength Beq = (μ0ρu2)1/2 also varies. This has the advantage
that a single simulation with imposed field B0 spans a large
range in the relevant control parameter B0/Beq. However, in
view of applications to turbulence in stellar convection this is
unrealistic, because there ρu3 is nearly independent of height,
so Beq increases with depth only like ρ1/6. For this reason, we
also study models in which Beq is nearly constant. We refer to
these as models of type B. For this purpose, we determine first
the relevant turbulent pumping velocity which is then used in a
suitably adapted mean-field model.

We begin by discussing first the determination of turbu-
lent transport coefficients in Section 2, present our results in
Section 3, focusing especially on models of type U, turn then in
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Section 4 to models of type B, compare the results at the level
of mean-field models, and finish with a discussion of the main
differences between the magnetic buoyancy instability and the
negative effective magnetic pressure instability (NEMPI), be-
fore concluding in Section 5.

2. DNS MODEL AND ANALYSIS

We consider a cubic computational domain of size L3.
The smallest wavenumber is then k1 = 2π/L. We adopt an
isothermal equation of state with constant sound speed cs, so the
gas pressure is p = ρc2

s . The isothermal equation of state applies
to both the background flow (the hydrostatic equilibrium) and
the fluctuating flow. In the presence of gravity, g = (0, 0,−g),
where g is the constant gravitational acceleration, this leads to
an exponentially stratified density,

ρ = ρ0 exp(−z/Hρ), (4)

with a constant density scale height Hρ = c2
s /g and a nor-

malization factor ρ0. For all our calculations, we choose
k1Hρ = 1. This implies that the number of scale heights is
Δ ln ρ = L/Hρ = 2π , corresponding to a density contrast of
exp 2π ≈ 535. This state is also chosen as our initial condition.
Note that this is an equilibrium solution that is not affected by
the possible addition of a uniform magnetic field B0.

We solve the equations of compressible magnetohydrody-
namics in the form

ρ
DU
Dt

= J × B − c2
s ∇ρ + ∇ · (2νρS) + ρ( f + g), (5)

∂ A
∂t

= U × B + η∇2 A, (6)

∂ρ

∂t
= −∇ · ρU, (7)

where ν and η are, respectively, kinematic viscosity and mag-
netic diffusivity, B = B0 + ∇ × A is the magnetic field con-
sisting of an imposed uniform mean field, B0 = (0, B0, 0), and
a nonuniform part that is represented in terms of the magnetic
vector potential A, J = ∇ × B/μ0 is the current density, and
Sij = (1/2)(∂iUj +∂jUi)− (1/3)δij∇ ·U is the traceless rate of
strain tensor. The turbulence is driven with a forcing function f
that consists of non-polarized random plane waves with an av-
erage wavenumber kf = 5 k1. The forcing strength is arranged
such that the turbulent rms velocity, urms = 〈u2〉1/2, is around
0.1 cs . This value is small enough so that compressibility effects
are confined to those associated with stratification alone.

Our simulations are characterized by several nondimensional
parameters. We define the Reynolds number as Re = urms/νkf ,
the magnetic Prandtl number as PrM = ν/η, and the magnetic
Reynolds number as ReM = Re PrM . We anticipate that it
is important to have PrM < 1. However, in order to reach
somewhat larger values of ReM we now choose as our primary
model PrM = 0.5 instead of 0.25, as was the case in BKR. In
some additional cases, we span the entire range from PrM = 1/8
to PrM = 8. For large enough values of ReM and PrM , there
is small-scale dynamo action. We define the equipartition field
strength both as a function of z and for the middle of the domain,
i.e.,

Beq(z) = (μ0ρu2)1/2, Beq0 = (μ0ρ0)1/2 urms. (8)

The latter will be used to specify the normalized strength of
the imposed horizontal field, which is also independent of
height. Another alternative is to normalize by the equipartition
field strength at the top of the domain. In our models with
nearly height-independent turbulent velocity, this would make
the imposed field strength normalized by the equipartition value
at the top ≈5 times bigger.

In all cases, we adopt stress-free perfect conductor boundary
conditions at the top and bottom of the domain. The simulations
are performed with the Pencil Code,4 which uses sixth-order
explicit finite differences in space and a third-order accurate
time stepping method (Brandenburg & Dobler 2002).

In this paper, we present two groups of runs. In the first
group, we have the same forcing amplitude at all heights while
in the second group we adjust the forcing such that the rms
velocity depends on height such that the turbulent kinetic energy
density is nearly independent of height. In contrast to earlier
work where it was possible to analyze the results in terms of
volume averages, we now have to restrict ourselves to horizontal
averages which show a strong dependence on height. Thus, we
determine the contribution to the mean momentum density that
comes from the fluctuating field:

Π
f

ij = ρ uiuj +
1

2
δij b2 − bibj , (9)

where the μ0 factor is dropped from now on and overbars indi-
cate xy averages. The superscript “f ” signifies the contributions
from the fluctuating field. This, together with the contribution
from the mean field, namely,

Π
m

ij = ρ UiUj + δij

(
p +

1

2
B2

)
− BiBj − 2νρ Sij , (10)

comprises the total mean momentum tensor, and the averaged
momentum equation is given by

∂

∂t
ρ U i = −∇j

(
Π

f

ij + Π
m

ij

)
+ ρ gi. (11)

Here U and B are the mean velocity and magnetic fields, and p
is the mean fluid pressure. We are interested in the contribution
to Equation (9) that arises only from the presence of the mean
field, so we subtract the corresponding tensor components that
are obtained in the absence of the mean field. We thus define

ΔΠ
f

ij ≡ Π
f,B

ij − Π
f,0
ij , (12)

for which we make the following ansatz (RK07):

ΔΠ
f

ij = −
(

1

2
qpδij + qgĝi ĝj

)
B2 + qsBiBj , (13)

where ĝ is the unit vector in the direction of gravity and
the coefficients qp, qs, and qg are expected to be functions
of the modulus of the field, B ≡ |B|. Equation (13) can
also be obtained from symmetry arguments, i.e., in the case
of a horizontal imposed field, the linear combination of three
independent true tensors, δij , ĝi ĝj and BiBj , yields ansatz (13).

The meaning of the turbulence coefficients qp, qs, and
qg is as follows. The coefficient qp represents the isotropic
turbulence contribution to the mean magnetic pressure, while

4 http://pencil-code.googlecode.com
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qg is the anisotropic turbulence contribution to the mean
magnetic pressure, and the coefficient qs is the turbulence
contribution to the mean magnetic tension. In the theory of
RK07, the coefficients qp, qs, and qg have been obtained using
the spectral τ approach and the renormalization approach. The τ
approach has been justified in a number of numerical simulations
(Brandenburg et al. 2004; Brandenburg & Subramanian 2005b,
2007). However, if there is insufficient scale separation, higher
order terms such as J iJ j would need to be included. For helical
flows, terms involving J iBj and BiJ j , could also be present.
Such terms are not included with the uniform fields used in the
present study.

The effective mean Lorentz force that takes into account the
turbulence effects, reads

ρ FM
i = −∇j

(
1

2
B2δij − BiBj + Π

f,B

ij − Π
f,0
ij

)
. (14)

Except for the contribution proportional to ĝi ĝj and the fact that
we use here horizontal averages, Equation (13) is equivalent
to that used in BKR, where full volume averages were used.
Asymptotic expressions for the B dependence of qp, qs, and qg
are given in Appendix B. Here, we use DNS of density-stratified
turbulence to determine these coefficients. In the present case,
we have B ≈ (0, B, 0), so Equation (13) yields

ΔΠ
f

xx = − 1

2
qp B2,

ΔΠ
f

yy = −
(

1

2
qp − qs

)
B2,

ΔΠ
f

zz = −
(

1

2
qp + qg

)
B2, (15)

where we have computed ΔΠ
f

ii from DNS as

ΔΠ
f

ii = ρ
(
u2

i − u2
0i

)
+

1

2

(
b2 − b2

0

) − (
b2

i − b2
0i

)
, (16)

where no summation over the index i is assumed. The subscripts
“0” indicate values obtained from a reference run with B0 = 0.
This expression takes into account small-scale dynamo action
which can produce finite background magnetic fluctuations b0.
(Thus, the reference run is not non-magnetic.) The critical
magnetic Reynolds number for small-scale dynamo action is
between 30 and 160, depending on the value of the magnetic
Prandtl number (Iskakov et al. 2007; Brandenburg 2011).
Equation (15) is then used to obtain explicit expressions for

qp = − 2ΔΠ
f

xx/B2,

qs = (
ΔΠ

f

yy − ΔΠ
f

xx

)
/B2,

qg = − (
ΔΠ

f

zz − ΔΠ
f

xx

)
/B2, (17)

allowing qp, qs, and qg to be evaluated at each height z.

