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ABSTRACT

Aims. We extend earlier models of turbulent dynamos with an upper, nearly force-free exterior to spherical geometry, and study how
flux emerges from lower layers to the upper ones without being driven by magnetic buoyancy. We also study how this affects the
possibility of plasmoid ejection.
Methods. A spherical wedge is used that includes northern and southern hemispheres up to mid-latitudes and a certain range in
longitude of the Sun. In radius, we cover both the region that corresponds to the convection zone in the Sun and the immediate
exterior up to twice the radius of the Sun. Turbulence is driven with a helical forcing function in the interior, where the sign changes
at the equator between the two hemispheres.
Results. An oscillatory large-scale dynamo with equatorward migration is found to operate in the turbulence zone. Plasmoid ejections
occur in regular intervals, similar to what is seen in earlier Cartesian models. These plasmoid ejections are tentatively associated with
coronal mass ejections (CMEs). The magnetic helicity is found to change sign outside the turbulence zone, which is in agreement
with recent findings for the solar wind.

Key words. magnetohydrodynamics (MHD) – turbulence – Sun: dynamo – Sun: coronal mass ejections (CMEs) –
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1. Introduction

Observations show that the Sun sheds mass through twisted
magnetic flux configurations (Démoulin et al. 2002). Remark-
able examples of such helical ejections can be seen in the movies
produced by the SOHO and SDO missions1. Such events may
be important for the solar dynamo (Blackman & Brandenburg
2003). They are generally referred to as coronal mass ejec-
tions (CMEs). Conventionally, CMEs are modeled by adopting
a given distribution of magnetic flux at the solar surface and
letting it evolve by shearing and twisting the magnetic field at
its footpoints at the surface (Antiochos et al. 1999; Török &
Kliem 2003). This approach is also used to model coronal heat-
ing (Gudiksen & Nordlund 2005; Bingert & Peter 2011). The
success of this method depends crucially on the ability to syn-
thesize the velocity and magnetic field patterns at the surface.
Of course, ultimately such velocity and magnetic field patterns
must come from a realistic simulation of the Sun’s convection
zone, where the field is generated by dynamo action. In other
words, we need a unified treatment of the convection zone and
the CMEs. The difficulty here is the large range of time scales,
from the 11-year dynamo cycle to the time scales of hours and
even minutes on which CMEs develop. Such a large range of
time scales is related to the strong density stratification in the
Sun, as can be seen from the following argument. In the bulk
of the convection zone, the dynamo is controlled by rather slow
motions with turnover times of days and months. The typical

� Movie is available in electronic form at http://www.aanda.org
1 http://sohowww.nascom.nasa.gov/bestofsoho/Movies/
10th/transcut_sm.mpg and http://www.youtube.com/watch?
v=CvRj6Uykois&feature=player_embedded

velocity depends on the convective flux via Fconv ≈ ρu3
rms, where

ρ is the mean density and urms is the rms velocity of the turbulent
convection. The dynamo cycle time can even be several hundred
times the turnover time. In the corona, on the other hand, the
typical time scale depends on the Alfvén time, L/vA, where L is
the typical scale of magnetic structures and vA = B/

√
μ0ρ is the

Alfvén speed for a given magnetic field strength B. Here, μ0 is
the vacuum permeability.

In a recent paper, Warnecke & Brandenburg (2010) at-
tempted a new approach of a unified treatment by combining
a dynamo-generated field in the convection zone with a nearly
force-free coronal part, albeit in a local Cartesian geometry. In
this paper, we go a step further by performing direct numeri-
cal simulations (DNS) in spherical geometry. We also include
density stratification due to gravity, but with a density contrast
between the dynamo interior and the outer parts of the simula-
tion domain that is much less (about 20) than in the Sun (around
14 orders of magnitude). This low density contrast is achieved by
using an isothermal configuration with constant sound speed cs.
Hence, the average density depends only on the gravitational po-
tential and is given by ln ρ(r) ≈ GM/rc2

s , where G is Newton’s
gravitational constant, M is the central mass, and r is the distance
from the center. As convection is not possible in such an isother-
mal setup, we drive turbulence by an imposed helical forcing that
vanishes outside the convection zone. This also helps achiev-
ing a strong large-scale magnetic field. The helicity of the forc-
ing is negative (positive) in the northern (southern) hemisphere
and smoothly changes sign across the equator. Such a forcing
gives rise to an α2 dynamo with periodic oscillations and equa-
torward migration of magnetic activity (Mitra et al. 2010a). We
ignore differential rotation, so there is no systematic shearing in
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latitude. The only twisting comes then from the same motions
that also sustain the dynamo-generated magnetic field. Note that
in our model the mechanism of transport of the magnetic field
to the surface is not magnetic buoyancy. Instead, we expect that,
twisted magnetic fields will expel themselves to the outer regions
by the Lorentz force.

