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ABSTRACT

Aims. We study the ability of magnetic helicity expulsion to alleviate catastrophic α-quenching in mean field dynamos in two–
dimensional spherical wedge domains.
Methods. Motivated by the physical state of the outer regions of the Sun, we consider α2Ω mean field models with a dynamical α
quenching. We include two mechanisms which have the potential to facilitate helicity expulsion, namely advection by a mean flow
(“solar wind”) and meridional circulation.
Results. We find that a wind alone can prevent catastrophic quenching, with the field saturating at finite amplitude. In certain parameter
ranges, the presence of a large-scale meridional circulation can reinforce this alleviation. However, the saturated field strengths are
typically below the equipartition field strength. We discuss possible mechanisms that might increase the saturated field.

Key words. Sun: dynamo – magnetohydrodynamics (MHD)

1. Introduction

Mean field dynamo models have provided an important frame-
work for studying the generation of large-scale astrophysical
magnetic fields and their spatio-temporal dynamics. However,
these widely used models have been presented with a seri-
ous challenge – namely the so called catastrophic α quenching
(Gruzinov & Diamond 1994). In the mean field (MF) context
this effect, which is a consequence of the conservation of mag-
netic helicity (Krause & Rädler 1980; Zeldovich et al. 1983),
manifests itself as the decrease of the α-effect with increasing
magnetic Reynolds number ReM (Vainshtein & Cattaneo 1992;
Cattaneo & Hughes 1996) at finite field strength. In models with-
out magnetic helicity fluxes, the quenching of α can become se-
vere, with α decreasing as Re−1

M – truly catastrophic for dynamo
action in the Sun, stars and galaxies where the Reynolds numbers
are all very large (>109). This catastrophic quenching is captured
by mean-field models which use dynamical alpha quenching,
such as that considered by Blackman & Brandenburg (2002).
This catastrophic quenching is independent of the details of the
dynamo mechanism and is a direct effect of the conservation of
magnetic helicity. See, e.g., Brandenburg & Käpylä (2007) who
have demonstrated catastrophic quenching for non-local alpha
effect or Chatterjee et al. (2011) who have demonstrated the
occurrence of catastrophic quenching in distributed dynamos.
It has been suggested that the quenching may be alleviated
by the expulsion of magnetic helicity through open boundaries
(Blackman & Field 2000; Kleeorin et al. 2000). At least three
different physical mechanisms may help in the expulsion of
small scale magnetic helicity: (a) large scale shear (Vishniac &
Cho 2001; Subramanian & Brandenburg 2004; Brandenburg &
Sandin 2004; Moss & Sokoloff 2011); (b) turbulent diffusion of
magnetic helicity (Mitra et al. 2010a); (c) non-zero mean flow
out from a boundary of the domain, e.g. a wind. A number of

recent studies have demonstrated the possibility of this alle-
viation of quenching for solar (Chatterjee et al. 2010, 2011;
Guerrero et al. 2010) and galactic dynamos (e.g. Shukurov et al.
2006).

In this paper we study the effects of a number of mecha-
nisms which may facilitate the expulsion of magnetic helicity
from the dynamo region. Initially we consider the effects of ad-
vection by a mean flow in a similar manner to Shukurov et al.
(2006); see also the recent study in a one dimensional model by
Brandenburg et al. (2009). We envisage that in the Sun the wind
could be loaded with magnetic helicity through coronal mass
ejections (Blackman & Brandenburg 2003). Another potentially
important mechanism is meridional circulation. The presence of
such a circulation in the Sun is supported by a number of obser-
vations which have found evidence for a near-surface poleward
flow of 10–20 ms−1. Even though the corresponding compensat-
ing equatorward flow has not yet been detected, it is however
assumed it must exist because of mass conservation. Substantial
effort has recently gone into the construction of flux transport
dynamo models which differ from the usual αΩ dynamos by
including an additional advective transport of magnetic flux by
meridional circulation. (see e.g. Dikpati & Gilman 2009, for a
recent summary). If magnetic flux is advected by meridional cir-
culation, it can be expected that such a circulation will also trans-
port magnetic helicity to the surface layers, which might thus fa-
cilitate its subsequent expulsion by the wind. We therefore study
the effects of meridional circulation on the quenching.