3. RESULTS

3.1. Effective Mean Magnetic Pressure

We begin by considering the turbulence effects on the
effective mean magnetic pressure using a sequence of models
of type U in which the rms velocity of the turbulence intensity

Figure 1. Visualization of ΔBy/Beq on the periphery of the computational
domain for Model U1h600 with B0/Beq0 = 0.1 at ReM ≈ 600 using 5123 mesh
points.

(A color version of this figure is available in the online journal.)

is approximately independent of height, so Beq varies like ρ1/2

and is about 23 times smaller at the top than at the bottom. In
Figure 1, we show a visualization of the departure of By from
the imposed field, ΔBy ≡ By − B0, on the periphery of the
computational domain for our model with the largest resolution
(Model U1h600; for a complete list of all models discussed in
this paper, see Table 1). It turns out that most of the variability of
the magnetic field occurs near the bottom of the computational
domain. This is caused by the local variation of Beq ∝ ρ1/2.
Therefore, B0/Beq is large in the upper parts, making it less
easy for the turbulence to produce strong fluctuations due to the
enhanced work done against the Lorentz force. By contrast, in
the lower parts, B0/Beq is small, allowing magnetic fluctuations
to be produced.

In the following, we frequently use the symbol β to denote
normalization by Beq, e.g., β = B/Beq(z). However, when
we give the strength of the (z-independent) imposed or rms
fields, we normalize with respect to Beq0, i.e., β0 = B0/Beq0
and βrms = Brms/Beq0. The symbol β used here is not to be
confused with the “plasma beta,” which denotes the ratio of gas
to magnetic pressures. To avoid confusion, we always spell out
“plasma beta” in words.

We have computed qp for all models of type U. We plot
in Figure 2 the dependence of qp on height for three different
values of B0. In the following, the case with B0/Beq0 = 0.1
will be used as our fiducial run. To improve the statistics,
we present here time-averaged results of qp, which itself is
already averaged over x and y. Error bars have been calculated
by dividing the time series into three equally long pieces and
computing the maximum departure from the total average. In
agreement with earlier work, qp is always positive and exceeds
unity when the mean magnetic field is not sufficiently strong.
This is the case primarily at the bottom of the domain (negative
values of z) where the density is high and therefore the magnetic
field, in units of the equipartition field strength, is weak. Since
B0 = const and Beq increases with depth, B0/Beq is smallest at
the bottom, so qp also increases. The sharp uprise toward the
lower boundary is just a result of the exponential increase of
the density combined with the fact that the horizontal velocity
reaches a local maximum on the boundary.
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Figure 2. Dependence of qp(z) (solid lines) with error margins (dashed lines)
as functions of z, for Models U1h70, U2h70, and U5h70 with B0 = 0.1Beq0,
B0 = 0.2Beq0, and B0 = 0.5Beq0, with ReM ≈ 70, g/c2

s k1 = 1, and a density
contrast of 530. Note that qp(z) reaches a maximum at the bottom of the domain
where B0/Beq(z) is minimal.

(A color version of this figure is available in the online journal.)

Table 1
Summary of All DNS Models Discussed in This Paper

Model ReM PrM β0 qp0 β� βrms Res.

U1h05 0.5 0.5 0.1 0.2 0.32 *0.04 642 × 128
U1h1 1.5 0.5 0.1 0.2 0.32 *0.08 642 × 128
U1h5 5 0.5 0.1 4 0.34 *0.15 642 × 128
U1h10 10 0.5 0.1 13 0.33 *0.20 1283

U1h20 23 0.5 0.1 40 0.33 *0.29 1283

U1o35 35 1 0.1 90 0.35 *0.40 1283

U1t35 35 2 0.1 70 0.34 *0.44 1283

U1f35 35 4 0.1 15 0.28 *0.44 1283

U1e35 35 8 0.1 0.2 0.32 *0.38 1283

U1h40 42 0.5 0.1 170 0.38 *0.82 1283

U1q70 70 1/4 0.1 250 0.37 0.14 1283

U1h70 70 0.5 0.1 100 0.33 0.31 1283

U1h70h 70 0.5 0.1 60 0.30 0.29 2563

U1o70 70 1 0.1 50 0.29 0.42 1283

U1t70 70 2 0.1 50 0.26 0.49 1283

U1f70 70 4 0.1 20 0.22 0.55 1283

U1e70 70 8 0.1 . . . . . . 0.49 1283

U2h70 70 0.5 0.2 130 0.35 0.31 1283

U5h70 70 0.5 0.5 200 0.39 0.31 1283

U1a140 140 1/8 0.1 200 0.31 0.43 2563

U1q140 140 1/4 0.1 40 0.27 0.49 1283

U1h140 140 0.5 0.1 50 0.27 0.53 1283

U1h250 250 0.5 0.1 40 0.20 0.68 2563

U1h600 600 0.5 0.1 40 0.22 0.82 5123

B07h35 35 0.5 0.07 . . . . . . *0.15 1283

B2h35 35 0.5 0.2 . . . . . . *0.30 1283

Notes. Here, β0 = B0/Beq0 and βrms = Brms/Beq0 denote field strengths in
equipartition units, while β� is a fit parameter that applies locally. Normally,
βrms = Brms/Beq refers to the field generated by small-scale dynamo action
in the reference run with B0 = 0, except when there is an asterisk indicating
that there is no small-scale dynamo and βrms gives the result from tangling of
the applied field in the corresponding run with B0 	= 0. Our reference model is
indicated in bold face.

The total effective magnetic pressure of the mean field (that
takes into account the effects of turbulence on the mean Lorentz
force) is given by (1/2)[1 −qp(B)]B2. This has to be compared
with the turbulent kinetic energy density, (1/2)ρu2. Small
contributions of terms ∝ qg to the effective mean magnetic
pressure are discussed in Section 3.3. In Figure 3, we plot the

Figure 3. Normalized effective mean magnetic pressure as a function of depth
for the same models as in Figure 2. Note that this function now reaches a negative
minimum somewhere in the middle of the domain.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 3, but as a parametric representation as function of
the local value of the ratio B0/Beq(z). Note that the curves for B0 = 0.1Beq0,
B0 = 0.2Beq0, and B0 = 0.5Beq0 collapse onto a single dependency. The error
range is the same as in the previous figure, but not shown for clarity.

(A color version of this figure is available in the online journal.)

effective magnetic pressure normalized by B2
eq,

Peff = 1

2
(1 − qp)B2/B2

eq, (18)

where B2
eq itself is a function of height (see Equation (8)). It

turns out that this function now reaches a negative minimum
somewhere in the middle of the domain. Work of Kemel et al.
(2012b) has shown that the regions below the minimum value
of Peff are those that can potentially display NEMPI.

We expect that qp is a function of the ratio of B/Beq. This
was observed numerically in BKR for constant Beq by varying
the value of B0 to obtain qp for a range of different simulations.
In the present case, however, Beq is a function of z, which is the
main reason why qp depends on height. In Figure 4, we plot the
effective mean magnetic pressure as a function of magnetic field
in units of the local equipartition value. Note that now all three
curves for different values of B collapse onto a single curve,
which demonstrates that the dependence of qp on both B and
z can indeed be reduced to a single dependence on the ratio
β = |B|/Beq(z).

