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Pumping velocity in homogeneous helical turbulence with shear
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Using different analytical methods (the quasilinear approach, the path-integral technique, and the tau-relaxation
approximation) we develop a comprehensive mean-field theory for a pumping effect of the mean magnetic field
in homogeneous nonrotating helical turbulence with imposed large-scale shear. The effective pumping velocity is
proportional to the product of α effect and large-scale vorticity associated with the shear, and causes a separation
of the toroidal and poloidal components of the mean magnetic field along the direction of the mean vorticity.
We also perform direct numerical simulations of sheared turbulence in different ranges of hydrodynamic and
magnetic Reynolds numbers and use a kinematic test-field method to determine the effective pumping velocity.
The results of the numerical simulations are in agreement with the theoretical predictions.
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I. INTRODUCTION

The origin of cosmic magnetic fields is one of the
fundamental problems in theoretical physics and astrophysics.
It is generally believed that solar and galactic magnetic fields
are caused by the combined action of helical turbulent motions
of fluid and differential rotation [1–7]. In most of these studies,
differential rotation plays merely the role of enhancing the
magnetic field in the toroidal direction. However, in recent
years there has been increased interest in mean-field effects
caused specifically by turbulent shear flows. This interest is
caused by discoveries of the shear dynamo [8,9] and vorticity
dynamo [10,11] in nonhelical homogeneous turbulence with a
large-scale shear. In particular, recent numerical experiments
[12–17] have clearly demonstrated the existence of a shear dy-
namo of a large-scale magnetic field in nonhelical turbulence
or turbulent convection with superimposed large-scale shear.
However, the origin of the shear dynamo is still subject of
active discussions [8,9,15,18–23].

There are three additional phenomena that are also related
to the presence of shear. One is the vorticity dynamo, which is
the self-excitation of large-scale vorticity in a turbulence with
large-scale shear. It has been predicted theoretically [10,11]
and detected in recent numerical experiments [13,14,24]. The
vorticity dynamo can also affect the dynamo process of the
mean magnetic field. Another phenomenon is a nonzero α

effect in nonhelical turbulence with shear when the system is
inhomogeneous or density stratified. In that case there is an α

effect [8,18] that can lead to an alpha-shear dynamo. Finally,
when homogeneous turbulence with shear is helical, there
is an effective pumping velocity γ ∝ αW of the large-scale
magnetic field, where W is the large-scale vorticity caused by
shear. This effect has so far only been found in direct numerical
simulations (DNS) [25], but there has so far been no theory
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for this new effect, nor has there been a systematic survey of
DNS for determining the dependence of pumping on magnetic
Reynolds and Prandtl numbers as well as the turbulent Mach
number.

The goal of the present study is to develop a com-
prehensive theory of mean-field pumping in homogeneous
helical turbulence with shear and to perform systematic
numerical simulations designed for detailed comparison with
the theoretical predictions. It is important to emphasize that the
pumping of the large-scale magnetic field discussed usually in
the literature has always been connected with inhomogeneous
turbulence [3,26,27], but here we study the pumping for
homogeneous, albeit helical turbulence.

II. GOVERNING EQUATIONS

We consider homogeneous helical turbulence with a linear
shear velocity U = (0,Sx,0). Averaging the induction equa-
tion over an ensemble of turbulent velocity field yields the
mean-field equation:

∂ B
∂t

= ∇×(U×B + u×b − η∇×B), (1)

where Ei ≡ (u × b)i = aijBj + bijk∇kBj is the mean elec-
tromotive force, u and b are the fluctuations of velocity and
magnetic field, overbars denote averaging over an ensemble of
turbulent velocity fields, B is the mean magnetic field, U is the
mean velocity that includes only the imposed large-scale shear,
and η is the magnetic diffusion due to electrical conductivity
of the fluid. Note that the part aijBj in the expression for the
mean electromotive force determines the effective pumping
velocity, γi = − 1

2εijkaij , and the α tensor, αij = 1
2 (aij + aji),

i.e., E (a)
i = αijBj + (γ × B)i , while the turbulent magnetic

diffusion and the shear-current dynamo effect are associated
with the bijk term.

To determine the turbulent transport coefficients in homo-
geneous helical turbulence with mean velocity shear we use the
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following equations for fluctuations of velocity and magnetic
field:

∂u
∂t

= −(U·∇)u − (u·∇)U − 1

ρ
∇p + 1

4πρ
[(b·∇)B

+ (B·∇)b] + ν
u + uN + f (u), (2)
∂b
∂t

= (B·∇)u − (u·∇)B + (b·∇)U − (U·∇)b

+ η 
b + bN, (3)

where ν is the kinematic viscosity, ρ is the mean density
of the incompressible fluid flow, p is the fluctuation of
total (hydrodynamic and magnetic) pressure, the magnetic
permeability of the fluid is included in the definition of the
magnetic field, vN and bN are the nonlinear terms, and ρ f (u)

is the stirring force for the background velocity fluctuations.
We begin by deriving expressions for the pumping effect

that are valid in different regimes, where fluid and magnetic
Reynolds numbers are both small, both are large, or only the
fluid Reynolds number is large, but the magnetic Reynolds
number is small. These results will then be compared with
those of DNS in the corresponding regimes.