The structure of the paper is as follows. In Sect. 2 we intro-
duce our model and its various ingredients. Section 3 contains
our results, and we give a short summary here. First we con-
sider our model with an imposed wind but no meridional circu-
lation. We show that a strong enough wind that penetrates deeply
enough into the convection zone can indeed alleviate quenching.
We then make a systematic study of the alleviation of quenching

Article published by EDP Sciences A138, page 1 of 6

http://dx.doi.org/10.1051/0004-6361/201015637
http://www.aanda.org
http://www.edpsciences.org


A&A 526, A138 (2011)

as a function of the two parameters specifying the wind, namely
the maximum velocity and the depth down to which the wind
penetrates the convection zone. Next we select a particular set of
these two parameters such that for large ReM there is no allevi-
ation of quenching. We then introduce a meridional circulation
and show that a combination of a wind and circulation is able to
limit the quenching in cases where the wind alone cannot. We
further study the effect of the characteristic velocity of merid-
ional circulation on quenching. Our conclusions are presented in
Sect. 4.

2. The model

We study two-dimensional (axisymmetric) mean field models
in a spherical wedge domain, r1 ≤ r ≤ r2, θ1 ≤ θ ≤ π/2,
where r, θ, φ are spherical polar coordinates. The choice of this
“wedge” shaped domain is motivated by recent Direct Numerical
Simulations (DNSs) of forced and convective dynamos in spher-
ical wedges cut from spheres (Mitra et al. 2010b; Käpylä et al.
2010), and the intention to make a similar development of this
work.

We consider an α2Ω mean field model with a “dynamical
alpha” in the presence of an additional mean flow U. In the sim-
plest case, where we consider no wind and no meridional circu-
lation, the mean flow is in the form of a uniform rotational shear
given by U = Ushear = φ̂S (r − r0) sin θ. For the more realistic
cases we use

U = Ushear + Uwind + Ucirc, (1)

where Uwind and Ucirc are respectively the large-scale velocity of
the wind and circulation. The particular forms we use are given
in Sects. 2.1 and 2.2 below. Thus, we integrate

∂t B = ∇ × (U × B + E) + η∇2 B, (2)

∂tαM = −2ηk2
f

⎛⎜⎜⎜⎜⎝E · B
B2

eq
+
αM

ReM

⎞⎟⎟⎟⎟⎠ − ∇ · (αMU), (3)

where E = αB−ηt J , and α = αM+αK is the sum of the magnetic
and kinetic α-effects respectively. The magnetic Reynolds num-
ber, ReM/3 ≡ ηt/η and Beq is the equipartition field strength.
We take ηt = 1, Beq = 1 and kf = 100 in our simulations.
Here Eq. (2) is the standard induction equation for mean field
models and Eq. (3) describes the dynamical evolution of α; see
Blackman & Brandenburg (2002). The last term in the right hand
side of Eq. (3) models the advective flux of magnetic helicity.

We solve Eqs. (2) and (3) using the Pencil Code1 which
employs a sixth order centered finite-difference method to eval-
uate the spatial derivatives and a third order Runge-Kutta scheme
for time evolution.

Our aim here is to study the effects of the various mecha-
nisms discussed above in alleviating the catastrophic quenching
of the magnetic field as ReM increases.

2.1. The wind and the “corona”

In order to include the effects of the solar wind we must include
an outer region in our model through which the wind flows, by
extending the outer boundary beyond the convection zone to ra-
dius r3 > r2. We shall refer to the region r2 ≤ r ≤ r3 as the
“corona”. We take the wind to be strong in the corona and to

1 http://pencil-code.googlecode.com/

grow weaker as we go into the convection zone. This is repre-
sented by choosing the following form for Uwind,

Uwind
r =

1
2

U0

[
1 + tanh

(r − r2

w

)]
, (4)

Uwind
θ = 0, (5)

Uwind
φ = 0, (6)

where U0 and w are control parameters which determine the
strength of the wind speed and its depth of penetration into the
convection zone respectively. Larger values of w correspond to
deeper penetration. We let the kinematic α-effect to go to zero in
the corona by choosing

αK = −α0

2
tanh

(
θ − π/2

0.05

) [
1 − tanh

(
r − r2

wα

)]
, (7)

with α0 = 16.