To quantify the form of the qp(β) dependence, we used
in BKR a fit formula involving an arctan function. However,
following recent work of Kemel et al. (2012b), a sufficient and
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Figure 5. Dependence of the fit parameters on ReM using Models
U1h05–U1h600.

certainly much simpler fit formula is

qp(β) = qp0

1 + β2/β2
p

. (19)

Here, the fit parameters qp0 and βp are determined by measuring
the minimum effective magnetic pressure, Pmin = min(Peff), as
well as the position of the minimum, Bmin, where Peff(Bmin) =
Pmin. For our setups, Pmin is typically around −0.05, while
βmin = Bmin/Beq is between 0.1 and 0.2. This is remarkably
close to Figure 3 of RK07, who used the spectral τ relaxation
approximation. The fact that nearly the same functional form
for the effective magnetic pressure of the mean field is obtained,
supports the idea that this effect is robust.

For many of the models in Table 1, we have determined the
fit parameters qp0 and βp. It turns out that for small values of
ReM , qp0 increases quadratically with ReM and βp decreases like
Re−1

M . Thus, for ReM < 30, we have β2
� ≡ β2

pqp0 ≈ const. The
significance of this is that β� turns out to be nearly independent
of ReM (see Figure 5). It allows rewriting the fit formula as

qp(β) = β2
∗

β2
p + β2

, (20)

where for small values of ReM , only βp depends on ReM . In
particular, we have then βp ≈ 1.05/ReM .

The obtained scaling for qp0 ∼ 0.1Re2
M is consistent with an

estimate based on the quasi-linear calculations. This analysis is

similar to that of Rüdiger et al. (2012), except that we performed
an explicit integration in ωk-space for a power-law kinetic
energy spectrum of the background turbulence and for a Lorentz
profile for the frequency dependence of the velocity correlation
function. For β � 1, this analysis yields the expression (see
Appendix A)

qp0 = 8 − PrM
60 PrM

Re2
M, (21)

where Re2
M/PrM = ReMRe. For PrM = 1/2, we have qp =

0.25 Re2
M , which is in qualitative agreement with our scaling for

qp0. The discrepancy in the coefficient is related to the fact that
the quasi-linear approach is only valid for small magnetic and
fluid Reynolds numbers. Therefore, the limit PrM → 0 in the
framework of the quasi-linear approach only implies the case of
large magnetic diffusion η, while the case of small ν needs to
be considered in the framework of approaches that are valid for
large fluid Reynolds numbers (like the τ relaxation approach).

Looking at Table 1, it may seem surprising that qp0 can reach
values as large as 250 (see, e.g., Model U1q70 with ReM ≈ 250
and PrM = 4). However, the more relevant quantity is qp(β)β2,
which is of the order of β2

∗ for large field strengths. Summarizing
the results from Figure 5, we find

βp ≈ 1.05 Re−1
M , β� = 0.33 (for ReM < 30), (22)

and
βp ≈ 0.035, β� = 0.23 (for ReM > 60), (23)

which implies that qp(β)β2 is below 0.1 and 0.06 for the regimes
applicable to Equations (22) and (23), respectively. Also, it is
tempting to associate the sudden drop of β� from 0.33 to 0.23
with the onset of small-scale dynamo action. The fact that small-
scale dynamo action reduces the negative effect of turbulence
on the effective mean magnetic pressure was already predicted
by RK07 and is also quite evident by looking at Table 1, where
qp0 is found to reach more moderate values after having reached
a peak at ReM ≈ 30.

We reiterate that, as long as the value of the plasma beta
(i.e., the ratio of gas pressure to magnetic pressure), is much
larger than unity, our results are independent of the plasma beta.
What matters is the ratio of magnetic energy density to kinetic
energy density, not the thermal energy density. This is also
clear from the equations given in Appendix B. In the present
simulations, the plasma beta varies from between 5 and 100 at
the top to around 105 at the bottom, so the total pressure (gas
plus magnetic plus turbulent pressure) is always positive.

3.2. Dependence on Magnetic Prandtl Number

In most of the runs discussed above we used PrM = 1/2.
As expected from earlier work of RK07, the negative magnetic
pressure effect should be most pronounced at small PrM . This is
indeed confirmed by comparing with larger and smaller values
of PrM (see Figure 6, where we show the results for Models
U1q70, U1h70, U1t70, and U1e70). Here and in Table 1, the
different values of PrM are denoted by the letters “q,” “h,” “o,”
“t,” “f,” and “e,” which stand for a quarter, half, one, two, four,
and eight, while the letter “a” is used for one-eighth.

3.3. Resolution Dependence

A density contrast of over 500 may seem rather large.
However, this impression may derive from experience with
polytropic models (see, e.g., Cattaneo et al. 1991), where most
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Figure 6. Normalized effective mean magnetic pressure for different values of
PrM , for Models U1q70, U1h70, U1t70, and U1e70, where ReM ≈ 70 and
B0 = 0.1Beq0.

Figure 7. Resolution dependence of qp(By/Beq) for PrM = 1/2, ReM ≈ 70
for Models U1h70 and U1h70h using 1283 and 2563 mesh points. Error bars
are marked by the dashed lines.

(A color version of this figure is available in the online journal.)

of the density variation occurs near the surface. In our isothermal
model, the scale height is constant, so the logarithmic density
change is independent of height. Figure 7 shows that the error
bars for the 2563 run are smaller than those for the 1283 run,
and that the minimum of Peff is somewhat less shallow, but
within error bars the two curves are still comparable. Here, the
relevant input data are averaged over a time interval Δt such that
urmskf Δt is at least 1500, and that error bars, which are based
on 1/3 of that, cover thus at least 500 turnover times.

3.4. Coefficients qs and qg

Depending on the size and magnitude of the coefficients
qs and qg, their effect on the instability could be significant.
Most importantly, a positive value of qs was found to be
chiefly responsible for producing three-dimensional mean-field
structures (Kemel et al. 2012b), i.e., structures that break up in
the direction of the imposed field. The coefficient qg, on the
other hand, affects the negative effective magnetic pressure and
could potentially enhance its effect significantly (RK07).

Using Equation (15), we now determine qs and qg. The results
are shown in Figures 8 and 9 for the three imposed field strengths
considered above, where u2 is nearly independent of z, so Beq(z)
varies by a factor of exp π ≈ 23, allowing us to scan the
dependence on B/Beq in a single run. It turns out that both
qs and qg are around zero.

Figure 8. Similar to Figure 4, but for qs B2/B2
eq and now as a function of

By/Beq. Within the error range (dashed lines), qs = 0 for all field strengths.

(A color version of this figure is available in the online journal.)

Figure 9. Similar to Figure 8, but for qg. Note that qg is positive.

(A color version of this figure is available in the online journal.)

Recent DNS of stratified convection with an imposed hori-
zontal magnetic field did actually yield non-vanishing (positive)
values of qg for stratified convection (Käpylä et al. 2012). In
the present study with vertical density stratification, qg is much
smaller, but generally positive. This appears to be in conflict with
the theoretical expectation for qg given in Appendix B, where
qg = O(�2

f /H 2
ρ ) if we assume �f = 2π/kf ≈ 1.3, which

gives qg ≈ 1.2. However, without the 2π factor, we would
have �f = k−1

f = 0.2, and thus qg ≈ −0.03. Figure 9 suggests
a positive value of similar magnitude. This issue will hopefully
be clarified soon in future work.

Next, we discuss the results for qs. In BKR, there was some
evidence that qs can become positive in a narrow range of field
strengths, but the error bars were rather large. The present results
are more accurate and suggest that qs B2/B2

eq is essentially zero.
This is also in agreement with recent convection simulations
(Käpylä et al. 2012).

In summary, the present simulations provide no evidence that
the coefficients qs and qg could contribute to the large-scale
instability that causes the magnetic flux concentrations. This
is not borne out by the analytic results given in Appendix B.
The results from recent convection simulations fall in between
the analytic and numerical results mentioned above, because in
those qg was found to be positive, while qs was still found to be
small and negative (Käpylä et al. 2012).
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Figure 10. Visualization of ΔBy/Beq on the periphery of the computational domain for runs with B0/Beq0 = 0.1, 0.2, and 0.5, with Re = 70.

(A color version of this figure is available in the online journal.)

Figure 11. Normalized mean magnetic field in the direction of the imposed field
vs. height for B0 = 0.1Beq0, 0.2Beq0, and 0.5Beq0 with Re = 70.

(A color version of this figure is available in the online journal.)