A. Small magnetic and hydrodynamic Reynolds numbers

We use the quasilinear or second-order correlation approxi-
mation (SOCA) applied to shear flow turbulence (see [18,20]).
This approach is valid for small magnetic and hydrodynamic
Reynolds numbers. To exclude the pressure term from the
equation of motion (2) we calculate ∇×(∇×u), then we
rewrite the obtained equation and Eq. (3) in Fourier space,
apply the two-scale approach (i.e., we use large-scale and
small-scale variables), neglect nonlinear terms in Eqs. (2)–(3),
but retain molecular dissipative terms in these equations. We
seek a solution for fluctuations of velocity and magnetic fields
as an expansion for weak velocity shear:

u = u(0) + u(1) + · · · , (4)

b = b(0) + b(1) + · · · , (5)

where

b
(0)
i (k,ω) = Gη(k,ω)

[
i(k·B)δij −

(
δij km

∂

∂kn

+ δimδjn

)
(∇nBm)

]
u

(0)
j (k,ω), (6)

u
(1)
i (k,ω) = Gν(k,ω)

(
2kiqδjp + δij kq

∂

∂kp

− δiqδjp

)

× (∇pUq) u
(0)
j (k,ω), (7)

b
(1)
i (k,ω) = Gη(k,ω)

{[
i(k·B)δij −

(
δij km

∂

∂kn

+ δimδjn

)
(∇nBm)

]
u

(1)
j (k,ω) +

[
δij kq

∂

∂kp

+ δiqδjp

]
b

(0)
j (k,ω) (∇pUq)

}
. (8)

Here Gν(k,ω) = (νk2 − iω)−1, Gη(k,ω) = (ηk2 − iω)−1,
and δij is the Kronecker tensor. The statistical properties of the
background velocity fluctuations with a zero large-scale shear,

u(0), are assumed to be given. For derivation of Eqs. (6)–(8)
we use the identity∫

Uq( Q) bn(k − Q) d Q = i(∇pUq)
∂bn

∂kp

,

which is valid in the framework of the mean-field ap-
proach; i.e., it is assumed that there is scale separation.
Equations (6)–(8) coincide with those derived by [18], and
they allow us to determine the cross-helicity tensor g

(1)
ij =

〈u(0)
i b

(1)
j 〉 + 〈u(1)

i b
(0)
j 〉. This procedure yields the contribu-

tions E (S)
m = εmij

∫
g

(1)
ij (k,ω) dk dω to the mean electromotive

force caused by sheared helical turbulence. We are interested
first of all in the contributions to the mean electromotive force
which are proportional to the mean magnetic field, i.e., E (a)

i =
αijBj + (γ × B)i . For the integration in ω space and in k
space we have to specify a model for the background shear-free
helical turbulence (with B = 0), which is determined by the
equation

〈ui(k,ω) uj (−k, − ω)〉(0)

= E(k) �(ω)

8π k2

[(
δij − ki kj

k2

)
〈u2〉(0)

− i

k2
εijl kl 〈u · (∇ × u)〉(0)

]
, (9)

where E(k) is the energy spectrum [e.g., a power-law spectrum,
E(k) ∝ (k/kf)−q with the exponent 1 < q < 3 for the wave
numbers kf � k � kd, where kf and kd are the forcing and
dissipation wave numbers], and εijk is the fully antisymmetric
Levi-Cività tensor. We consider the frequency function �(ω) in
the form of the Lorentz profile: �(ω) = νk2/[π (ω2 + ν2k4)].
This model for the frequency function corresponds to the
correlation function

〈ui(t)uj (t + τ )〉 ∝ exp(−τ νk2). (10)

In that case, and under the assumption of small magnetic
and hydrodynamic Reynolds numbers, the effective pumping
velocity γ and the off-diagonal components of the tensor αij

are given by

γ = C1(q)

2

(
Pm

1 + Pm

)2

Re2 τf α∗ W , (11)

αij = C1(q)

5

(2Pm + 1) Pm

(1 + Pm)2
Re2 τf α∗ (∂U )ij , (12)

C1(q) =
∫ kd

kf

E(k)

(
k

kf

)−4

dk

=
(

q − 1

q + 3

) [
1 − (kf/kd)q+3

1 − (kf/kd)q−1

]
, (13)

where α∗ = −(τf/3) 〈u · (∇ × u)〉(0), Pm = ν/η is the mag-
netic Prandtl number, Re = τf 〈u2〉(0)/ν is the hydrodynamic
Reynolds number, Rm = Re Pm is the magnetic Reynolds
number, and τf = �f/urms is the turnover time, where �f =
1/kf is the energy-containing (forcing) scale of a random
velocity field and urms =

√
〈u2〉(0). For the integration in

ω space we use the integrals In(k) given in Appendix
A. For linear shear velocity, U = (0,Sx,0), the mean vor-
ticity is W = ∇×U = (0,0,S), and the mean symmetric
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FIG. 1. Pumping coefficient γ = 1
2 (a21 − a12) normalized by

α0 = 1
3 urms as a function of Pm for two values of Re (Sets A1 and

A2). The shear parameter Sh = −0.20 (−0.13) for Re = 0.04 (0.16).
Analytical results according to Eq. (14) are overplotted with dotted
lines. The values of C1(q) are used as fit parameters and indicated in
the legends.

tensor (∂U )ij = (∇iUj + ∇jU i)/2 has only two nonzero
components: (∂U )12 = (∂U )21 = S/2. Therefore, αij has two
nonzero off-diagonal components caused by both shear and
helical turbulence α12 = α21, while the effective pumping
velocity γ has only one component directed along the vertical
axis, γ = (0,0,γ ):

γ = C1(q)

2

(
Pm

1 + Pm

)2

Re2 α∗ Sh, (14)

α12 = α21 = C1(q)

10

(2Pm + 1) Pm

(1 + Pm)2
Re2 α∗ Sh, (15)

where Sh = τf S is the shear parameter. As follows from
Eqs. (14) and (15), γ ∝ Pm2 and α12 ∝ Pm for Pm � 1, while
for Pm 	 1 the effective pumping velocity γ and α12 are
independent of Pm. For all values of the magnetic Prandtl
numbers, γ and α12 are positive. This asymptotic behavior
which is valid for Re � 1 is in agreement with Figs. 1 and 2
(see Sec. III). Note that the diagonal components of the tensor
αij in this case are

α = −C2(q)

3

(
Rm

1 + Pm

)
τf 〈u · (∇ × u)〉(0), (16)

C2(q) =
∫ kd

kf

E(k)

(
k

kf

)−2

dk

=
(

q − 1

q + 1

) [
1 − (kf/kd)q+1

1 − (kf/kd)q−1

]
. (17)

B. Large magnetic and hydrodynamic Reynolds numbers

To determine the the effective pumping velocity and the
tensor αij in homogeneous helical turbulence with mean
velocity shear for large magnetic and hydrodynamic Reynolds
numbers we use the procedure which is similar to that applied
in [9] in earlier investigations of shear flow turbulence. Let

