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ABSTRACT

Context. Helically forced magneto-hydrodynamic shearing-sheet turbulence can support different large-scale dynamo modes, al-
though the αΩ mode is generally expected to dominate because it is the fastest growing one. In an αΩ dynamo, most of the field
amplification is produced by the shear. As differential rotation is an ubiquitous source of shear in astrophysics, such dynamos are
believed to be the source of most astrophysical large-scale magnetic fields.
Aims. We study the stability of oscillatory migratory αΩ type dynamos in turbulence simulations.
Methods. We use shearing-sheet simulations of hydromagnetic turbulence that is helically forced at a wavenumber that is about three
times larger than the lowest wavenumber in the domain so that both αΩ and α2 dynamo action is possible.
Results. After initial dominance and saturation, the αΩ mode is found to be destroyed by an orthogonal α2 mode sustained by the
helical turbulence alone. We show that there are at least two processes through which this transition can occur.
Conclusions. The fratricide of αΩ dynamos by its α2 sibling is discussed in the context of grand minima of stellar activity. However,
the genesis of αΩ dynamos from an α2 dynamo has not yet been found.
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1. Introduction

The observed existence of large-scale astrophysical magnetic
fields, for example galactic or solar fields, is usually explained
by self-excited dynamo action within electrically conducting flu-
ids or plasmas. However, this mechanism of field amplification
continues to be a matter of debate as the existing theory encoun-
ters problems when extrapolated to the large magnetic Reynolds
numbers of astrophysics. Nonetheless, large-scale astrophysical
fields are believed to be predominately generated by so-called
αΩ dynamos, in which most of the field amplification occurs
through the shearing of field lines by ubiquitous differential ro-
tation, a process known as the Ω effect (Steenbeck & Krause
1969). For example, many models of the solar dynamo invoke
the strong shear found in the tachocline at the base of the con-
vection zone (see, e.g., Charbonneau 2010). Shear alone cannot
drive dynamo action however, and the α effect, caused by heli-
cal motions, provides the necessary twist of the sheared field to
complete the magnetic field amplification cycle. In the Sun, an
α effect is provided via kinetic helicity due to the interaction of
stratified convection and solar rotation.

The α effect can drive a dynamo by itself, which is then of
the so-called α2 type. These dynamos are of great theoretical
interest due to their simplicity, but are expected to be outper-
formed by αΩ dynamos in the wild. Strictly speaking, αΩ dy-
namos should be referred to as α2Ω dynamos as the α2 process
of course continues to occur in reality, even in the presence of
the Ω effect. However, in the mean-field approach one some-
times makes the so-called “αΩ” approximation by neglecting the
production of toroidal field via the α effect entirely in favor of
the Ω effect. In such models, the nonlinear competition between
different αΩ modes has been thoroughly studied by monitoring,
for example, rapid changes of Lyapunov exponents in the bifur-
cation structure (Covas et al. 1997).

In the present paper we consider numerical solutions of the
compressible MHD equations in three dimensions with turbu-
lent helical flows where, of course, the αΩ approximation is not
applicable. Nevertheless we will refer to αΩ and α2Ω regimes
when shear is dominant or comparable with amplification by the
helical turbulence, respectively.

Very often, a linear stability analysis of a given setup reveals
that several different dynamo modes are expected to be excited at
the same time. While during the linear stage the relative strength
of these modes is determined by the initial conditions, the mode
or mixture of modes of the final saturated state is decided by
the nonlinear interactions between the modes in their backreac-
tion on the flow. The naive guess that the final state should al-
ways be characterized by the mode with the highest growth rate,
has turned out not to be valid in general. This was first shown
in Brandenburg et al. (1989), who found that, for small enough
dynamo numbers, the saturated state of α2 and αΩ dynamos is
instead determined by the solution with the smallest marginal
dynamo number. For larger dynamo numbers, however, axisym-
metric dipolar and quadrupolar modes have asymptotically iden-
tical growth rates, and in the nonlinear regime there can be sev-
eral stable solutions, including some with mixed parity, that no
longer bifurcate from the trivial one. Moreover, certain axisym-
metric solutions turned out to be unstable to non-axisymmetric
perturbations and evolved eventually toward another axisymmet-
ric solution (Rädler et al. 1990).

In direct numerical simulations of a geodynamo model with
stress-free boundary conditions, it has been observed that again
two different dynamo solutions, a dipolar and a “hemispherical”
one, can both be stable (Christensen et al. 1999; Grote & Busse
2000). Because of the free fluid surface in that model, this might
even be taken as a hint for the possibility of non-unique stable
states in stellar setups as well.
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Fuchs et al. (1999) have demonstrated an even more extreme
case with a dynamo powered by a forced laminar flow. In the
course of the magnetic field growth, the Lorentz force arranges
the flow into a different pattern, which is hydrodynamically sta-
ble, but unable to drive a dynamo. As the dynamo dies out sub-
sequently without a chance to recover, it was named “suicidal”.

Hence, the question of the character of the final, saturated
stage of a dynamo cannot reliably be answered on the basis of
a linear approach and the study of the nonlinear model might
unveil very unexpected results. Here, we will show in a sim-
ple setup that, while αΩ dynamos do grow faster than α2 dy-
namos, non-linear effects are capable of driving transitions from
αΩ modes to α2 modes. As the two competing dynamo modes
are excited for the same parameter set, i.e., are solutions of the
same eigenvalue problem, we refer to them as fratricidal, in rem-
iniscence of the aforementioned suicidal dynamos.