4. COMPARISON OF MODELS OF TYPES U AND B

4.1. Results from DNS

As discussed in the beginning of Section 3.1, most of the
variability of the magnetic field occurs near the bottom of the
computational domain. This is also evident from Figure 10,
where we show visualizations of the y-component of the
departure from the imposed field, ΔBy , on the periphery of the
domain for Models U1h70, U2h70, and U5h70 with B0/Beq0 =
0.1, 0.2, and 0.5, respectively.

The vertical dependence of the horizontally averaged mean
magnetic field (now normalized to B0 = const) is shown
in Figure 11. We see that, especially for intermediate field
strengths, there is an increase of the magnetic field near the
top of the domain. One possibility is that this is caused by
the effect of nonlinear turbulent pumping, which might cause
the mean field to be pumped up due to the gradients of the
mean turbulent kinetic energy density in the presence of a finite
mean magnetic field (see Rogachevskii & Kleeorin 2006). This
type of pumping is different from the regular pumping down
the gradient of turbulent intensity (Rädler 1969). To eliminate
this effect, we have produced additional runs where the kinetic
energy density is approximately constant with height. This is
achieved by modulating the forcing function by a z-dependent
factor ez/Hf . We define n = Hf /Hρ and find that for n = 1.4 the
kinetic energy density is approximately independent of height
(see Figure 12).

As a consequence of reducing the turbulent driving in the
lower parts by having Beq(z) ≈ const, we allow the magnetic
field to have almost the same energy density as the turbulence,
i.e., B0/Beq(z) is approximately independent of z. This also
means that the fluctuations are now no longer so pronounced

Figure 12. Turbulent kinetic energy density vs. height for n = ∞ for B0 = 0
(dotted line) and B0 = 0.2Beq0 compared with the case for n = 1.4 and
B0 = 0.2Beq0.

Figure 13. Visualization of ΔBy/Beq on the periphery of the computational
domain for Model B1h35 with nearly uniform turbulent kinetic energy density
using Hf = nHρ with n = 1.4.

(A color version of this figure is available in the online journal.)

at the bottom of the domain (Figure 13), where Re drops to
values around 5 and the flow is no longer turbulent. However,
at the top the Reynolds number is around 120, so here the flow
is still turbulent. In Figure 14, we show the vertical dependence
of the horizontally averaged mean magnetic field in units of the
imposed field strength. Note that now the field shows an increase
toward the bottom of the domain. This effect might be related
to regular turbulent pumping (Rädler 1969), which now has a
downward component because u2 decreases with depth.

4.2. Determination of ηt and γ from the Simulations

We use the test-field method of Schrinner et al. (2005, 2007)
in the Cartesian implementation, as described by Brandenburg
et al. (2008a), to compute ηt and γ from the simulations

8
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Figure 14. Normalized mean magnetic field in the direction of the imposed field
vs. height in the case of nearly constant turbulent kinetic energy density, i.e.,
Beq(z) ≈ const, for Models B07h35 and B2h35 with B0/Beq0 = 0.07 and 0.2,
respectively.

(A color version of this figure is available in the online journal.)

Figure 15. Results for ηt and γ with the test-field method (solid lines;
error margins are shown as dashed lines) for Model B07h35. In the upper
panel, the dotted line gives 1.2 urms/3kf and the dash-dotted line represents
1.2 urms0 exp(z/Hu)/3kf . In the lower panel, the dash-dotted lines represent
−1.2 urms0 exp(z/Hu)/3kf Hu.

in the presence of the applied field. We refer to this as the
quasi-kinematic test-field method, which is applicable if the
magnetic fluctuations are just a consequence of the mean field
(see Rheinhardt & Brandenburg 2010 for details and extensions
to a fully nonlinear test-field method). For further comments
regarding the test-field method, see Appendix C. We analyze
the two setups discussed above, namely, those of type U (where
urms and hence ηt are nearly constant in height) and those of
type B (where Beq is nearly constant in height).

The set of test fields includes constant and linearly growing
ones. For both models, we use B0 = 0.01ρ1/2cs , corresponding
to B0 ≈ 0.1Beq0 for models of type U and B0 ≈ 0.07Beq0 for
model of type B. The results are shown in Figures 15 and 16
for Models B07h35 and U1h70, respectively. In Table 2, we
summarize the relevant parameters inferred for these models. It
turns out that the DNS results are well described by ηt = 1.2 ηt0,
with ηt0 = urms/3kf and urms(z) = urms0 exp(z/Hu), but
γ = −dηt/dz, i.e., without the 1/2 factor expected from the
kinematic mean-field theory (Rädler 1969).

Figure 16. Same as Figure 15, but for Model U1h70.

Table 2
Summary of Parameters Entering Models U and B

Model k̃f η̃t0 B̃eq0 β0 ReM Comment

U 15 0.0072 0.11 0.05 36 Beq = Beq0 e−z/2Hρ

U10 10 0.0048 0.11 0.05 36 Beq = Beq0 e−z/2Hρ

U5 5 0.0024 0.11 0.05 36 Beq = Beq0 e−z/2Hρ

U02 15 0.0072 0.11 0.02 36 Beq = Beq0 e−z/2Hρ

B 15 0.0024 0.036 0.05 2.5–60 ηt = ηt0 ez/2Hρ

B0 15 0.0024 0.036 0.05 2.5–60 γ = 0 assumed

Note. Tildes indicate nondimensional quantities: k̃f = kf /k1, η̃t0 = ηt0k1/cs ,

B̃eq0 = Beq0/ρ
1/2
0 cs , while β0 = B0/Beq0.

We emphasize that γ ≈ 0 for models of type U, suggesting
that additional effects owing to the mean magnetic field such
as mean-field magnetic buoyancy (Kitchatinov et al. 1994;
Rogachevskii & Kleeorin 2006) are weak (Appendix D).

4.3. Comparison with Mean-field Models

4.3.1. Basic Equations

We follow here the same procedure as BKR and consider the
equations for the mean velocity U , the mean density ρ, and the
mean vector potential A in the form

∂U
∂t

= −U · ∇U − c2
s ∇ ln ρ + g + FM + FK,tot, (24)

∂ A
∂t

= U × B + E − η J − ∇Φ, (25)

∂ρ

∂t
= −∇ · ρU, (26)

where Φ is the mean electrostatic potential, B = B0 + ∇ × A
is the mean magnetic field including the imposed field, and

ρFM = J × B +
1

2
∇(qp B2) (27)

is the effective mean Lorentz force, where we use for qp(B)
the fit formula given by Equation (19). However, in view of the
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results of Section 3.4, the qs and qg terms will now be omitted,
and

FK,tot = (νt + ν)
(∇2U + ∇∇ · U + 2S∇ ln ρ

)
(28)

is the total (turbulent and microscopic) viscous force,

E = γ × B − ηt J, (29)

is the mean electromotive force, where γ is the turbulent
pumping velocity and ηt is the turbulent magnetic diffusivity.
In our mean-field models, we assume νt/ηt = 1 (Yousef et al.
2003). The kinematic theory of Roberts & Soward (1975) and
others predicts that ηt (z) = urms(z)/3kf and γ = −(1/2)∇ηt .
It is fairly easy to assess the accuracy of these expressions by
computing turbulent transport coefficients from the simulations
using the test-field method (Schrinner et al. 2005, 2007).

A comment regarding Φ is here in order. It is advantageous
to isolate a diffusion operator of the form ηt∇2 A by using the
so-called resistive gauge in which Φ = −ηt∇ · A. This means
that the diffusion operator now becomes ηt∇2 A + (∇ · A)∇ηt

(Dobler et al. 2002). This formulation is advantageous in
situations in which ηt is nonuniform.