Our aim in this paper is not to provide a model as close to
reality as possible, but to show that it is possible to capture the
phenomenon of CMEs (or, more generally, plasmoid ejections)
within a minimalistic model that treats the convection zone and
the outer parts of the Sun in a self-consistent manner. That is, the
magnetic field in the convection zone is dynamically generated
by dynamo action and the motions are not prescribed by hand,
but they emerge as a solution of the momentum equation and
include magnetic backreaction from the Lorentz force.

Given that gravity decreases with radius, there is in prin-
ciple the possibility of a radial wind with a critical point at
r∗ = GM/2c2

s (Choudhuri 1998). However, as we use stress-free
boundary conditions with no mass flux in the radial direction, no
such wind can be generated in our simulations. Nevertheless,
we observe radially outward propagation of helical magnetic
field structures without mass flux. Furthermore, our results for
the flux of magnetic helicity compare well with recent measure-
ments of the same in the solar wind (Brandenburg et al. 2011).
Our approach might therefore provide new insights not only for
CMEs and dynamo theory, but also for solar wind turbulence.

2. The model

We use spherical polar coordinates, (r, θ, φ). As in earlier work
of Mitra et al. (2009, 2010a), our simulation domain is a spheri-
cal wedge. The results of Mitra et al. (2009) for such a wedge are
consistent with those of Livermore et al. (2010) for a full spher-
ical shell, both of which ignored the effects of an equator, which
was included in the work of Mitra et al. (2010a). Our model is
a bi-layer in the radial direction. The inner layer is forced with
random helical forcing functions which have different signs of
helicity in the two hemispheres. This models the helical aspects
of convection in the Sun. We shall often call the inner layer “tur-
bulence zone”. The radius separating the two layers corresponds
to the solar radius, r = R. This length scale is used as our unit
of length. The inner layer models some aspects of the convec-
tion zone (0.7R ≤ r ≤ R) without however having any real
convection, and the outer layer (R ≤ r ≤ 2R) models the solar
corona. We consider the range π/3 ≤ θ ≤ 2π/3, corresponding to
±30◦ latitude, and 0 < φ < 0.3, corresponding to a longitudinal
extent of 17◦. Here, θ is the polar angle and φ the azimuth. At the
solar surface at R = 700 Mm, this would correspond to an area
of about 730 × 210 Mm2, which could encompass several active
regions in the Sun. In our model the momentum equation is

DU
Dt
= −∇h + g + J × B/ρ + Ffor + Fvisc, (1)

where Fvisc = ρ
−1∇ · (2ρνS) is the viscous force, ν is the kine-

matic viscosity, Si j =
1
2 (Ui; j + U j;i) − 1

3δi j∇ · U is the traceless
rate-of-strain tensor, semicolons denote covariant differentiation,
h = c2

s ln ρ is the specific pseudo-enthalpy, cs = const. is the
isothermal sound speed, and g = −GMr/r3 is the gravitational
acceleration. We choose GM/Rc2

s = 3, so r∗ = 1.5R lies within
our domain. This value is rather close to the surface and would
lead to significant mass loss if there was a wind, but this is sup-
pressed by using impenetrative outer boundaries.

The forcing function Ffor is given as the product of two parts,

Ffor(r, θ, φ, t) = Θw(r − R) f (r, θ, φ, t;− cos θ), (2)

where Θw(r) = 1
2 [1 − erf(r/w)] is a profile function connecting

the two layers and w is the width of the transition at the border
between the two layers (r = R). In other words, we choose the
external force to be zero in the outer layer, r > R. The func-
tion f consists of random plane helical transverse waves with
relative helicity σ = ( f · ∇ × f )/kf f 2 and wavenumbers that lie
in a band around an average forcing wavenumber of kfR ≈ 63.
This value should be compared with the normalized wavenum-
ber k1R, corresponding to the thickness of the shell ΔR, which
yields k1R = 2πR/ΔR ≈ 21, so the effective scale separation
ratio, kf/k1, is about 3.