FIG. 2. Symmetric part of aij , α12 = 1
2 (a21 + a12) normalized by

α0 = 1
3 urms as a function of Pm for the same runs as in Fig. 1. The

dotted lines show the analytical result according to Eq. (15), with the
values of C1(q) indicated in the legends.

us derive equations for the second moments. We apply the
two-scale approach; e.g., we use large-scale R = (x + y)/2,
K = k1 + k2 and small-scale r = x − y, k = (k1 − k2)/2
variables (see, e.g., [28]). We derive equations for the following
correlation functions:

fij (k) = L̂(ui ; uj ), hij (k) = L̂(bi ; bj ),

gij (k) = (4πρ)−1 L̂(bi ; uj ),

where

L̂(a; c) =
∫

〈a(k + K/2)c(−k + K/2)〉 exp (i K ·R) d K ,

and 〈...〉 denotes averaging over ensemble of turbulent velocity
field. The equations for these correlation functions are given
by (see [9])

∂fij (k)

∂t
= i(k·B)�ij + I

f

ij + I S
ijmn(U )fmn + Fij + N̂fij ,

∂hij (k)

∂t
= −i(k·B)�ij + Ih

ij + ES
ijmn(U )hmn + N̂hij ,

∂gij (k)

∂t
= i(k·B)

[
fij (k) − hij (k) − h

(H )
ij

] + I
g

ij

+J S
ijmn(U )gmn + N̂gij , (18)

where hereafter we omit the arguments t and R in the
correlation functions and neglect small terms ∼O(∇2). Here
Fij is related to the forcing term and ∇ = ∂/∂ R. In Eqs. (18),
�ij (k) = (4πρ)−1 [gij (k) − gji(−k)], and N̂fij , N̂hij , N̂gij

are the third-order moments appearing due to the nonlin-
ear terms which include also molecular dissipation terms.
The tensors I S

ijmn(U ), ES
ijmn(U ), and J S

ijmn(U ) are given
by

I S
ijmn(U ) =

(
2kiqδmpδjn + 2kjqδimδpn − δimδjqδpn

− δiqδjnδpm + δimδjnkq

∂

∂kp

)
∇pUq,
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ES
ijmn(U ) =

(
δimδjqδpn + δjmδiqδpn

+ δimδjnkq

∂

∂kp

)
∇pUq,

J S
ijmn(U ) =

(
2kjqδimδpn − δimδpnδjq + δjnδpmδiq

+ δimδjnkq

∂

∂kp

)
∇pUq,

where kij = kikj /k2. The source terms I
f

ij , Ih
ij , and I

g

ij which
contain the large-scale spatial derivatives of the magnetic field
B are given in [9]. Next, in Eqs. (18) we split the tensor for
magnetic fluctuations into nonhelical, hij , and helical, h

(H )
ij ,

parts. The helical part of the tensor of magnetic fluctuations
h

(H )
ij depends on the magnetic helicity and it follows from

magnetic helicity conservation arguments (see, e.g., [29–32]
and [7] for a review).

The second-moment equations include the first-order spa-
tial differential operators N̂ applied to the third-order moments
M (III). A problem arises as to how to close the system, i.e., how
to express the set of the third-order terms N̂M (III) through the
lower moments M (II) (see, e.g., [33–35]). We use the spectral
τ -closure approximation which postulates that the deviations
of the third-moment terms, N̂M (III)(k), from the contributions
to these terms due to the background turbulence, N̂M (III,0)(k),
are expressed through the similar deviations of the second
moments, M (II)(k) − M (II,0)(k):

N̂M (III)(k) − N̂M (III,0)(k)

= − 1

τr (k)
[M (II)(k) − M (II,0)(k)] (19)

(see, e.g., [33,36,37]), where τr (k) is the scale-dependent
relaxation time, which can be identified with the correlation
time τf of the turbulent velocity field for large hydrodynamic
and magnetic Reynolds numbers. The quantities with the
superscript (0) correspond to the background shear-free turbu-
lence with a zero mean magnetic field. We apply the spectral
τ approximation only for the nonhelical part hij of the tensor
of magnetic fluctuations. Note that a justification of the τ

approximation for different situations has been performed in a
number of numerical simulations and analytical studies (see,
e.g., [7,38–45]).

We take into account that the characteristic time of variation
of the magnetic field B is substantially longer than the
correlation time τf . This allows us to obtain a stationary
solution for Eqs. (18) for the second-order moments, M (II)(k),
which are the sums of contributions caused by shear-free
and sheared turbulence. The contributions to the mean
electromotive force caused by a shear-free turbulence and
sheared nonhelical turbulence are given in [9]. In particular,
the contributions to the electromotive force caused by the
sheared turbulence read E (S)

m = εmji

∫
g

(S)
ij (k) dk, where the

corresponding contributions to the cross-helicity tensor g
(S)
ij in

the kinematic approximation are given by

g
(S)
ij (k) = iτr (k)

[
J S

ijmn τr (k) (k·B) + τr (k) (k·B) I S
ijmn

]
f (0)

mn,

(20)

and we use the following model for the background shear-free
helical turbulence (with B = 0):

f
(0)
ij = 〈ui(k) uj (−k,)〉(0) =

[(
δij − ki kj

k2

)
〈u2〉(0)

− i

k2
εijl kl 〈u · (∇× u)〉(0)

]
E(k)

8π k2
, (21)

where the energy spectrum is E(k) = (q − 1) (k/kf)−q ; kf =
1/�f and the length �f is the maximum scale of turbulent mo-
tions. The turbulent correlation time is τr (k) = 2 τf (k/kf)1−q .
Therefore, for large magnetic and hydrodynamic Reynolds
number the effective pumping velocity γ and the off-diagonal
components of the tensor αij caused by sheared helical
turbulence are given by

γ = 2
3 τf α∗ W , (22)

αij = − 4
5 (5 − 2q) τf α∗ (∂U )ij . (23)

Since the mean symmetric tensor (∂U )ij has only two
nonzero components, (∂U )12 = (∂U )21 = S/2, the tensor αij

has only two nonzero off-diagonal components, α12 = α21. In
particular,

γ = 2
3 α∗ Sh, (24)

α12 = α21 = − 2
5 (5 − 2q) α∗ Sh = − 2

3 α∗ Sh, (25)

where we have used the Kolmogorov kinetic energy spectrum
exponent q = 5/3 in Eq. (25). The diagonal components of
the tensor αij in this case are α = α∗ (see, e.g., [1,3]). These
results for large magnetic and hydrodynamic Reynolds number
are in qualitative agreement with DNS performed in [25].