4.3.2. Results from the Mean-field Models

Next, we consider solutions of Equations (24)–(29) for
models of types U and B using the parameters specified in
Table 2. To distinguish these mean-field models from the DNS
results, we denote them by script letters U and B. We have
either constant ηt (Models U) or constant Beq (Models B). In
both cases, we use η = 2ν = 4×10−4cs/k1, B0 = 0.005ρ1/2cs ,
with qp0 = 40 and βp = 0.07, while Beq0 and ρ0 are given in
Table 2 and correspond to values used in the DNS. This gives
the profile of urms(z) = Beq/

√
ρ, which allows us to compute

ηt (z) = urms(z)/3kf and νt (z) = ηt (z) for an assumed value
of kf . In the DNS presented here we used kf /k1 = 5 and did
not find evidence for NEMPI, but the DNS of Brandenburg
et al. (2011) and Kemel et al. (2012a) for kf /k1 = 15 and
kf /k1 = 30, respectively, did show NEMPI, so we mainly
consider the case kf /k1 = 15, but we also consider kf /k1 = 5
and 10.

As in BKR, Equations (24)–(26) exhibit a linear instability
with subsequent saturation. However, this result is still remark-
able because there are a number of differences compared with
the models studied in BKR. First, we consider here an isother-
mal atmosphere which is stably stratified, unlike the isentropic
one used in BKR, which was only marginally stable. This under-
lines the robustness of this model and shows that this large-scale
instability can be verified over a broad range of conditions. Sec-
ond, this instability also works in situations where ηt and/or
Beq are nonuniform and where there is a pumping effect that
sometimes might have a tendency to suppress the instability.

In Figure 17, we compare the evolution of the rms velocity
of the mean flow. Note that, in contrast to the corresponding
plots in BKR, we have here normalized U rms with respect
to vA0 ≡ B0/

√
ρ0 and time is normalized with respect to

the Alfvén wave traveling time, (vA0k1)−1. This was done
because in these units the curves for Models U and B show
similar growth rates. This is especially true when the pumping
term is ignored in Model B0, where we have set artificially
γ = 0. With pumping included (as was determined from the
kinematic test-field method), the growth rate is slightly smaller
(compare dashed and dotted lines). The pumping effect does

Figure 17. Evolution of the mean velocity for Models U and B obtained by
solving the mean-field equations. “Model B0 (γ = 0)” refers to a model where
the pumping velocity is ignored. In all cases, kf /k1 = 15 is assumed. In the
inset, we compare the evolution for Model U with those for smaller values of
kf /k1 (Models U10 and U5).

not significantly affect the nonlinear saturation phase, i.e., the
late-time saturation behavior for the two versions of Model B
is similar. Instead, the saturation phase is different for Model U
compared with Model B and the saturation value is larger
for Model U. The inset of Figure 17 compares the results for
Model U (with kf /k1 = 15) with Models U10 and U5 for
kf /k1 = 10 and 5, respectively. Note that NEMPI is quite weak
for kf /k1 = 5, which is consistent with the DNS presented here.

Visualizations of the mean magnetic field as well as the mean
velocity are shown in Figure 18 for three different times near
saturation for Model U02. Here, we use a weaker imposed field,
B0 = 0.002ρ1/2cs , corresponding to B0/Beq0 = 0.02, so that
NEMPI starts closer to the surface. For B0/Beq0 = 0.05, NEMPI
starts in the middle of the domain, leaving less space before
the structures have reached the bottom of the domain. Note
the converging flows toward the magnetic structures, with the
largest velocities occurring in the upper layers where the density
is smallest.

4.3.3. Comments on the Shape of Mean-field Structures

The descending structures found in the present mean-field
calculations are qualitatively similar to those of BKR who
considered a polytropic layer. In both cases, the structures sink
and become wider. This is quite different from the behavior
of individual turbulent eddies and flux tubes that one tends
to monitor in DNS. Clearly, individual magnetic structures
experience magnetic buoyancy, where the vertical motion is
the result of a balance of magnetic buoyancy and downward
advection by the ambient flow (see Figure 10 of Brandenburg
et al. 1996). The mean-field model cannot describe individual
(small-scale) structures, although the net effect of the vertical
motion of individual structures results in a turbulent pumping
velocity γ of mean-field structures.

While turbulent downward pumping has been seen in numer-
ous DNS, the NEMPI is a new effect that has been seen so
far only in the DNS of forced turbulence in BKKMR (see also
Kemel et al. 2012a). Amazingly, those DNSs show very similar
structures resembling that of a descending “potato sack” (see
Figure 1 of BKKMR). They sink because the negative effective
magnetic pressure is compensated by increased gas pressure,
which in turn leads to larger density, so they become heavier
than the surroundings. However, these turbulent magnetic struc-
tures are only poorly associated with material motion (see the
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Figure 18. Mean magnetic field in the y-direction (color coded) together with
velocity vectors in the xz plane for Model U02. Note the spontaneous formation
of flux structures.

(A color version of this figure is available in the online journal.)

flow vectors in Figure 18). Therefore, a change of their volume
is not governed by mass conservation. In particular, these struc-
tures do not become narrower during their descent as individual
blobs do in a strongly stratified layer.

We should point out that these mean-field structures do not
always initiate at the top of the layer. The initiation height
depends on the value of z where Peff reaches a minimum.
Larger values of B0 tend to move this location downward (see
Figure 2). A more detailed exploration of this is given by Kemel
et al. (2012b).

4.3.4. Comparison with the Parker Instability

NEMPI can be understood as a generalization of the Parker
instability. This becomes evident when considering the stability

criterion of NEMPI (RK07):(
Hρ

HB

− 1

)
dPeff

dβ2

∣∣∣∣
β0

> 0, (30)

where dPeff/dβ2 = (1/2)(1 − qp − dqp/d ln β2) and HB
is the characteristic spatial scale of the mean magnetic field
variations. However, unlike the Parker instability, NEMPI can
be excited even in a uniform mean magnetic field (HB → ∞).
The source of free energy of this instability is provided by the
small-scale turbulent fluctuations. In contrast, the free energy
in the Parker’s magnetic buoyancy instability (Parker 1966) or
in the interchange instability in plasma (Tserkovnikov 1960) is
drawn from the gravitational field. In the absence of turbulence
(qp = 0), condition (30) coincides with the criterion for the
Parker’s magnetic buoyancy instability (Hρ > HB).

5. CONCLUSIONS

Our DNSs have shown that for an isothermal atmosphere
with strong density stratification the total turbulent pressure
is decreased due to the generation of magnetic fluctuations
by the tangling of an imposed horizontal mean magnetic field
by the velocity fluctuations. This phenomenon strongly affects
the mean Lorentz force so that the effective mean magnetic
pressure becomes negative. For our numerical model with
approximately uniform turbulent rms velocity, the ratio of
imposed to equipartition field strength changes with height,
because the density decreases with height, while the imposed
field is constant. This allows us to determine the full functional
form of the effective mean magnetic pressure as a function of
normalized field strength for a single run.

The form of the dependence of Peff(B/Beq) is similar to that
found for simulations under rather different conditions (with
or without stratification, with or without convection, etc.). This
dependence is found to be similar to that obtained earlier using
both analytic theory (RK07) and DNSs (BKR), and the results
are robust when changing the strength of the imposed field.

In simulations where the turbulent velocity is nearly indepen-
dent of height, the reduction of magnetic fluctuations occurs in
the upper layers where the equipartition field strength decreases
with height (models of type U). In models of type B, where
the equipartition field strength is nearly constant in height, the
magnetic fluctuations are found to be slightly stronger in the
upper parts.

In view of astrophysical applications, it is encouraging that
qp0 and βp seem to approach an asymptotic regime for ReM >
60. While it remains important to confirm this result, a number
of other aspects need to be clarified. First, the issue of finite
scale separation is important, i.e., the larger the wavenumber
of structures in the mean field relative to kf , the less efficient
the negative effective magnetic pressure will be. This needs
to be quantified. For example, in the work of Brandenburg
et al. (2011), where we had a scale separation ratio of 1:15,
magnetic structures were best seen after averaging along the
direction of the mean field. On the other hand, with a scale
separation ratio of 1:30, structures were quite pronounced
already without averaging (Kemel et al. 2012a). In the Sun, the
scale separation ratio is very large in the horizontal direction, but
in the vertical direction the system is extremely inhomogeneous
and the vertical pressure scale height increases rapidly with
depth. The significance of such effects on the negative effective
magnetic pressure effect remains still quite unclear.
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Another aspect concerns the limitations imposed by the use
of an isothermal equation of state. In the context of regular
(non-turbulent) magnetic buoyancy, the system is known to be
more unstable to the buoyancy instability when the fluctuations
evolve isothermally (Acheson 1978; Hughes & Weiss 1995;
MacGregor & Cassinelli 2003). However, in the context of the
NEMPI it is not clear in which direction this effect would work.
The only simulations where the equation for specific entropy
was taken into account are the simulations of Käpylä et al.
(2012), who also considered an unstably stratified atmosphere.
In their case, the negative effective magnetic pressure was found
to be greatly enhanced (deeper minimum of Peff and larger
values of Bmin). Again, this is a subject that deserves serious
attention.