In Eq. (2) the last argument of f (r, θ, φ, t;σ) denotes a para-
metric dependence on the helicity which is here chosen to be
σ = − cos θ such that the kinetic helicity of the turbulence is
negative in the northern hemisphere and positive in the southern.
Specifically, f is given by (Haugen et al. 2003)

f (x, t) = Af NRe{ f k(t) exp[ik(t) · x + iφ(t)]}, (3)

where Af is a nondimensional forcing amplitude, and x is the
position vector. The wavevector k(t) and the random phase −π <
φ(t) ≤ π change at every time step, so f (x, t) is δ-correlated
in time. The normalization factor N is chosen on dimensional
grounds to be N = cs(|k|cs/δt)1/2. At each timestep we select
randomly one of many possible wavevectors in a certain range
around a given forcing wavenumber. The average wavenumber is
referred to as kf . We ignore curvature effects in the expression for
the forcing function and thus force the system with what would
correspond to transverse helical waves in a Cartesian coordinate
system, i.e.,

f k = R · f (nohel)
k with Ri j =

δi j − iσεi jk k̂k√
1 + σ2

, (4)

where −1 ≤ σ ≤ 1 is the helicity parameter of the forcing func-
tion,

f (nohel)
k = (k × ê) /

√
k2 − (k · ê)2, (5)

is a non-helical forcing function, and ê is an arbitrary unit vector
not aligned with k; note that | f k|2 = 1.

The pseudo-enthalpy term in Eq. (1) emerges from the fact
that for an isothermal equation of state the pressure is given by
p = c2

sρ, so the pressure gradient force is given by ρ−1∇p =
c2

s∇ ln ρ = ∇h. The continuity equation is then written in terms
of h as

Dh
Dt
= −c2

s∇ · U. (6)

Equations (1) and (6) are solved together with the uncurled in-
duction equation for the vector potential A in the resistive gauge
(Candelaresi et al. 2011),

∂A
∂t
= U × B + η∇2 A, (7)

where η is the (constant) magnetic diffusivity, so the magnetic
field is given by B = ∇ × A and thus obeys ∇ · B = 0 at all
times. The gauge can in principle become important when cal-
culating the magnetic helicity density A · B, although the part
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resulting from the small-scale fields is expected to be indepen-
dent of the gauge (Subramanian & Brandenburg 2006; Hubbard
& Brandenburg 2010), while that of the large-scale fields is not.

Our wedge is periodic in the azimuthal direction. For the
velocity, we use stress-free boundary conditions on all other
boundaries. For the magnetic field we employ vertical field con-
ditions on r = 2R and perfect conductor conditions on both
r = 0.7R and the two θ boundaries. Time is expressed in units of
τ = (urmskf)−1, which is the eddy turnover time in the turbulence
zone, and urms is the rms velocity in r < R. Density is given in
units of the mean density in the turbulence zone, ρ0 = ρ. The
magnetic field is expressed in units of the mean equipartition
value, Beq, defined via B2

eq = μ0ρu2. We use a magnetic diffu-
sivity that is constant in space and time and its value is given in
terms of the magnetic Reynolds number, defined as

Rm = urms/ηkf , (8)

where kf is the characteristic scale of the external force, de-
fined above. This also turns out to be the energy containing scale
of the fluid. In the following analysis, we use φ averages, de-
fined as F(r, θ, t)=

∫
F(r, θ, φ, t) dφ/2π. Occasionally we also use

time averages denoted by 〈.〉t. We perform DNS with the Pencil
Code2, which is a modular high-order code (sixth order in space
and third-order in time, by default) for solving a large range of
partial differential equations, including the ones relevant in the
present context.

3. Results

3.1. Dynamo in the turbulence zone

We start our DNS with seed magnetic field everywhere in the
domain. Owing to the helical forcing in the turbulent layer, a
large-scale magnetic field is produced by dynamo action. The
dynamo is cyclic with equatorward migration of magnetic fields.
This dynamo was studied by DNS in Mitra et al. (2010a) and has
been interpreted as an α2 dynamo. The possibility of oscillating
α2 dynamos was known since the early papers of Baryshnikova
& Shukurov (1987) and Rädler & Bräuer (1987), who showed
that a necessary condition for oscillations is that the α effect must
change sign in the domain.

The dynamo first grows exponentially and then saturates af-
ter around 300 turnover times, see Fig. 1. After saturation the
dynamo produces a large-scale magnetic field with opposite po-
larities in the northern and southern hemispheres. In Fig. 2 we
plot the radial magnetic field at the surface of the dynamo region
at r = R. This layer would correspond to the solar photosphere if
we had a more realistic solar model, which would include higher
stratification as well as cooling and radiation effects. The six
wedges represent different times and show clearly an equator-
ward migration of the radial magnetic field with polarity rever-
sal every half cycle. The other components of the magnetic field
(not plotted) also shows the same behavior. Comparing the first
(t/τ = 3028) and the last (t/τ = 3101) panel, the polarity has
changed sign in a time interval Δt/τ ≈ 100. The oscillatory and
migratory properties of the dynamo is also seen in the butter-
fly diagram of Fig. 3 for 〈Bφ〉r and 〈Br〉r . In Fig. 1 one can also
verify that the oscillation period is around 200 turnover times,
corresponding to a non-dimensional dynamo cycle frequency of
τωcyc = 0.032 and the field strength in the turbulent layer varies
between 1.2 and 1.6 of the equipartition field strength. This value

2 http://pencil-code.googlecode.com

Fig. 1. Initial exponential growth and subsequent saturation behavior
of the magnetic field in the interior for forced turbulence with dynamo
action for Run A. The magnetic field strength is oscillating with twice
the dynamo frequency 2ωcyc.