2.2. The meridional circulation

We consider the effects of a meridional circulation, by including
a velocity Ucirc given by

Ucirc
r = vampg(r)

1
sin θ

∂

∂θ
(sin θ ψ) , (8)

Ucirc
θ = −vampg(r)

1
r
∂

∂r
(rψ), (9)

ψ =
f (r)
r

sin2(θ − θ1) cot θ, (10)

f (r) = (r − r2)(r − r1)2, (11)

g(r) =
1
2

[
1 − tanh

(
r − r2

wcirc

)]
, (12)

Ucirc
φ = 0. (13)

Here vamp is a parameter controlling the magnitude of circula-
tion speed and wcirc determines the effective depth of penetration
of the circulation into r > r2. As a characteristic speed of cir-
culation, vcirc, we take the maximum absolute magnitude of the
θ component of Ucirc at r = r2, i.e. at the surface of the Sun.
Helioseismology shows this velocity to be about 10 to 20 metres
per second in the Sun. A typical velocity field is shown in Fig. 1,
and the profile of αK is shown in Fig. 2. In these figures, the pa-
rameters are chosen to be α0 = 16, wα = 0.2, U0 = 2, r2 = 1.5,
w = 0.3, vamp = 75, rcirc = 0.98, wcirc = 0.02.

2.3. Boundary conditions

For the magnetic field we use perfect conductor boundary condi-
tions both at the base of the convection zone (at r = r1) and at the
lateral boundary at the higher latitude (θ = θ1). We assume the
magnetic field to be antisymmetric about the equator (θ = π/2),
and at the outer radial boundary of the corona (r = r3) we use the
normal field condition. In terms of the magnetic vector potential
A = (Ar, Aθ, Aφ), where B = ∇ × A, these conditions become

∂Ar

∂r
= Aθ = Aφ = 0 (r = r1), (14)

Ar = 0,
∂Aθ

∂r
= −Aθ

r
,

∂Aφ

∂r
= −Aφ

r
(r = r3), (15)

Ar =
∂Aθ

∂θ
= Aφ = 0 (θ = θ1), (16)

∂Ar

∂θ
= Aθ =

∂

∂θ
(sin θAφ) = 0 (θ = π/2). (17)
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Fig. 1. Plot of the velocity field: the arrows show the meridional circu-
lation and the wind, and the contours show the angular velocity. The
solar radius is taken to be unity. Although our domain extends out to 5
solar radii, for clarity only a part of it is shown here. The curve at unit
radius denotes the surface of the Sun.

Fig. 2. The kinetic alpha effect, αK, and wind radial velocity, Ur , as a
function of radial coordinate r for three different latitudes, equator (up-
per curve), mid-latitude (middle curve) and latitude of upper boundary
(lower curve). Note that the curves for the radial velocities differ only
in r < 1, where the meridional circulation is non-zero.

For αM, on those boundaries where the boundary condition on
the magnetic field is “perfect-conductor” (i.e. at the bottom of
the convection zone and at the higher latitude), we choose

αM = 0. (18)

At the other two boundaries, we recall that since the PDE being
solved is of first order in space we only need to specify one con-
dition, which we have already imposed at the lower boundary. To
calculate the derivative at the outer boundary we therefore just
extrapolate the solution from inside to outside by a second or-
der polynomial extrapolation. This is equivalent to using second
order one sided finite difference at these boundaries.

Fig. 3. Spacetime diagrams for the three components of the magnetic
field. These plots are for the set of parameters corresponding to the
velocity field and αK shown in Figs. 1 and 2.