The fact that the values of qp0 and βp appear to be converged
in the range 60 < ReM < 600 is significant, because this is also
the regime in which small-scale dynamo action occurs. Small-
scale dynamo action suppresses the negative magnetic pressure
effect, which is the reason for the drop of qp0 between ReM of
40 and 60, but for larger ReM , the values of qp0 seem roughly
unchanged.

In the present paper, we have discussed applications mainly
to the Sun. However, any hydromagnetic turbulence with strong
stratification and large plasma beta should be subject to the
negative effective magnetic pressure phenomenon. Another
relevant example might be accretion disks. Quasi-periodic
oscillations and other light curve variations from accretion disks
have long been suspected to be caused by some kind of structures
in these disks. Hydrodynamic vortices would be one possibility
(Abramowicz et al. 1992), which could constitute long-lived
structures (Barge & Sommeria 1995; Johansen et al. 2004; Lyra
et al. 2011). However, in view of the present results, structures
caused by the NEMPI might indeed be another candidate.
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APPENDIX A

DERIVATION OF EQUATION (21)

We use the quasi-linear approach or second-order correlation
approximation applied to a random flow with small magnetic
and fluid Reynolds numbers (e.g., Moffatt 1978; Krause &
Rädler 1980; Rüdiger et al. 2012). We eliminate the pressure
term from the equation for the velocity fluctuations u by
calculating ∇×(∇×u), rewrite the obtained equation and the
induction equation for the magnetic fluctuations b in Fourier
space, apply the two-scale approach (Roberts & Soward 1975),
and neglect nonlinear terms, but retain molecular dissipative

terms. This allows us to get the following equation for ΔΠ
f

ij

from Equation (9) in Fourier space:

ΔΠ
f

ij (k, ω) = −
[
L̂

(
1 +

G∗
η(k, ω)

Gν(k, ω)

)
+ L̂∗

]
Π

f,0
ij (k, ω), (A1)

where Gν(k, ω) = (νk2 + iω)−1, Gη(k, ω) = (ηk2 + iω)−1,
L̂ = GνGηkmknBmBn, and the background turbulence (with a
zero mean magnetic field) is given by

Π
f,0
ij (k, ω) = E(k) Φ(ω)

8π k2

(
δij − ki kj

k2

)
u2

0. (A2)

Here, E(k) is the energy spectrum, e.g., a power-law spectrum,
E(k) = (q − 1)(k/kf )−q k−1

f with exponent 1 < q < 3 for
the wavenumbers kf � k � kd , kf and kd are the forcing and
dissipation wavenumbers, and we neglected for simplicity the
anisotropy terms in Equation (A2) which are proportional to λi

and λiλj , where λi is a vector characterizing the anisotropy (see
Appendix B). We have taken into account that for small magnetic
and hydrodynamic Reynolds numbers the small-scale dynamo is
not excited, so that the background turbulence contains only the
velocity fluctuations. We assume the frequency function Φ(ω)
to be a Lorentzian: Φ(ω) = 1/[πτc (ω2 + τ−2

c )]. This model for
the frequency function corresponds to the correlation function
〈ui(t)uj (t + τ )〉 ∝ exp(−τ/τc). After integration over ω and
all angles in k space, and using Equation (13), we arrive at the
following equations for qp0 and qs0:

qp0 = τ 2
c u2

0

15

∫ (
8 − 1 + τcνk2

τcηk2

)

× k2E(k)

(1 + τc νk2)(1 + τcηk2)
dk, (A3)

qs0 = τ 2
c u2

0

15

∫ (
2 +

1 + τcνk2

τcηk2

)

× k2E(k)

(1 + τc νk2)(1 + τcηk2)
dk, (A4)

where we take into account that β � 1. In the derivation of
Equations (A3) and (A4), we used the following integrals for
the integration in ω space:∫

Gη Gν Gτ G∗
τ dω = πτ 3

c

(1 + τc νk2)(1 + τcηk2)
,

×
∫

Gη G∗
η Gτ G∗

τ dω = πτ 2
c

ηk2(1 + τcηk2)
, (A5)

where Gτ = (iω + τ−1
c )−1. We take into account that for

small magnetic and fluid Reynolds numbers τcηk2
f � 1 and

τc νk2
f � 1. In this limit the coefficients qp0 and qs0, after

integration over k, are given by

qp0 = C(q)

15
(8 − PrM ) ReM Re,

qs0 = C(q)

15
(2 + PrM ) ReM Re, (A6)

where

C(q) =
∫ kd

kf

E(k)

(
k

kf

)−2

dk =
(

q − 1

q + 1

) [
1 − (kf /kd )q+1

1 − (kf /kd )q−1

]
, (A7)

where PrM = ReM/Re.
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APPENDIX B

THEORETICAL B DEPENDENCE OF qp, qs, AND qg

In the following, we summarize theoretical results for the
B dependence of the coefficients qp, qs, and qg that enter in
Equation (13). These results were obtained for large magnetic
and fluid Reynolds numbers using the τ relaxation approach.
We recall that the coefficient qp represents the isotropic tur-
bulence contribution to the mean magnetic pressure, and qg is
the anisotropic turbulence contribution to the mean magnetic
pressure, while the coefficient qs is the turbulence contribution
to the mean magnetic tension. We focus here on the case of
anisotropic density-stratified background turbulence. Expres-
sions for the isotropic case were given by RK07 and are sum-
marized in BKR. Following BKR, we define β ≡ B/Beq. We
consider a plasma with a gas pressure that is much larger than
the magnetic pressure, and the total pressure is always positive.

We define the scale of the energy-carrying eddies as �f ≈
k−1
f . Due to density stratification, new terms emerge that are

proportional to �2
f /H 2

ρ . These terms were absent in BKR, but
otherwise the following formulae are identical. We also define
the parameter ε = 〈b2

0〉/〈u2
0〉, which takes into account the

contributions caused by the small-scale dynamo (see RK07,
where it was assumed for simplicity that the range of scales
of magnetic fluctuations generated by the small-scale dynamo
coincides with that of the velocity fluctuations). Table 1 suggests
ε = β2

rms ≈ 0.3.
For very weak mean magnetic fields, 4β � Re−1/4

M , the values
of qp, qs, and qg are approximately constant and given by

qp(β) = 4

45

(
1 + 9 ln ReM

)
(1 − ε) +

16 �2
f

9 H 2
ρ

,

qs(β) = 1

15

(
1 + 8 ln ReM

)
(1 − ε),

qg(β) = − 8 �2
f

3 H 2
ρ

; (B1)

for Re−1/4
M � 4β � 1 we have

qp(β) = 16

25
[1 + 5| ln(4β)|+ 32 β2] (1−ε) +

16 �2
f

9 H 2
ρ

[
1− 16β2

5

]
,

(B2)

qs(β) = 32

15

[
| ln(4β)| +

1

30
+ 12β2

]
(1 − ε),

qg(β) = − 8 �2
f

3 H 2
ρ

[
1 − 16 β2

5

]
; (B3)

and for strong fields, 4β � 1, we have

qp(β) = 1

6β2

(
1 − ε +

3 �2
f

H 2
ρ

)
, qs(β) = π

48β3
(1 − ε),

qg(β) = − 3 �2
f

4 H 2
ρ β2

. (B4)

Here, we have taken into account that the anisotropic con-
tributions to the nonlinear functions qp(β) and qg(β) for

density-stratified background turbulence are given by

qg(β) = − 3

2
qp(β) = − 8 �2

f

3 H 2
ρ

[
64β4 − 4β2 +

1

3
+

1

4β2

− 29 ln
(

1 +
1

8β2

)
− arctan(

√
8β)

8
√

2 β3

]
. (B5)

For the derivation of Equation (B5), we used Equations (A10)
and (A11) given by RK07 with the following model of the
density-stratified background turbulence written in the Fourier
space:

〈ui(k) uj (−k)〉 = 〈u2
0〉E(k)

8π k2 (k2 + λ2)
[δij (k2 + λ2) − ki kj

− λi λj + i (λi kj − λj ki)], (B6)

where the velocity field satisfies the continuity equation in the
anelastic approximation div u = ui λi , λi = −∇iρ/ρ, the
energy spectrum function is E(k) = (2/3) k−1

f (k/kf )−5/3 for

kf < k < kf Re3/4.