Fig. 2. Equatorward migration, as seen in visualizations of Br for Run D
at r = R over a horizontal extent Δθ = 58◦ and Δφ = 17◦.

Fig. 3. Periodic variation of 〈Bφ〉r and 〈Br〉r in the turbulence zone.
Dark blue stands for negative and light yellow for positive values. The
dotted horizontal lines show the location of the equator at θ = π/2.
The magnetic field is normalized by the equipartition value. Taken from
Run A.

of the cycle frequency is roughly consistent with an estimate of
Mitra et al. (2010b) that ωcyc = 0.5ηtk2

m, where km is the relevant
wavenumber of the mean field. Using ηt ≈ ηt0 ≡ urms/3kf (Sur
et al. 2008), we find τωcyc ≈ 0.2(km/kf)2 ≈ 0.02, where we have
assumed km ≈ 2π/0.3R ≈ 20k1 and kf ≈ 60k1. The estimate of
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Table 1. Summary of runs discussed in this paper.

Run Af Rm Pm B2
rms/B

2
eq τωcyc Δt/τ Vej/urms

A 0.20 1.5 1 1.2–2.7 0.032 100 0.482
B 0.20 5 1 1.5–3.5 0.029 110 0.409
C 0.20 9 1 2.1–5.5 0.022 130 0.455
D 0.20 18 1 2.0–5.0 0.019 140 0.409
D1 0.10 11 1 2.0–5.0 0.018 140 0.455
D2 0.15 15 1 2.0–5.0 0.016 130 0.482
D3 0.25 20 1 1.0–3.0 0.023 130 0.293
E 0.20 22 1 1.5–4.5 0.017 220 0.205
F 0.20 28 1 1.2–4.2 0.015 280 0.273
G 0.20 44 1 1.7–3.5 0.015 285 0.409

Notes. Af is the forcing amplitude defined in Eq. (3), Rm is the mag-
netic Reynolds number defined in Eq. (8) and Pm = ν/η is the magnetic
Prandtl number. ωcyc = 2π/Tcyc stands for the frequency of the oscil-
lating dynamo, where Tcyc is the cycle period. Δt/τ is the typical inter-
val of plasmoid ejections, whose typical speed is Vej. For the runs D1
to D3, the forcing amplitude Af is changed, while η and ν have the same
value as for run D. The rms velocities in the turbulence zone change
accordingly and affect therefore the Reynolds number and the turnover
times τ.

Mitra et al. (2010b) applies to perfectly conducting outer bound-
ary conditions, which might explain the remaining discrepancy.

A summary of all runs is given in Table 1, where the am-
plitudes of the magnetic field show a weak non-monotonous de-
pendence on the magnetic Reynolds number Rm. For larger val-
ues of Rm, the magnetic field strength decreases slightly with
increasing Rm, but it is weaker than in some earlier α2 dynamos
with open boundaries (Brandenburg & Dobler 2001). This could
be due to two reasons. Firstly, our simulations are far from the
asymptotic limit of large magnetic Reynolds numbers, in which
the results of Brandenburg & Dobler (2001) are applicable. The
maximum value Rm is in our simulations approximately 15 times
the critical Rm. The second reason could be that we have expul-
sion of magnetic helicity from our domain which was not present
in (Brandenburg & Dobler 2001). We find the peak of the Rm de-
pendency at Rm = 9, corresponding to Run C. The dynamo cycle
frequency shows a weak decrease (by a factor of 2) as the mag-
netic Reynolds number increases (by a factor of 30).

3.2. Phase relation between radial and azimuthal fields

Although our dynamo model does not include important fea-
tures of the Sun such as differential rotation, some comparison
may still be appropriate. For the Sun, one measures the mean
radial field by averaging the line-of-sight magnetic field from
synoptic magnetograms. The azimuthal field is not directly ob-
served, but its sign can normally be read off by looking at the
magnetic field orientation of sunspot pairs. Existing data sug-
gest that radial and azimuthal fields are approximately in out-of-
phase (Yoshimura 1976). This is reasonably well reproduced by
αΩ dynamos models, where the radial field lags behind the az-
imuthal one by 0.75π (Stix 1976). However, in the present work,
radial and azimuthal fields are approximately in phase with a
phase difference of 0.3π inside the dynamo region; see Fig. 4.
Future studies will include the near-surface shear layer, which
has been suspected to play an important role in producing equa-
torward migration (Brandenburg 2005). This would also help re-
producing the observed phase relation.