As the initial condition for the magnetic field we choose our
seed magnetic vector potential from a random Gaussian distri-
bution with no spatial correlation and root-mean-square value
of the order of 10−4 times the equipartition field strength. Also,
initially we take αM = α − αK = 0.

3. Results

In order to demonstrate that our dynamo is excited, and dis-
plays both oscillations and equatorward migration, we first use
the velocity field and the kinetic α profile shown in Fig. 1, with
ReM = 3 × 102 and solve Eqs. (2) and (3) simultaneously. The
resulting space-time diagram for the three components of the
magnetic field is shown in Fig. 3. This is a typical example of
the “butterfly” diagrams that are obtained with this model.

As mentioned above, an important feature of MF dynamos in
the absence of wind and meridional circulation (i.e. when U0 = 0
and vamp = 0), is that they are severely quenched as ReM in-
creases. To show this we have plotted in Fig. 4a the time-series

of the total magnetic energy EM =
1
2 〈B

2〉 for several values of
ReM. Here, 〈...〉 denotes averaging over the domain r1 ≤ r ≤ r2.
Clearly the total magnetic energy decreases with ReM. Similar
quenching, as a result of the dynamical evolution of the alpha
term, has been seen in many different models of the solar dy-
namo (see, e.g., Chatterjee et al. 2010, 2011; Guerrero et al.
2010, for some recent examples), and also in models of galac-
tic dynamos (Shukurov et al. 2006).

To substantiate this further we plot in Fig. 5 the time-
averaged magnetic energy 〈EM〉t as a function of ReM, where
the time averaging is done over several diffusion times (T ) in the
saturated nonlinear stage (i.e. after the kinematic growth phase
is over). Time averaging is here indicated by the subscript t af-
ter the averaging sign. As can be seen in the absence of wind,
i.e. with U0 = 0, such time-averaged energy falls off approxi-
mately as Re−1

M . This gives a quantitative measure of the quench-
ing. (The point at ReM = 2 × 106 appears anomalous; we be-
lieve this is because we have not run the code for long enough to
achieve the final saturated state.)

To demonstrate the ability of the wind and circulation to act
together to alleviate quenching, we have plotted in Fig. 4(b) the
time-series of EM for several different values of ReM, in the pres-
ence of the wind (with U0 = 1, vamp = 75 and depth parameter
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Fig. 4. a) Time series of EM for U0 = 0 and vamp = 0, i.e. no wind
or circulation, for 5 different values of ReM. b) The corresponding plot
with U0 = 1, w = 0.3 and vamp = 75. The time-averaged magnetic
energy 〈EM〉t is calculated by time-averaging these time-series between
the two dashed vertical lines. The other parameters used are α0 = 16,
wα = 0.2, r2 = 1.5, and w = 0.3.

w = 0.3). The dependence of the time-averaged magnetic energy
〈EM〉t on ReM in this case is also plotted in Fig. 5. Comparing
Fig. 4(b) with Fig. 4(a) and also comparing the two lines in Fig. 5
we clearly see that with the parameters chosen the wind in con-
junction with the circulation is capable of alleviating quenching.
This is one of our principal results. Note that the saturated mean
field energy that we observe at large ReM is still rather small,
only slightly exceeding 10−4 of the equipartition value.

Next we attempt to isolate the role of each parameter in our
model. First we make a detailed systematic study of how quench-
ing depends on the two parameters U0 and w of our model, for
a fixed value of ReM = 107 and zero circulation, vamp = 0. For
each pair of parameters we ran our code for up to 50 diffusion
times. In some cases the time series of EM declines as a function
of time initially, but at larger times recovers to unquenched val-
ues, e.g. U0 = 1 in Fig. 6. In some other cases we observe that
the recovery is merely temporary and at large times EM goes
to zero. As an example we first show in Fig. 6 the time-series
of EM for various values of U0, for a fixed w = 0.3. Clearly,
as the wind velocity increases the transport of magnetic helicity
out of the domain at first becomes more efficient and we observe
less quenching. But this alleviation of quenching must have its
limits because for a large enough wind speed the magnetic field
itself will be advected out of the domain faster than it is gener-
ated, thus killing the dynamo (see, e.g., Shukurov et al. 2006;

Fig. 5. The time-averaged magnetic energy as a function of ReM for
U0 = 0 (no wind) and U0 = 1 and w = 0.3 and vamp = 75.