C. Large magnetic Reynolds numbers and small hydrodynamic
Reynolds numbers

To develop a mean-field theory for large magnetic Reynolds
numbers and small hydrodynamic Reynolds numbers we use
stochastic calculus for a random velocity field. To derive an
equation for the mean magnetic field we use an exact solution
of the induction equation for the total field B (which is the sum
of the mean B and fluctuating b parts) with an initial condition
B(t = t0,x) = B(t0,x) in the form of a functional integral:

Bi(t,x) = 〈Gij (t,t0,ξ ) exp(ξ̂ · ∇)Bj (t0,x)〉w (26)

(see, e.g., [46,47]), where the operator exp(ξ̂ · ∇) is determined
by

exp(ξ̂ · ∇) =
∞∑

k=0

1

k!
(ξ̂ · ∇)k ; (27)

ξ̂ = ξ − x (see Appendix B). The Wiener trajectory ξ (t,t0,x)
is determined by

ξ (t,t0,x) = x −
∫ t−t0

0
v(tσ ,ξ ) dσ + (2η)1/2w(t − t0), (28)

where tσ = t − σ , and the velocity field v is the sum of
the mean shear velocity U and fluctuating u parts. We
consider large magnetic Reynolds number, but take into
account small yet finite magnetic diffusion η. The magnetic
diffusion can be described by a random Wiener process w(t)
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that is defined by the following properties: 〈wi(t)〉w = 0 and
〈wi(t + τ )wj (t)〉w = τδij , where 〈·〉w denotes the averaging
over the statistics of the Wiener random process. The function
Gij (t,s,ξ ) is determined by equation

dGij (t,s,ξ )

ds
= NikGkj (t,s,ξ ), (29)

with the initial condition Gij (t = s) = δij and Nij = ∇j vi .
The form of the exact solution (26) allows us to separate the
averaging over random Brownian motion of particles [i.e., the
averaging over a random Wiener process w(t)] and a random
velocity u.

We consider a random flow with a small yet finite Strouhal
number (that is the ratio the correlation time of a random fluid
flow to the turnover time �f /urms). A random velocity field
with a small Strouhal number can be modeled by a random
velocity field with a constant renewal time τ . Assume that
in the intervals . . . (−τ,0); (0,τ ); (τ,2τ ); . . . the velocity fields
are statistically independent and have the same statistics. This
implies that the velocity field looses memory at the prescribed
instants t = mτ , where m = 0, ± 1, ± 2, . . .. This velocity
field cannot be considered as a stationary velocity field for
small times ∼τ ; however, it behaves like a stationary field for
t 	 τ . Averaging Eq. (26) over the random velocity field we
arrive at the equation for the mean magnetic field, B:

∂Bi

∂t
= [∇ × (U×B)]i + Aijm∇mBj + Dijmn∇m∇nBj

(30)

(see Appendix B), where

Aijm = 1

τ
〈〈ξ̂m Gij 〉〉w, (31)

Dijmn = 1

2τ
〈〈ξ̂mξ̂n Gij 〉〉w; (32)

the angular brackets 〈·〉 denote an ensemble average over the
random velocity field. Therefore, the mean magnetic field is
determined by double averaging over two independent random
processes, i.e., by the ensemble average over the random
velocity field and by the average over Wiener random process
w(t).

We are interested in the lowest order contributions to the
mean electromotive force which are proportional to the mean
magnetic field, E (a)

i = aij Bj , where aij = (1/2)εinm Anjm and
the tensor Aijm reads

Aijm = − 1

τ

∫ τ

0
dt

∫ τ

0
dt ′ 〈[vm(t,ξ )]x [∇j vi(t

′,ξ )]y〉, (33)

where x → y and [vm(t,ξ )]x denotes the Eulerian velocity
determined at the Wiener trajectory ξ that passes through
the point x at instant t . Hereafter the angular brackets denote
double averaging over a random velocity field and over the
statistics of the Wiener process.

For small hydrodynamic Reynolds numbers we seek the so-
lutions of the linearized Navier-Stokes equation (2) for incom-
pressible velocity field u as superpositions of the Orr-Kelvin
random shearing waves u(t,r) = ∫

u(t,k0) exp[ik(t) · r] dk0,

where k0 = (kx0,ky,kz), k(t) = (kx0 − Skyt,ky,kz) (see, e.g.,
[23,48–50]). Therefore, the effective pumping velocity γ and
the off-diagonal components of the tensor αij are given by

γn = 1

2
εnji aij = 1

4
Akmm = − i

4τ

∫ τ

0
dt

∫ τ

0
dt ′

× km(t ′) 〈vm(t,k0) v∗
n(t ′,k0)〉, (34)

αij = 1

2
(aij + aji) = 1

4
(εinm Anjm + εjnm Anim)

= − i

4τ

∫ τ

0
dt

∫ τ

0
dt ′ [εinm kj (t ′) + εjnm ki(t

′)]

×〈vm(t,k0) v∗
n(t ′,k0)〉. (35)

Using these equations and Eqs. (C13)–(C10) in Appendix C
we obtain the effective pumping velocity γ = (0,0,γ ) and
the off-diagonal components α12 = α21 of the tensor αij for
large magnetic Reynolds numbers and small hydrodynamic
Reynolds numbers:

γ = C1(q)

3
α∗ Sh Re2, (36)

α12 = α21 =
(

C2(q) Re
τ

τf
− 3 C1(q)

2
Re2

)
α∗ Sh, (37)

where Re � τ/τf < 1. The diagonal components of the tensor
αij in this case obtained using the path-integral approach
are α = −(1/3) 〈τu · (∇ × u)〉(0) (see, e.g., [46,51]). In the
next section we discuss comparison with new systematic DNS
designed for comparison with our theoretical predictions.