Fig. 4. Time evolution of the radial magnetic field Br (solid line) and the
azimuthal magnetic field Bφ (dotted line) in the dynamo region averaged
over the radius r and azimuth at θ = ±7◦. To improve the statistics, we
calculate the components of the magnetic field as the antisymmetric part
in latitude, i.e., Bi =

(
BN

i − BS
i

)
/2 for i = r, φ.

Fig. 5. Phase relations between the magnetic field and the velocity in
the dynamo region. The magnetic field is plotted as B2

rms, normalized
with the equipartition field of the sound speed, B2

M (=μ0ρc2
s ) as a solid

and black line. The rms velocity, normalized by the sound speed cs, is
plotted as a dashed red line, and has been smoothed over 5 neighboring
data points to make it more legible. Taken from Run A.

3.3. Relation between kinetic and magnetic energies

Next we investigate the relation between the rms values of the
magnetic field and the velocity. Both quantities are oscillating
in time with a typical period of 200 turnover times. In Fig. 5
we compare the time evolution of the magnetic field strength
and the rms velocity. The magnetic field is calculated in the dy-
namo region and normalized to the thermal equipartition field
strength. The phase difference between the two is slightly less
than π within the dynamo region. This basically shows that the
magnetic field quenches the turbulence.

3.4. Density variations

The density is stratified in radius and varies by over an order of
magnitude. For all the runs listed in Table 1 the density fluctuates
about the hydrostatic equilibrium value, ρ ≈ ρ0 exp(GM/rc2

s ).
The relative fluctuations are of comparable strength at all radii;
see Fig. 6.

3.5. Magnetic field outside the turbulence zone

The magnetic field averaged over the entire domain is more than
5 times smaller than in the turbulence zone. In Fig. 7 we show
that the magnetic field is concentrated to the turbulence zone
and B2 drops approximately exponentially with a scale height of
about 0.23R in the outer parts for r > R. The toroidal component
of the magnetic field is dominant in the turbulence layer, but
does not play a significant role in the outer part. By contrast, the
radial field is weak in the inner parts and dominates in the outer.

Magnetic structures emerge through the surface and create
field line concentrations that reconnect, separate, and rise to
the outer boundary of the simulation domain. This dynamical
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Fig. 6. Radial dependence of density overplotted at different times. In
the inset is the linear behavior of the logarithmic density log ρ/ρ0 to the
inverse of the radius shown. Taken from Run A.

Fig. 7. Radial dependence of the mean squared magnetic field, B2
rms

(solid line), compared with those of Br (dotted), Bθ (dashed), and Bφ
(dash-dotted). All quantities are averaged over 13 dynamo cycles. The
inset shows the same quantities in a logarithmic representation. Taken
from Run A.

evolution is seen in a sequence of field line images in Fig. 8,
where field lines of the mean field are shown as contours of
r sin θAφ and colors represent Bφ. Prior to a plasmoid ejection
we see a convergence of antiparallel radial field lines, which
then reconnect such that the newly reconnected field lines move
away from the reconnection site. The actual reconnection seems
to happen much faster than the subsequent ejection.

In the outer layers, the magnetic field emerges as large struc-
tures that correlate with reconnection events of magnetic fields.
In Rust (1994) such phenomena have been described as mag-
netic clouds. We find recurrent ejections of magnetic field lines
with concentrations and reconnection events, but the occurrence
of structures such as magnetic clouds does not happen com-
pletely regularly, i.e., these structured events would be difficult
to predict.

In Fig. 9 we show a close-up of the magnetic field. A con-
figuration resembling a reconnection event is clearly seen. Here,
the contours represent magnetic field lines with solid and dashed
lines denoting counter-clockwise and clockwise orientations, re-
spectively. The solid antiparallel field lines reconnect around
r = 0.9R and separate to the left and to the right. On the right-
hand side, a plasmoid has formed, which is eventually ejected.
This plasmoid appears as a CME-like ejection in the first panel
of Fig. 11. These plasmoids, as seen more clearly in Figs. 8

and 10, appear as a concentration of field lines that propagate
outwards. The fact that reconnection happens predominantly in
the upper parts of the turbulence zone suggests that turbulence is
needed to enable fast reconnection (Lazarian & Vishniac 1999).