Fig. 6. Time series of EM for 5 different values of U0, namely, U0 =
0.1(∗), 0.4(♦), 1(�), 2(�) and 10(×) with all other parameters held fixed,
in particular ReM = 107, w = 0.3.

Brandenburg et al. 1993; Moss et al. 2010). However with pen-
etration factor w = 0.3 we did not find this effect, even when
U0 = 100, but with w = 0.5, winds with U0 ≥ 20 kill the dy-
namo. We deduce that it is necessary to advect large-scale field
from a substantial proportion of the dynamo region for the dy-
namo to be killed by advection.

Then we consider the parameter w which controls the depth
of penetration of the wind into the convection zone. The depen-
dence of the time-series of magnetic energy on this parameter is
shown in Fig. 7, for ReM = 107 and U0 = 2. We also note that
there is a subset of parameters for which the transients are so
long that it is difficult to decide whether the asymptotic state is
a quenched dynamo or not, within reasonable integration times.
In our parameter space, i.e. in the U0 − w plane, the positions
of the quenched and unquenched runs are shown in Fig. 8; sum-
marizing the dependence of quenching on these parameters. For
all the runs we label as unquenched the butterfly diagram is also
restored at large times.

3.1. The effect of circulation

Next we consider the effect of meridional circulation on the
quenching. If the wind penetrates inside the convection zone too
deeply then we expect that circulation will have either no effect,
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Fig. 7. Time series of EM for 5 different values of w, [w = 0.01(∗),
0.2(�), 0.3(�), and 0.4(×).] with all other parameters held fixed, i.e.,
ReM = 107, U0 = 2 with no circulation.

Fig. 8. The incidence of quenched and unquenched solutions in the U0−
w plane. The positions of quenched models are denoted by the symbol ∗,
the symbol ♦ identifies unquenched models. The arrow is explained in
Sect. 3.1.

or just a marginal effect, because the wind by itself will be ef-
ficient enough in removing small-scale magnetic helicity from
deep within the domain. But if the wind does not penetrate so
deeply, circulation may play an important role in dredging mag-
netic helicity from deep inside the domain to near the surface
from where the wind can remove it. To see whether this idea can
work, we select one point in the phase diagram in Fig 8, where
we obtain the quenched solution marked by the arrow. Then we
turn on the meridional circulation. The comparison between the
time-series of EM with and without circulation is shown in Fig. 9.
It can be seen that the final magnetic energy reached does not
depend on the amplitude of circulation if the amplitude of circu-
lation is greater than a critical value. Note that this alleviation of
quenching by the circulation only works for those points in the
U0 −w parameter space which lie close to the boundary between
the quenched and non-quenched states in the phase diagram. For
points with very small w, i.e. in cases where the wind penetrates
very little into the convection zone, even a very strong circula-
tion cannot remove the quenching.

Another possible mechanism that can transport magnetic he-
licity from the bulk of the convection zone to its surface is the
diffusion of magnetic helicity. This can be described by adding

Fig. 9. Time series of EM as a function of time for U0 = 2 and w = 0.25
with vamp = 0(+), 75(∗), 100(♦), and200(�).

the term κt∇2αM to the right hand side of Eq. (3), where κt is an
effective turbulent diffusivity of the magnetic helicity. Numerical
simulations have estimated κt ∼ 0.3ηt (Mitra et al. 2010a). We
have checked that such a diffusive flux of magnetic helicity can
alleviate quenching at least as effectively as the meridional cir-
culation, in the presence of the wind.

Finally we note that the alleviation of quenching as described
here is independent of some details of the underlying dynamo
model. In particular it does not depend on whether we have an
α2 dynamo or an α2Ω dynamo. To check this assertion explicitly
we also solved the same problem but with Ushear = 0 in Eq. (1).
The results are shown in Fig. 10 where we compare the alle-
viation of quenching for the α2 dynamo (top panel) against the
corresponding α2Ω dynamo (bottom panel).