APPENDIX C

COMMENTS ON THE TEST-FIELD METHOD

In the test-field method, one uses a set of different test fields
to determine all relevant components of the α and turbulent dif-
fusivity tensors. Furthermore, for finite scale separation ratios in
space and time one also needs to represent all relevant wavenum-
bers and frequencies. The knowledge of all higher wavenum-
bers and frequencies allows one to compute the integral ker-
nels that describe the nonlocality of turbulent transport (see
Brandenburg et al. 2008c for nonlocality in space and Hubbard
& Brandenburg (2009) for nonlocality in time). The multitude
of test fields does allow one to compute those parts of the α
and turbulent diffusivity tensors that do not enter in the partic-
ular problem at hand, but also those parts that enter under any
other circumstances. An example is the evolution of a passive
vector field where the same mean-field theory applies (Tilgner
& Brandenburg 2008).

Furthermore, given that we use the quasi-kinematic test-field
method, we need to address the work of Courvoisier et al. (2010),
who point out that this method fails if there is hydromagnetic
background turbulence originating, for example, from small-
scale dynamo action. In such a case, a fully nonlinear test-field
method must be employed (see Rheinhardt & Brandenburg
2010, for details and implementation). However, it is worth
noting that even in cases where small-scale dynamo action
was expected, such as those of Brandenburg et al. (2008b)
where values of ReM up to 600 were considered, the quasi-
kinematic test-field method was still found to yield valid and
self-consistent results, as was demonstrated by comparing the
growth rate expected from the obtained coefficients of αij and
ηij . This growth rate was confirmed to be compatible with
zero in the steady state. Finally, as shown in Rheinhardt &
Brandenburg (2010), the quasi-kinematic method is valid if
magnetic fluctuations result solely from an imposed field. In
particular, the quasi-kinematic test-field method works even in
cases in which magnetic fluctuations are caused by a magnetic
buoyancy instability (Chatterjee et al. 2011).
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APPENDIX D

COMMENTS ON MEAN-FIELD BUOYANCY

The work of Kitchatinov & Pipin (1993) is of interest in
the present context, because it predicts the upward pumping of
mean magnetic field. Here, we discuss various aspects of this
work. Kitchatinov & Pipin (1993) assumed that (1) the gradient
of the mean density is zero, (2) the background turbulence
is homogeneous, and (3) the fluctuations of pressure, density,
and temperature are adiabatic. We also note that their analysis
is restricted to low Mach number flows, although this is not
critical for our present discussion. Since the gradient of the
mean density is zero, the hydrostatic equilibrium, ∇p = ρg,
exists only if the gradient of the mean temperature is not
zero. This implies that the turbulent heat flux is not zero
and temperature fluctuations are generated by the tangling of
this mean temperature gradient by the velocity fluctuations.
Therefore, the key assumption made in Kitchatinov & Pipin
(1993) that fluctuations of pressure, density, and temperature are
adiabatic, is problematic and the equation for the evolution of
entropy fluctuations should be taken into account. This implies
furthermore that the temperature fluctuations in Equation (2.5)
of their paper cannot be neglected. We avoid this here by
considering flows with a non-zero mean density gradient and
turbulence simulations that have strong density stratification.
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14