Additionally, we find reconnection as a result of the inter-
action between ejections. As plotted in Fig. 10, the field lines
of two subsequent events have the opposite field line direction,
which can then interact in the outer layers. Comparison with the
first panel of Fig. 11 shows that the current helicity has a correla-
tion with the separatrices of the two polarities of the field lines.
We also find that in the interaction region the field lines have
high density and are more strongly concentrated.

3.6. Current helicity

The current helicity (J · B) is often used as a useful proxy
for the magnetic helicity (A · B) at small scales, because, un-
like magnetic helicity, it is gauge-independent. Current helic-
ity has also been observed in the Sun (Seehafer 1990) and it
has been obtained from mean-field dynamo models (Dikpati &
Gilman 2001). In the present paper we are particularly interested
in the current helicity outside the Sun. We normalize it by the
r-dependent time-averaged mean squared field to compensate
for the radial decrease of J · B. In Fig. 12, we have also aver-
aged in latitude from 20◦ to 28◦. In the turbulence zone the sign
of J · B/〈B2〉t is the same as that of kinetic helicity which, in
turn, has the same sign as the helicity of the external forcing, i.e.
of σ; see Figs. 11 and 12.

However, to our surprise, above the surface, and separately
for each hemisphere, the signs of current helicity tend to be op-
posite to those in the turbulence zone; see Fig. 11 for the panels
of t/τ = 1669 and t/τ = 1740. To demonstrate that plasmoid
ejections are recurrent phenomena, we look at the evolution of
J · B/〈B2〉t as a function of t and r. This is done in Fig. 12 for
Run A. It turns out that the speed of plasmoid ejecta is about 0.45
of the rms velocity of the turbulence in the interior region for
Reynolds numbers up to 15 and about 0.3 up to 30. To compare
with the Sun, we estimate the rms velocity of the turbulence in
terms of the convective energy flux via F ≈ ρu3

rms. The density of
the corona is ρcor ≈ 10−12 kg m−3, so our estimate would suggest
Vej ≈ 0.3(F/ρcor)1/3 ≈ 1200 km s−1, which is somewhat above
the observed speeds of 400–1000 km s−1. The time interval be-
tween subsequent ejections is around 100 τ for Run A. As seen
from Table 1, the ejection interval is independent of the forc-
ing amplitude Af and increases weakly with magnetic Reynolds
number, but it seems to be still comparable to half the dynamo
cycle period, i.e., Δτ ≈ Tcyc/2. This means that plasmoid ejec-
tions happen about twice each cycle. It is therefore not clear
whether such a result can be extrapolated to the real Sun.

In our simulations, we find the ejections to have the shape
of the characteristic three-part structure that is observed in real
CMEs. This is particularly clear in Fig. 11, where the ejections
seem to contain three different parts. In the center we find a ball-
shaped structure consisting of one polarity of current helicity,
where at the front of the ejection a bow of opposite polarity
had formed. In between these two structures the current helic-
ity is close to zero and appears as a cavity. These three parts
(prominence, cavity, and front) are described by Low (1996)
for CMEs and are generally referred to as “three-part structure”.
The basic shape of the ejection is independent of the used forc-
ing amplitudes and the kinetic and magnetic Reynolds numbers.
It should, however, be noted that the three-part structure of the
ejections becomes clearer at magnetic higher Reynolds numbers
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Fig. 8. Time series of formation of plasmoid ejections in spherical coordinates. Contours of r sin θAφ are shown together with a color-scale
representation of Bφ; dark blue stands for negative and light yellow for positive values. The contours of r sin θAφ correspond to field lines of B in
the rθ plane. The dashed horizontal lines show the location of the surface at r = R. Taken from Run D.

Fig. 9. Time series of a reconnection event in an X-point as a close-
up view. Contours of r sin θAφ are shown together with a color-scale
representation of Bφ; dark blue stands for negative and light yellow for
positive values. The contours of r sin θAφ correspond to field lines of B
in the rθ plane, where solid lines represent counter-clockwise magnetic
field lines and the dash ones clockwise. The dashed vertical lines show
the location of the surface at r = R. Taken from Run D.

(e.g., for Runs D and G compared with Run A, for example). In
the Sun, the plasma is confined to loops of magnetic field with
flows along field lines due to the low plasma beta in the solar
corona. This is also seen in our simulations displayed in Fig. 11,
where the ejections follow field lines and appear to create loop-
like structures. An animation of the detailed time evolution of the
CME-like structures emerging recurrently into the solar corona
is available in the on-line edition (see Fig. 11)3. However, since
our choice of boundary conditions does not allow mass flux at
the outer boundary, no plasma can actually leave the domain.
The recurrent nature of the plasmoid ejections found here and in
Warnecke & Brandenburg (2010) is not yet well understood. In
contrast to Warnecke & Brandenburg (2010), where there are no