III. COMPARISON WITH DNS

A. Numerical model

Our DNS model is identical to that used in [25]. We
begin by testing the analytical results numerically using three-
dimensional simulations of isotropically forced turbulence
in a fully periodic cube of size (2π )3. The uniform shear
U = (0,Sx,0) is imposed using the shearing box method and
the gas obeys an isothermal equation of state characterized by
the constant speed of sound cs. We solve the continuity and
Navier-Stokes equations in the form

D ln ρ

Dt
= −U · ∇ ln ρ − ∇ · U, (38)

DU
Dt

= −U · ∇U − SUx ŷ − c2
s ∇ ln ρ + f + Fvisc, (39)

where the imposed shear is subsumed in the advective
derivative

D
Dt

≡ ∂

∂t
+ Sx

∂

∂y
. (40)

Here ρ is the density, U is the velocity, f describes the forcing,
and Fvisc = ρ−1∇ · (2ρνS) is the viscous force, where ν is the
kinematic viscosity, and

Sij = 1
2 (Ui,j + Uj,i) − 1

3∇ · Uδij (41)
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is the traceless rate of strain tensor. The forcing function f is
given in [52]:

f (x,t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (42)

where x is the position vector. The wave vector k(t) and the
random phase −π < φ(t) � π change at every time step, so
f (x,t) is δ-correlated in time. The normalization factor N is
chosen on dimensional grounds to be N = f0cs(|k|cs/δt)1/2,
where f0 is a nondimensional forcing amplitude. At each time
step we select randomly one of many possible wave vectors
in a certain range around a given forcing wave number. The
average wave number is referred to as kf . In the present study
we always use kf/k1 = 5. We force the system with transverse
helical waves [53],

f k = R · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (43)

where σ = 1 for the fully helical case with positive helicity of
the forcing function,

f (nohel)
k = (k × ê) /

√
k2 − (k · ê)2 (44)

is a nonhelical forcing function, and ê is an arbitrary unit vector
not aligned with k; note that | f k|2 = 1. We use fully helical
forcing, i.e., σ = 1, in all of our runs.

The boundary conditions in the y and z directions are
periodic, whereas shearing-periodic conditions are used in the
x direction. The simulations are governed by the fluid and
magnetic Reynolds numbers, the magnetic Prandtl number,
and the shear and Mach numbers:

Re = urms

νkf
, Rm = urms

ηkf
, Pm = ν

η
,

(45)

Sh = S

urmskf
, Ma = urms

cs
.

Here urms is the root-mean-square velocity of turbulent motions
and η is the magnetic diffusivity. We use the PENCIL CODE1 to
perform the simulations.

B. Test-field method

We apply the kinematic test-field method (see, e.g.,
[15,54,55]) to compute the effective pumping velocity γ and
all components of the tensor αij . The essence of this method

is that a set of prescribed test fields B
(p,q)

and the flow
from the DNS are used to evolve separate realizations of

small-scale fields b(p,q). Neither the test fields B
(p,q)

nor the
small-scale fields b(p,q) act back on the flow. These small-scale
fields are then used to compute the electromotive force E (p,q)

corresponding to the test field B
(p,q)

. The number and form
of the test fields used depends on the problem at hand. For
the purposes of the present study we use uniform horizontal

test fields B
(1) = (B0,0,0) and B

(2) = (0,B0,0), in which case
the series expansion of the electromotive force contains only
a single term

E (a)
i = aijBj . (46)

1See http://pencil-code.googlecode.com.

TABLE I. Summary of the runs.

Set Re Pm Sh Ma Grid

A1 0.04 0.05...25 −0.20 0.010 323 . . . 643

A2 0.16 0.02...20 −0.13 0.016 323 . . . 643

B1 0.08...81 1 −0.025 0.080 323 . . . 2563

B2 0.08...83 1 −0.075 0.080 323 . . . 2563

B3 0.08...3.5 1 −0.25 0.080 323

B4 0.08...0.4 1 −2.5 0.080 323

C1 0.04 1 −0.020 . . . − 0.19 0.010 323

C2 0.16 1 −0.012 . . . − 0.12 0.016 323

C3 0.45 1 −0.009 . . . − 0.09 0.023 323

C4 1.3 1 −0.006 . . . − 0.07 0.032 323

D1 0.08 1 −0.010 0.002 . . . 0.41 323

We present the results using the quantities

α = 1
2 (a11 + a22), (47)

α12 = α21 = 1
2 (a21 + a12), (48)

γ = 1
2 (a21 − a12). (49)

We use α0 = 1
3urms as a normalization factor when presenting

numerical results. Errors are estimated by dividing the time
series into three equally long parts and computing time
averages for each of them. The largest departure from the
time average computed over the entire time series represents
the error. This definition of the error bar gives an indication
about the mean value that one would obtain for shorter parts of
the time series. With this definition, the error bars do normally
become shorter for longer runs, provided the time series is
stationary. This would not be the case for the rms value of the
deviations, which might sometimes also be of interest.

C. Results

We perform several sets of simulations where we vary the
parameters Pm, Rm, Sh, and Ma individually to study the
analytical results derived in Sec. II; see Table I. The setup
used here is prone to exhibit the so-called vorticity dynamo
[10,24], due to which large-scale vorticity is generated, and
complications can arise in the interpretation of the simulation
data. Here we restrict the studied parameter range so that the
values of Re and Sh are subcritical for the vorticity dynamo.
In our runs where the Reynolds numbers are of the order of
unity or less, a low grid resolution of 323 is often sufficient.
Indeed, in Table II we show the results obtained for different
resolutions ranging from 163 to 1283 for Rm around 1, which
demonstrates good convergence of the results within error bars.

TABLE II. Convergence study of γ and α21 for Rm = 1.3 and
Sh = −0.06 from simulations with different grid sizes.