4. Conclusions

We have introduced two observationally motivated effects that
may help reduce the catastrophic quenching found in mean
field dynamo models. An outward flow from the dynamo region
(“wind”) is found to be effective in allowing the quenching to
saturate at finite values of the field strength. The wind alone is,
however, only effective when it penetrates quite deeply into the
convection zone. These effects are modified to some extent by
the presence of a meridional circulation which has the ability to
transport small scale helicity from deep in the convection zone
to near the surface, from where the wind can more effectively re-
move it. However, the effects of circulation in our model are not
dramatic. It is also true that the saturation fields in our model are
rather small compared to the equipartition field strength. This
was also observed in the model of Shukurov et al. (2006); see
also Moss & Sokoloff (2011). One possibility, that we have not
explored, is that the neglected inhomogeneity of the solar con-
vection zone may be important.

It is interesting to try to estimate the various parameters of
our model in physical units and to compare them with the so-
lar values. We have taken the solar radius as the unit of length
(7 × 1010 cm). The α effect can be taken to be a measure of the
small scale velocity in the Sun, α ∼ (1/3)|u|, where u = U − U.
The Baker & Temesvary (1966) tables give estimates for small-
scale velocities in the convection zone of the Sun of between
4 × 103–2 × 105 cm s−1, in regions where convection is efficient.
As we have considered the convection zone to be homogeneous
we consider 104 cm s−1 to be a reasonable estimate. Then, as
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Fig. 10. The behaviour of the time-averaged magnetic energy as a func-
tion of magnetic Reynolds number ReM, which shows the alleviation
of quenching, with wind speed U0 = 2 and depth parameter w = 0.8
(upper panel). Also shown is the corresponding plot in the absence of
a wind, which clearly shows a catastrophic quenching. The lower panel
is for a α2Ω dynamo.

α = 16 in our units the unit of velocity is ∼104/(3×16) cm s−1 ∼
2 × 103 cm s−1, and the unit of time, obtained from length and
velocity units given above, is ∼108 s≈10 yrs. Thus our character-
istic cycle period, T ≈ 1, corresponds to approximately 10 years.
Then the maximum wind speed we have used (U0 = 10) would
correspond to 2 × 103 cm s−1. The speed of the meridional cir-
culation at the surface in our units is vsurf = 0.47 for vamp = 75.
Translated to physical units this becomes vsurf ≈ 1 m s−1, which
is of the same order of magnitude as the solar meridional ve-
locity. If in the estimates above we use the maximum and min-
imum values of the small-scale velocity as given by the Baker
and Temesvary tables, instead of the mean, the maximum sur-
face speed of meridional circulation will be between 0.4 m s−1

and 20 m s−1 . The speed of the solar wind that we have used
is significantly smaller than that of the actual solar wind, but on
the other hand the real solar wind is a highly fluctuating turbulent
flow, whereas we have considered a constant outflow.

To summarise, we have presented a very simplified model,
in order to explore some basic ideas relevant to the solar dynamo.

We cannot claim to have “solved” the quenching problem, but
feel we have identified, and to some extent quantified, mecha-
nisms of potential interest. We appreciate that there are a number
of desirable improvements, even in this MF formulation. These
include using a more realistic solar-like rotation law, investiga-
tion and comparison of the effects of other fluxes of magnetic
helicity (e.g. Zhang et al. 2006), the diffusive magnetic helic-
ity flux (Mitra et al. 2010a), the inclusion of compressibility in
some form, but most importantly perhaps, using a more realistic
model for the solar wind allowing for magnetic helicity load-
ing via coronal mass ejections. Notwithstanding these possible
shortcomings, we do feel that our results provide motivation for
further investigations in the context of solar and stellar dynamos.
Investigations using DNS (e.g. Warnecke & Brandenburg 2010)
appear likely to be especially interesting, and we hope to pursue
this approach.
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