3 The movie is also available at http://www.youtube.com/watch?
v=aR-PgxQyP24.

Fig. 10. Magnetic field configuration at the time of a ejection. Contours
of r sin θAφ are shown together with a color-scale representation of Bφ;
dark blue stands for negative and light yellow for positive values. The
contours of r sin θAφ correspond to field lines of B in the rθ plane, where
the solid lines represent counter-clockwise magnetic field lines and the
dash ones clockwise. The dashed vertical lines show the location of the
surface at r = R. Taken from Run D.

strong oscillations present, here the ejections seem to correlate
with the dynamo cycle. In each hemisphere of the turbulence
zone a magnetic field is created with different polarity. After
they have migrated to the equator, they merge and produce an
ejection. However, comparing with the results of Warnecke &
Brandenburg (2010), which are similar to those in the present pa-
per, the oscillation cannot be the only explanation for the recur-
rence of the ejections. As we have seen in Fig. 12, these events
export magnetic helicity out of the domain. For the dynamo, on
the other hand, magnetic helicity losses play a role only in the
nonlinear stage. It is therefore conceivable that the regular oc-
currence of plasmoid ejections is connected with nonlinear re-
laxation oscillations rather than with the dynamo cycle which
is essentially a linear phenomenon. This is also suggested by
the results of Warnecke & Brandenburg (2010), where recurrent
ejections occur without oscillations of the large-scale field.

From Figs. 11 and 12 we conclude that in each hemisphere
the sign of current helicity outside the turbulence zone is mostly
opposite to that inside the turbulence zone. A stronger trend is
shown in the cumulative mean of current helicity over time. This
is shown in Fig. 13, where we plot the time evolution of the φ
averaged current helicity at r = 1.5 R and 28◦ latitude, which
is a safe distance away from the outer r and θ boundaries so as
not to perturb our results, which should thus give a reasonable
representation of the outer layers. For the northern hemisphere
the current helicity (solid black line) and the cumulative mean
(solid red line) show positive values and for the southern hemi-
sphere (dotted lines) negative values. This agrees with results of
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Fig. 11. Time series of coronal ejections in spherical coordinates. The normalized current helicity, μ0R J · B/〈B2〉t, is shown in a color-scale
representation for different times; dark blue stands for negative and light yellow for positive values. The dashed horizontal lines show the location
of the surface at r = R. Taken from Run D. The temporal evolution is shown in a movie available as online material.

Fig. 12. Dependence of the dimensionless ratio μ0R J · B/〈B2〉t on time
t/τ and radius r in terms of the solar radius. The top panel shows a
narrow band in θ in the northern hemisphere and the bottom one a thin
band in the southern hemisphere. In both plots we have also averaged in
latitude from 20◦ to 28◦. Dark blue stands for negative and light yellow
for positive values. The dotted horizontal lines show the location of the
surface at r = R.

Fig. 13. Dependence of the dimensionless ratio μ0R J · B/〈B2〉t on time
t/τ at radius r = 1.5 R and 28◦ latitude. The solid line stands for the
northern hemisphere and the dotted for the southern hemisphere. The
red lines represent the cumulative mean for each hemisphere.

Brandenburg et al. (2009), where the magnetic helicity of the
field in the exterior has the opposite sign than in the interior.

To investigate whether the sign of the current helicity in the
turbulence zone is different from that and in the outer parts, we
show in Fig. 14 the azimuthally and time-averaged current he-
licity as a function of radius and colatitude. It turns out that,

Fig. 14. Current helicity averaged over 3900 turnover times. Legend is
the same as in Fig. 11. Dark blue corresponds to negative values, while
the light yellow corresponds to positive value. Taken from Run D.

even though we have averaged the result over several thousand
turnover times, the hemispheric sign rule of current helicity is
still only approximately obeyed in the outer layers – even though
it is nearly perfectly obeyed in the turbulence zone. There re-
mains substantial uncertainty, especially near the equator. This
suggests that meaningful statements about magnetic and current
helicities in the solar wind can only be made after averaging over
sufficiently long stretches of time.