Run γ /α0 (10−2) α21/α0 (10−2) Grid

E1 1.02 ± 0.12 0.94 ± 0.25 163

E2 1.05 ± 0.07 0.89 ± 0.20 323

E3 0.99 ± 0.06 0.83 ± 0.55 643

E4 0.94 ± 0.18 0.88 ± 0.23 1283
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FIG. 3. α effect as a function of Pm normalized by α0 = 1
3 urms

for the same runs as in Fig. 1. Analytical results according to Eq. (16)
are overplotted with dotted lines. The values of C2(q) are used as fit
parameters and indicated in the legends.

1. Dependence on Pm

Figure 1 shows our results for γ as a function of magnetic
Prandtl number Pm. We find that the numerical results coincide
with the analytical formula, Eq. (14). Values of the order of
C1(q) ≈ 1 fit the DNS results within the error estimates.

Figure 2 shows the results for α12 as a function of Pm for
two values of Re. The data for α12 shows significantly larger
fluctuations than the corresponding results for γ . However, the
DNS results seem to fall in line with the analytical expression,
Eq. (15), although the value of C1(q) needed to fit the data
is an order of magnitude larger than in the case of γ . This
can be explained by comparing Eqs. (36) and (37), which
show that γ ∝ Re2, while α12 ∝ Re (τ/τf ), where τ is the
flow renovating time, and τf = �f/urms is the turnover time
of turbulent eddies. Note that Eqs. (36) and (37) are obtained
for large magnetic Reynolds numbers, while Re � τ/τf < 1.

FIG. 4. γ as a function of Rm for Pm = 1 and for four values
of Sh (−0.025, −0.075, −0.25, and −2.5; see Sets B1 to B4). The
lines show the analytical results according to Eqs. (14) and (24) with
C1(q) = 1, for Sets B1 (dotted lines), B2 (dashed), B3 (dot-dashed),
and B4 (triple-dot dashed), respectively.

FIG. 5. Symmetric contribution α12 as a function of Rm for Pm =
1 and four values of shear as indicated by the legend (Sets B1 to B4).

This implies that for these conditions α12 	 γ . The latter is in
agreement with DNS results (see Figs. 1 and 2).

In Fig. 3 we show the α effect (the diagonal elements of
the αij tensor) as a function of the magnetic Prandtl number
Pm. These results are in a good agreement with the analytical
results (16).

2. Dependence on Rm

Our results for γ as a function of Rm are shown in Fig. 4. We
find that for Rm smaller than roughly two, γ is well described
by the analytical result, Eq. (14), obtained for Rm � 1 and
Re � 1. For greater Rm, γ is consistent with a constant value
as a function of Rm and is in accordance with Eq. (24) derived
for Rm 	 1 and Re 	 1. Note also that for the largest values
of the shear parameter, Sh = −2.5 (−0.25), there is a vorticity
dynamo for Rm > 1 (Rm > 3), so no points are plotted in
those cases.

The off-diagonal component α12, shown in Fig. 5, is pro-
portional to Re for small Rm, while the analytical expression

FIG. 6. α effect as a function of Rm normalized by α0 = 1
3 urms

for two values of Re (Sets B1 and B2). The dotted line is proportional
to Rm. The inset shows the normalized kinetic helicity of the flow.
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FIG. 7. Pumping velocity γ = 1
2 (a21 − a12) normalized by α0 as

a function of Sh for Pm = 1 and different values of Rm as indicated
in the legend (Sets C1–C4). Analytical results according to Eqs. (14)
with C1(q) = 1, and (24) are overplotted with dotted and dashed lines,
respectively.

(15) yields α12 ∝ Re2. A sign change occurs for Rm ≈ 2, and
the values of α12 are consistently negative in this regime in
agreement with Eq. (25) derived for Rm 	 1 and Re 	 1.
The data are noisy but suggest that α12 could be independent
of Rm at high Rm in agreement with the analytical result (25).
Furthermore, for small Rm the dependence on shear is weak,
although a clearer dependence on shear is seen for Rm greater
than around 10.

In Fig. 6 we show α as a function of Rm. We find
that α is proportional to Rm for small magnetic Reynolds
numbers in agreement with Eq. (16). For Rm greater than
roughly five, α decreases slightly, while the theory suggests
that α is independent of Rm for Rm 	 1. This inconsistency
can be understood in terms of the relative kinetic helicity
H/(kfu

2
rms), where H = ω · u, which decreases by about 20

FIG. 8. Symmetric contribution α12 normalized by α0 as a
function of Sh for Pm = 1 and different values of Rm as indicated
in the legend (Sets C1–C4). Runs with Rm = 16 are shown with
asterisks and connected by a dashed line. For these runs α12 < 0 so
the plot shows −α12.

FIG. 9. Pumping coefficient γ = 1
2 (a21 − a12) as a function of

the Mach number for Pm = 1 (Set D1). The normalization factor is
α0 = 1

3 urms, and Sh = −0.10.

percent between Rm 8 and 83 (see the inset in Fig. 6). Since
α ∝ H, this explains the decrease of α with Rm for Rm 	 1.

3. Dependence on shear

Figure 7 shows the pumping velocity γ normalized by
α0 as a function of the shear number, Sh, for Pm = 1 and
different values of Rm. Linear dependence of γ on shear is
clearly seen in Fig. 7. This is in agreement with the analytical
result of Eq. (14). Rather surprisingly, the data for α12 suggest
that there is no dependence on shear (Fig. 8), in contradiction
with the analytical result of Eq. (15) that was derived for
small shear, Sτf � 1.

Note that our theory has been developed for incompressible
flow since the DNS results are nearly independent of Mach
number for Ma < 0.05. This is shown in Fig. 9, where we
notice a sharp decline of γ for larger values of the Mach
number. We are not aware of similar findings for mean-field
transport coefficients as a function of Mach number.