http://dx.doi.org/10.1038/356041a0
http://adsabs.harvard.edu/abs/1992Natur.356...41A
http://adsabs.harvard.edu/abs/1992Natur.356...41A
http://dx.doi.org/10.1098/rsta.1978.0066
http://adsabs.harvard.edu/abs/1978RSPTA.289..459A
http://adsabs.harvard.edu/abs/1978RSPTA.289..459A
http://adsabs.harvard.edu/abs/1995A&A...295L...1B
http://adsabs.harvard.edu/abs/1995A&A...295L...1B
http://dx.doi.org/10.1088/0004-637X/741/2/92
http://adsabs.harvard.edu/abs/2011ApJ...741...92B
http://adsabs.harvard.edu/abs/2011ApJ...741...92B
http://dx.doi.org/10.1016/S0010-4655(02)00334-X
http://adsabs.harvard.edu/abs/2002CoPhC.147..471B
http://adsabs.harvard.edu/abs/2002CoPhC.147..471B
http://dx.doi.org/10.1017/S0022112096001322
http://adsabs.harvard.edu/abs/1996JFM...306..325B
http://adsabs.harvard.edu/abs/1996JFM...306..325B
http://dx.doi.org/10.1063/1.1651480
http://adsabs.harvard.edu/abs/2004PhFl...16.1020B
http://adsabs.harvard.edu/abs/2004PhFl...16.1020B
http://dx.doi.org/10.1088/2041-8205/740/2/L50
http://adsabs.harvard.edu/abs/2011ApJ...740L..50B
http://adsabs.harvard.edu/abs/2011ApJ...740L..50B
http://dx.doi.org/10.1002/asna.200911311
http://adsabs.harvard.edu/abs/2010AN....331....5B
http://adsabs.harvard.edu/abs/2010AN....331....5B
http://dx.doi.org/10.1086/527373
http://adsabs.harvard.edu/abs/2008ApJ...676..740B
http://adsabs.harvard.edu/abs/2008ApJ...676..740B
http://dx.doi.org/10.1086/593146
http://adsabs.harvard.edu/abs/2008ApJ...687L..49B
http://adsabs.harvard.edu/abs/2008ApJ...687L..49B
http://dx.doi.org/10.1051/0004-6361:200809365
http://adsabs.harvard.edu/abs/2008A&A...482..739B
http://adsabs.harvard.edu/abs/2008A&A...482..739B
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://dx.doi.org/10.1051/0004-6361:20053221
http://adsabs.harvard.edu/abs/2005A&A...439..835B
http://adsabs.harvard.edu/abs/2005A&A...439..835B
http://dx.doi.org/10.1002/asna.200710772
http://adsabs.harvard.edu/abs/2007AN....328..507B
http://adsabs.harvard.edu/abs/2007AN....328..507B
http://dx.doi.org/10.1086/169814
http://adsabs.harvard.edu/abs/1991ApJ...370..282C
http://adsabs.harvard.edu/abs/1991ApJ...370..282C
http://dx.doi.org/10.1017/S0022112088002721
http://adsabs.harvard.edu/abs/1988JFM...196..323C
http://adsabs.harvard.edu/abs/1988JFM...196..323C
http://dx.doi.org/10.1051/0004-6361/201016108
http://adsabs.harvard.edu/abs/2011A&A...534A..46C
http://adsabs.harvard.edu/abs/2011A&A...534A..46C
http://dx.doi.org/10.1098/rspa.2009.0384
http://dx.doi.org/10.1103/PhysRevE.65.036311
http://adsabs.harvard.edu/abs/2002PhRvE..65c6311D
http://adsabs.harvard.edu/abs/2002PhRvE..65c6311D
http://dx.doi.org/10.1086/150733
http://adsabs.harvard.edu/abs/1970ApJ...162.1019G
http://adsabs.harvard.edu/abs/1970ApJ...162.1019G
http://dx.doi.org/10.1051/0004-6361/200912189
http://adsabs.harvard.edu/abs/2009A&A...503..999H
http://adsabs.harvard.edu/abs/2009A&A...503..999H
http://dx.doi.org/10.1088/0004-637X/706/1/712
http://adsabs.harvard.edu/abs/2009ApJ...706..712H
http://adsabs.harvard.edu/abs/2009ApJ...706..712H
http://adsabs.harvard.edu/abs/2007sota.conf..275H
http://dx.doi.org/10.1146/annurev.fl.20.010188.001155
http://adsabs.harvard.edu/abs/1988AnRFM..20..187H
http://adsabs.harvard.edu/abs/1988AnRFM..20..187H
http://dx.doi.org/10.1017/S0022112095003946
http://adsabs.harvard.edu/abs/1995JFM...301..383H
http://adsabs.harvard.edu/abs/1995JFM...301..383H
http://dx.doi.org/10.1103/PhysRevLett.98.208501
http://adsabs.harvard.edu/abs/2007PhRvL..98t8501I
http://adsabs.harvard.edu/abs/2007PhRvL..98t8501I
http://dx.doi.org/10.1038/nature03399
http://adsabs.harvard.edu/abs/2005Natur.434..478I
http://adsabs.harvard.edu/abs/2005Natur.434..478I
http://dx.doi.org/10.1051/0004-6361:20034417
http://adsabs.harvard.edu/abs/2004A&A...417..361J
http://adsabs.harvard.edu/abs/2004A&A...417..361J
http://dx.doi.org/10.1007/s11207-012-9949-0
http://www.arxiv.org/abs/1104.4541
http://www.arxiv.org/abs/1112.0279
http://dx.doi.org/10.1002/asna.201111638
http://dx.doi.org/10.1002/asna.201111638
http://adsabs.harvard.edu/abs/2012AN....333...95K
http://adsabs.harvard.edu/abs/2012AN....333...95K
http://dx.doi.org/10.1086/520339
http://adsabs.harvard.edu/abs/2007ApJ...663L.113K
http://adsabs.harvard.edu/abs/2007ApJ...663L.113K
http://dx.doi.org/10.1023/A:1005213708194
http://adsabs.harvard.edu/abs/2000SoPh..191..325K
http://adsabs.harvard.edu/abs/2000SoPh..191..325K
http://adsabs.harvard.edu/abs/1993A&A...274..647K
http://adsabs.harvard.edu/abs/1993A&A...274..647K
http://dx.doi.org/10.1002/asna.2103150205
http://adsabs.harvard.edu/abs/1994AN....315..157K
http://adsabs.harvard.edu/abs/1994AN....315..157K
http://dx.doi.org/10.1088/0004-637X/719/1/307
http://adsabs.harvard.edu/abs/2010ApJ...719..307K
http://adsabs.harvard.edu/abs/2010ApJ...719..307K
http://dx.doi.org/10.1063/1.860582
http://adsabs.harvard.edu/abs/1993PhFlB...5.4128K
http://adsabs.harvard.edu/abs/1993PhFlB...5.4128K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://dx.doi.org/10.1103/PhysRevE.50.2716
http://adsabs.harvard.edu/abs/1994PhRvE..50.2716K
http://adsabs.harvard.edu/abs/1994PhRvE..50.2716K
http://adsabs.harvard.edu/abs/1989SvAL...15..274K
http://adsabs.harvard.edu/abs/1989SvAL...15..274K
http://dx.doi.org/10.1051/0004-6361/201015568
http://adsabs.harvard.edu/abs/2011A&A...527A.138L
http://adsabs.harvard.edu/abs/2011A&A...527A.138L
http://dx.doi.org/10.1086/346257
http://adsabs.harvard.edu/abs/2003ApJ...586..480M
http://adsabs.harvard.edu/abs/2003ApJ...586..480M
http://dx.doi.org/10.1086/587028
http://adsabs.harvard.edu/abs/2008ApJ...679..871M
http://adsabs.harvard.edu/abs/2008ApJ...679..871M
http://dx.doi.org/10.1063/1.1706342
http://adsabs.harvard.edu/abs/1961PhFl....4..391N
http://adsabs.harvard.edu/abs/1961PhFl....4..391N
http://dx.doi.org/10.1086/148828
http://adsabs.harvard.edu/abs/1966ApJ...145..811P
http://adsabs.harvard.edu/abs/1966ApJ...145..811P
http://dx.doi.org/10.1086/157150
http://adsabs.harvard.edu/abs/1979ApJ...230..905P
http://adsabs.harvard.edu/abs/1979ApJ...230..905P
http://dx.doi.org/10.1088/0004-637X/691/1/640
http://adsabs.harvard.edu/abs/2009ApJ...691..640R
http://adsabs.harvard.edu/abs/2009ApJ...691..640R
http://dx.doi.org/10.1051/0004-6361/201014700
http://adsabs.harvard.edu/abs/2010A&A...520A..28R
http://adsabs.harvard.edu/abs/2010A&A...520A..28R
http://dx.doi.org/10.1002/asna.19752960202
http://adsabs.harvard.edu/abs/1975AN....296...49R
http://adsabs.harvard.edu/abs/1975AN....296...49R
http://dx.doi.org/10.1080/03091920600813516
http://adsabs.harvard.edu/abs/2006GApFD.100..243R
http://adsabs.harvard.edu/abs/2006GApFD.100..243R
http://dx.doi.org/10.1103/PhysRevE.76.056307
http://adsabs.harvard.edu/abs/2007PhRvE..76e6307R
http://adsabs.harvard.edu/abs/2007PhRvE..76e6307R
http://dx.doi.org/10.1080/03091928008243659
http://dx.doi.org/10.1002/asna.201111635
http://adsabs.harvard.edu/abs/2012AN....333...84R
http://adsabs.harvard.edu/abs/2012AN....333...84R
http://dx.doi.org/10.1002/asna.200410384
http://adsabs.harvard.edu/abs/2005AN....326..245S
http://adsabs.harvard.edu/abs/2005AN....326..245S
http://dx.doi.org/10.1080/03091920701345707
http://adsabs.harvard.edu/abs/2007GApFD.101...81S
http://adsabs.harvard.edu/abs/2007GApFD.101...81S
http://dx.doi.org/10.1086/503772
http://adsabs.harvard.edu/abs/2006ApJ...641L..73S
http://adsabs.harvard.edu/abs/2006ApJ...641L..73S
http://dx.doi.org/10.1088/0034-4885/69/3/R02
http://adsabs.harvard.edu/abs/2006RPPh...69..563S
http://adsabs.harvard.edu/abs/2006RPPh...69..563S
http://dx.doi.org/10.1086/318218
http://adsabs.harvard.edu/abs/2001ApJ...546..585S
http://adsabs.harvard.edu/abs/2001ApJ...546..585S
http://dx.doi.org/10.1086/311240
http://adsabs.harvard.edu/abs/1998ApJ...496L..39T
http://adsabs.harvard.edu/abs/1998ApJ...496L..39T
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1111/j.1365-2966.2008.14006.x
http://adsabs.harvard.edu/abs/2008MNRAS.391.1477T
http://adsabs.harvard.edu/abs/2008MNRAS.391.1477T
http://adsabs.harvard.edu/abs/2007sota.conf..319T
http://adsabs.harvard.edu/abs/1960SPhD....5...87T
http://adsabs.harvard.edu/abs/1960SPhD....5...87T
http://dx.doi.org/10.1046/j.1365-8711.2000.03785.x
http://adsabs.harvard.edu/abs/2000MNRAS.318..501W
http://adsabs.harvard.edu/abs/2000MNRAS.318..501W
http://dx.doi.org/10.1051/0004-6361:20031371
http://adsabs.harvard.edu/abs/2003A&A...411..321Y
http://adsabs.harvard.edu/abs/2003A&A...411..321Y

	1. INTRODUCTION
	2. DNS MODEL AND ANALYSIS
	3. RESULTS
	3.1. Effective Mean Magnetic Pressure
	3.2. Dependence on Magnetic Prandtl Number
	3.3. Resolution Dependence
	3.4. Coefficients qs and qg

	4. COMPARISON OF MODELS OF TYPES U AND B
	4.1. Results from DNS
	4.2. Determination of ηt and γ from the Simulations
	4.3. Comparison with Mean-field Models

	5. CONCLUSIONS
	APPENDIX A. DERIVATION OF EQUATION (21)
	APPENDIX B. THEORETICAL B DEPENDENCE OF q p, qs, AND q g
	APPENDIX C. COMMENTS ON THE TEST-FIELD METHOD
	APPENDIX D. COMMENTS ON MEAN-FIELD BUOYANCY
	REFERENCES