3.7. Magnetic helicity fluxes

In view of astrophysical dynamo theory it is important to un-
derstand the amount of magnetic helicity that can be exported
from the system. Of particular interest here is the magnetic helic-
ity associated with the small-scale magnetic field. Under the as-
sumption of scale separation, this quantity is gauge-independent
(Subramanian & Brandenburg 2006), so we can express it in any
gauge. This has been verified in simulations both with an equa-
tor (Mitra et al. 2010b) and without (Hubbard & Brandenburg
2010). Here, we compute the magnetic helicity flux associated
with the small-scale field by subtracting that of the azimuthally
averaged field from that of the total field, i.e.,

e × a = E × A − E × A, (9)

where E = μ0ηJ − U × B is the electric field. This is also the
way how the magnetic helicity flux from the small-scale field
was computed in Hubbard & Brandenburg (2010), where the
magnetic helicity flux from the total and large-scale fields was
found to be gauge-dependent, but that from the small-scale field
was not. In Fig. 16 we compare the flux of magnetic helicity
of the small-scale field across the outer surfaces in the northern
and southern hemispheres with that through the equator. It turns
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should

primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-

licity flux, F
f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂�φ )/k; see Matthaeus et al. (1982) and Eq. (9) of
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Fig. 18. Helicity in the northern outer atmosphere. The values are writ-
ten out at the point, r = 1.5 R, 90◦ − θ = 17◦, and φ = 9◦. Top panel:
phase relation between the toroidal Bφ and poloidal Bθ field, plotted
over time t/τ. Bottom panel: helicity H(k) is plotted over normalized
wave number kR. The helicity is calculated with the Taylor hypothesis
using the Fourier transformation of the poloidal and toroidal field.

Brandenburg et al. (2011). Here, hats indicate Fourier transforms
and the asterisk denotes complex conjugation.

In Figs. 18 and 19 we show the results for the northern and
southern hemispheres, as well as time series of the two relevant
components Bθ and Bφ. The resulting magnetic helicity spectra,
normalized by 2μ0EM/k, where EM is the magnetic energy spec-
trum, give a quantity that is between −1 and +1. Note that the
time traces are governed by a low frequency component of fairly
large amplitude. In addition, there are also other components of
higher frequency, but they are harder to see. The results suggest
positive magnetic helicity in the north and negative in the south,
which would be indicative of the helicities of the solar wind at
smaller length scale. It also agrees with the current helicities de-
termined using explicit evaluation in real space. On the other
hand, the Parker spiral (Parker 1958) might be responsible for
the magnetic helicity at large scales (Bieber et al. 1987a,b).

4. Conclusions

In the present work we have demonstrated that CME-like
phenomena are ubiquitous in simulations that include both a
helicity-driven dynamo and a nearly force-free exterior above
it. This was first shown in Cartesian geometry (Warnecke &
Brandenburg 2010) and is now also verified for spherical ge-
ometry. A feature common to both models is that the helical
driving is confined to what we call the turbulence zone, which
would correspond to the convection zone in the Sun. In con-
trast to the earlier work, we have now used a helical forcing for
which the kinetic helicity changes sign across the equator. This
makes the dynamo oscillatory and displays equatorward migra-
tion of magnetic field (Mitra et al. 2010a). More importantly,
unlike our earlier work where the gas pressure was neglected
in the outer parts, it is fully retained here, because it does au-
tomatically become small away from the surface due to the ef-
fect of gravity that is here included too, but was neglected in

Fig. 19. Helicity in the southern outer atmosphere. The values are writ-
ten out at the point, r = 1.5 R, 90◦ − θ = −17◦ and φ = 8.6◦. Top panel:
phase relation between the toroidal Bφ and poloidal Bθ field, plotted
over time t/τ. Bottom panel: helicity H(k) is plotted over normalized
wave number kR. The helicity is calculated with the Taylor hypothesis
using the Fourier transformation of the poloidal and toroidal field.

the earlier Cartesian model. The solutions shown here and those
of Warnecke & Brandenburg (2010) demonstrate that this new
approach of combining a self-consistent dynamo with a corona-
like exterior is a viable one and can model successfully features
that are similar to those in the Sun. However, our model is still
not sophisticated enough for direct quantitative comparisons.

Of particular interest is the sign change of magnetic and
current helicities with radius. Although similar behavior has
also been seen in other Cartesian models of Brandenburg
et al. (2009), its relevance for the Sun was unknown until evi-
dence for similar sign properties emerged from solar wind data
(Brandenburg et al. 2011). In the present case we were also able
to corroborate similar findings by using the Taylor hypothesis
based on the plasmoid ejection speed. It is remarkable that this
appears to be sufficient for relating spatial and temporal fluctua-
tions to each other.

There are many ways in which the present model can be
extended and made more realistic. On the one hand, the as-
sumption of isothermal stratification could be relaxed and the in-
crease of temperature in the corona together with the solar wind
could be modeled in a reasonably realistic way. On the other
hand, the dynamo model could be modified to include the effects
of convection and of latitudinal differential rotation. Among
other things, differential rotation would lead to the Parker spi-
ral (Parker 1958), which is known to produce magnetic helicity
of its own (Bieber et al. 1987a,b). It would then be interesting to
see how this affects the magnetic helicity distribution seen in the
present model.
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