IV. DISCUSSION AND CONCLUSIONS

To clarify the physical effect related to the pumping velocity
γ and the off-diagonal components of the tensor αij we rewrite
the contributions to the mean electromotive force which are
proportional to the mean magnetic field in the following form:

E (S)
i = αijBj + (γ × B)i

= [γ (P ) × B
(P ) + γ (T ) × B

(T )
]i , (50)

where B
(T )

is the toroidal mean magnetic field directed along

the mean shear velocity U (along the y axis), B
(P )

is the
poloidal mean magnetic field directed perpendicular to both
the mean shear velocity U and the mean vorticity (along the
x axis), while the pumping velocities γ (T ) and γ (P ) of the
toroidal and poloidal components of the mean magnetic field
are given by

γ (P ) = ẑ (α12 + γ ), (51)

γ (T ) = −ẑ (α12 − γ ). (52)

056314-8



PUMPING VELOCITY IN HOMOGENEOUS HELICAL . . . PHYSICAL REVIEW E 84, 056314 (2011)

Here we take into account the following identities for the
off-diagonal components of the tensor αij = (x̂i ŷj + x̂j ŷi) α12

and αijBj = α12 ẑ × (B
(P ) − B

(T )
), where α12 = α21 and x̂,

ŷ, ẑ are the unit vectors directed along the x, y, and z axes,
respectively.

It follows from these equations that when α12 > γ > 0,
the effective pumping velocity of the poloidal mean magnetic
field is directed upward (along the z axis), while the effective
pumping velocity of the toroidal mean magnetic field is
directed downward. When α12 < 0, but |α12| > γ , the situation
is the opposite, i.e., the effective pumping velocity of the
toroidal mean magnetic field is directed upward, while the
effective pumping velocity of the poloidal mean magnetic
field is directed downward. Therefore, the effective pumping
velocity γ and the off-diagonal components of the tensor αij

result in a separation of toroidal and poloidal components
of the mean magnetic field. This effect is very important for
large-scale dynamo action in shear flow turbulence.

Another reason for the different pumping velocity of
toroidal and poloidal components of the mean magnetic field
is a combination of the effects of rotation and stratification on
small-scale turbulence. The effect of the separation of toroidal
and poloidal components of the mean magnetic field was
early identified in analytic calculations of rotating stratified
turbulence in [26,56], confirmed in DNS of rotating stratified
convection [57,58], and included in numerical mean-field
modeling of the solar dynamo in [59]. Note also that a
nonlinear feedback of the mean magnetic field to turbulent
fluid flow causes a different pumping velocity of toroidal and
poloidal components of the mean magnetic field [9]. The latter
effect was included in numerical mean-field modeling of the
solar dynamo in [60].

In summary, we have developed a mean-field theory for a
pumping effect of the mean magnetic field in homogeneous
helical turbulence with imposed large-scale shear. In our
analysis we use the quasilinear approach, the path-integral
technique, and the tau-relaxation approximation, which allow
us to determine all components of the α tensor in different
ranges of hydrodynamic and magnetic Reynolds numbers.
The pumping effect depends on the α effect and on shear.
Using DNS and the kinematic test-field method we were able
to determine all components of the α tensor from numerical
simulations of sheared helical turbulence. The majority of the
numerical results for the effective pumping velocity and the
diagonal and off-diagonal components of the α tensor are in
good agreement with the theoretical results. However, the
numerical results for α12 suggest that there is no dependence of
the off-diagonal component on shear in contradiction with the
analytical result. In addition, according to the numerical results
α12(Re) is proportional to Re for small Rm, while the theory
yields α12 ∝ Re2. On the other hand, the change of the sign of
α12 from positive for small Rm to negative for large Rm ob-
served in DNS is in agreement with the theoretical predictions.
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APPENDIX A: THE INTEGRALS OF THE
GREEN’S FUNCTIONS

For the integration in ω space in the case of small magnetic
and hydrodynamic Reynolds numbers we used the following
integrals in Eqs. (11) and (12):

I0(k) =
∫

Gη Gν G∗
ν dω = π

ν (ν + η) k4
,

I1(k) =
∫

G2
η G2

ν G∗
ν dω = π

2 ν2 (ν + η)2 k8
,

I2(k) =
∫

G2
η Gν (G∗

ν)2 dω = π (5ν + η)

2 ν2 (ν + η)3 k8
,

I3(k) =
∫

Gη Gν (G∗
ν)3 dω = π

4 ν3 (ν + η)3 k8

× [2ν(ν + η) + (ν + η)2 + 4ν2],

I4(k) =
∫

Gη Gν (G∗
ν)2 dω = π (3ν + η)

2 ν2 (ν + η)2 k6
,

I5(k) =
∫

Gη G2
ν G∗

ν dω = π

2 ν2 (ν + η) k6
,

I6(k) =
∫

Gη G3
ν G∗

ν dω = π

4 ν3 (ν + η) k8
,

I7(k) =
∫

G3
η Gν G∗

ν dω = π

ν (ν + η)3 k8
,

I8(k) =
∫

G2
η Gν G∗

ν dω = π

ν (ν + η)2 k6
.

APPENDIX B: DERIVATION OF EQS. (26) AND (30)
IN PATH-INTEGRAL APPROACH

To derive Eq. (26) we use an exact solution of the induction
equation with an initial condition B(t = t0,x) = B(t0,x) in
the form of the Feynman-Kac formula,

Bi(t,x) = 〈Gij (t,t0,ξ ) Bj (t0,ξ )〉w, (B1)

and assume that

Bj (t0,ξ ) =
∫

exp(iξ · q)Bj (t0,q) dq. (B2)

Substituting Eq. (B2) into Eq. (B1) we obtain

Bi(t,x) =
∫

〈Gij (t,t0,ξ ) exp[iξ̂ · q]〉w
×Bj (t0,q) exp(iq · x) dq, (B3)
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where ξ̂ = ξ − x. In Eq. (B3) we expand the function exp[iξ̂ ·
q] in Taylor series at q = 0,

exp(iξ̂ · q) =
∞∑

k=0

1

k!
(iξ̂ · q)k,

and use the identity

∇k exp(ix · q) = (iq)k exp(ix · q).

This allows us to rewrite Eq. (B3) as follows:

Bi(t,x) =
〈
Gij (t,t0,ξ )

[ ∞∑
k=0

1

k!
(ξ̂ · ∇)k

]〉
w

×
∫

Bj (t0,q) exp(iq · x) dq. (B4)

After the inverse Fourier transformation, Bj (t0,x) =∫
Bj (t0,q) exp(iq · x) dq, in Eq. (B4) we obtain Eq. (26).

Equation (B2) can be formally considered as an inverse Fourier
transformation of the function Bj (t0,ξ ). Equation (26) has been
also derived by a rigorous method, using the Feynman-Kac
formula and Cameron-Martin-Girsanov theorem (see [47]).

Averaging Eq. (26) over the random velocity field yields
the equation for the mean magnetic field

Bi((m + 1)τ,x) = 〈〈Gij (t,s,ξ ) exp(ξ̂ · ∇)〉〉wBj (mτ,x),

(B5)

where the angular brackets 〈·〉 denote the ensemble average
over the random velocity field. Now we use the identity

Bi(t + τ,x) = exp

(
τ

∂

∂t

)
Bi(t,x), (B6)

which follows from the Taylor expansion

f (t + τ ) =
∞∑

m=1

(
τ

∂

∂t

)m

f (t) = exp

(
τ

∂

∂t

)
f (t)

m!
.

Therefore, Eqs. (B5)–(B6) yield

exp

(
τ

∂

∂t

)
Bi(t,x) = (Gij + Gij ξm∇m + Aijm∇m

+Cijmn∇m∇n)Bj ≡ exp(τ L̂) B,

(B7)

where Gij = 〈〈Gij 〉〉w = δij + ∇jU i τ + O[(Sτ )2], ξ i =
〈〈ξ̂i〉〉w = −Ui τ + O[(Sτ )2], Aijm = 〈〈ξ̂mGij 〉〉w, Cijmn =
〈〈ξ̂mξ̂nGij 〉〉w, and we introduced the operator L̂, which
allows us to reduce the integral equation (B5) to a partial
differential equation. Indeed, Eq. (B7), which is rewritten in
the form

exp

[
τ

(
L̂ − ∂

∂t

)]
B = B, (B8)

reduces to

∂ B
∂t

= L̂B. (B9)

Taylor expansion of the function exp(τ L̂) reads

exp(τ L̂) = Ê + τ L̂ + (τ L̂)2/2 + · · · , (B10)

where Ê is the unit operator. Thus, Eqs. (B7) and (B10) yield

L̂ ≡ Lij = 1

τ
(Gij − δij + ξmGij∇m + Aijm∇m)

+Dijmn∇m∇n + O(∇3), (B11)

where Dijmn = (Cijmn − AikmAkjn)/2τ . This yields Eq. (30).

APPENDIX C: ORR-KELVIN RANDOM SHEARING WAVES
FOR SMALL HYDRODYNAMIC REYNOLDS NUMBERS

We explain here the details that led to the derivation of
Eqs. (36) and (37). We seek the solutions of the linearized
Eq. (2) for incompressible velocity field u as superpositions
of the Orr-Kelvin shearing waves:

u(t,r) =
∫

u(t,k0) exp[ik(t) · r] dk0 (C1)

(see, e.g., [23,48–50]), where k0 = (kx0,ky,kz), k(t) = (kx0 −
Skyt,ky,kz), and we neglected the weak Lorentz force.
The amplitudes of the shearing waves satisfy the following
equations:

∂ux(t,k0)

∂t
=

[
2S

kykx(t)

k2(t)
− νk2(t)

]
ux(t,k0) + fx, (C2)

∂uz(t,k0)

∂t
= 2S

kykz

k2(t)
ux(t,k0) − νk2(t) uz(t,k0) + fz. (C3)

These equations were obtained by taking twice the curl of
Eq. (2). Equations (C2) and (C3) have explicit solutions:

ux(t,k0) = 1

k2(t)

∫ t

0
dt ′ G̃ν(t,t ′) k2(t ′) fx(t ′,k0), (C4)

uz(t,k0) = u(1)
z (t,k0) + u(2)

z (t,k0), (C5)

uy(t,k0) = − 1

ky

[kx(t) ux(t,k0) + kz uz(t,k0)] , (C6)

u(1)
z (t,k0) =

∫ t

0
dt ′ G̃ν(t,t ′) fz(t

′,k0), (C7)

u(2)
z (t,k0) = 2S kykz

∫ t

0
dt ′

G̃ν(t,t ′)
k2(t ′)

ux(t ′,k0), (C8)

where G̃ν(t,t ′) = exp[−ν
∫ t

t ′ dt ′′k2(t ′′)]. Equations (C4)–(C8)
for a white-in-time forcing yield the following formulas for
non-instantaneous two-point correlation functions:

〈
ux(t,k0) u∗(1)

z (t ′,k0)
〉=G̃ν(t,t ′)

k2(t ′)
k2(t)

〈
ux(t ′,k0) u∗(1)

z (t ′,k0)
〉
,

(C9)〈
u(1)

z (t,k0) u∗
x(t ′,k0)

〉 = G̃ν(t,t ′)
〈
u(1)

z (t ′,k0) u∗
x(t ′,k0)

〉
, (C10)〈

ux(t,k0) u∗(2)
z (t ′,k0)

〉
= 2S kykz

∫ t ′

0
dt ′′

G̃ν(t ′,t ′′)
k2(t ′′)

〈ux(t,k0) u∗
x(t ′′,k0)〉, (C11)

〈
u(2)

z (t,k0) u∗
x(t ′,k0)

〉
= 2S kykz

∫ t

0
dt ′′

G̃ν(t,t ′′)
k2(t ′′)

〈ux(t ′′,k0) u∗
x(t ′,k0)〉,

(C12)
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where for t ′′ < t ′

〈ux(t ′′,k0) u∗
x(t ′,k0)〉 = G̃ν(t ′,t ′′)

k2(t ′′)
k2(t ′)

〈ux(t ′′,k0) u∗
x(t ′′,k0)〉,

(C13)

and for t ′′ > t ′

〈ux(t ′′,k0) u∗
x(t ′,k0)〉 = G̃ν(t ′′,t ′)

k2(t ′)
k2(t ′′)

〈ux(t ′,k0) u∗
x(t ′,k0)〉.

(C14)
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