The two astrophysical dynamos for which we have long
time-series, the solar dynamo and that of the Earth, both ex-
hibit large fluctuations. The solar dynamo in particular is known
to go through prolonged quiescent phases such as the Maunder
minimum (Eddy 1976). A conceivable connection with fratrici-
dal dynamos makes understanding how non-linear effects define
large-scale dynamo magnetic field strengths and geometries a
matter of more than intellectual curiosity.

In Sect. 2 we sketch the mean-field theory of α2 and α2Ω
dynamos. In Sect. 3 we describe our numerical set-up and briefly
discuss the test-field method, a technique to extract the turbulent
transport coefficients of mean-field theory from direct numerical
simulations. In Sects. 5 and 6 we describe different transition
types, and we conclude in Sect. 7.

2. Mean field modeling

In the magneto-hydrodynamic approximation, the evolution of
magnetic fields is controlled by the induction equation

∂B
∂t
= ∇ × (U × B − ηJ) , (1)

where B is the magnetic field, J = ∇ × B is the current den-
sity in units where the vacuum permeability is unity, and η is the
microphysical resistivity. A common approach to (1) is mean-
field theory, under which physical quantities (upper case) are
decomposed into mean (overbars) and fluctuating (lower case)
constituents:

B = B + b. (2)

The mean can be any which obeys the Reynolds averaging rules,
but is frequently assumed to be a spatial one filtering out large
length-scales (a two-scale approach). Here we will however use
planar averaging, either over the xy plane so that B = 〈B〉xy ≡
BZ(z) or over the yz plane, that is, B = 〈B〉yz ≡ B X(x), where 〈·〉ξ
denotes averaging over all values of the variable ξ (or volume,
if not specified). A mean defined by averaging over y only will
also be used (〈·〉y). We humbly ask the reader to consider these
definitions carefully, given that the two planar averages will in
places be used simultaneously. It is important to remember that
the superscript refers to the direction of variation, rather than the
direction of averaging.

Under Reynolds averaging Eq. (1) becomes

∂B
∂t
= ∇ × (U × B + E − ηJ), (3)

∂b
∂t
= ∇ × (U × b + u × B + u × b − E − η j), (4)

where E ≡ u × b is the mean electromotive force (EMF) associ-
ated with correlations of the fluctuating fields.

Symmetry considerations allow one to write the E as a func-
tion of the mean-fields in the system. In the case of a planar
averaging scheme, this relation becomes

Ei = αi jB j − ηi jJ j + . . . , (5)

where αi j and ηi j are turbulent transport coefficients, and aver-
aged quantities depend on one spatial coordinate only. The tra-
ditional α effect is described by the symmetric part of the ten-
sor αi j, and requires helicity in the flow. The symmetric part of
ηi j describes turbulent dissipation, and, in the isotropic case, ap-
pears equivalently to the microphysical resistivity η. It is there-
fore termed the turbulent resistivity, ηt. When assuming that E
can be completely represented by the mean magnetic field and its
first spatial derivatives, the Taylor series in (5) can be truncated
after the term ηi jJ j. A more complete formula would include
higher spatial as well as temporal derivatives.

2.1. Mean-field dynamo action

Let us assume a large-scale shearing flow of the simple form

US = S x ŷ, (6)

and velocity fluctuations which are isotropic, homogeneous, and
statistically stationary. Consequently, if αi j and ηi j are assumed
to be independent of B (the kinematic limit), then they reduce to
constant scalars α and ηt

1.
If this system were to contain a y-dependent mean field, the

shear would induce field constituents which are proportional to
x. We restrict ourselves here to periodic spatial dependencies
and hence exclude such unbounded fields. When identifying the
y direction with the azimuthal one in a spherical system, this is
equivalent to restricting to axisymmetric fields. The evolution of
harmonic mean magnetic fields is given by the solution of the
eigenvalue problem

λB̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−ηTk2 −iαkz 0

iαkz + S −ηTk2 −iαkx

0 iαkx −ηTk2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ B̂, (7)

where B = B̂ exp(ik · x + λt), ηT = ηt + η, and k2 = k2
x + k2

z . The
resulting dispersion relation reads

(λ + ηTk2)[(λ + ηTk2)2 − α2k2 + iαS kz] = 0, (8)

with eigenvalues (apart from the always decaying modes with
By = 0)

λ± = −ηTk2 ±
(
α2k2 − iαS kz

)1/2
. (9)

It can easily be seen that there are two “pure” modes with par-
ticularly simple geometries: the α2 mode with kz = 0 does not
depend on S and has the form

Bαα = B̂αα [0, sin kxx, ± cos kxx] , (10)

where the growth rate is λαα = |αkx| − ηTk2
x and B̂αα is an am-

plitude factor. The upper (lower) sign corresponds to positive
(negative) αkx.

1 Strictly speaking, shear could introduce anisotropy felt by mean
fields with non-vanishing z-components. Our results do not reveal any
such.

A48, page 2 of 12



A. Hubbard et al.: Fratricidal αΩ and α2 dynamos

Fig. 1. Time series for a dominantly α2Ω dynamo with ReM = 20,
PrM = 5, S = 0.1 and kf ≈ 3.1 (corresponding to Run H of Table 3).

Left: rms value of BZ defined as 〈B Z 2〉1/2z , to be associated with the

α2Ω mode (black/solid), and of B X , defined as 〈B X 2〉1/2x , to be asso-
ciated with the α2 mode (red/dashed). Right: butterfly diagram of BZ

y

showing the dynamo wave of the α2Ω mode; yellow (blue): positive
(negative) values.

In contrast, the α2Ωmode with kx = 0 does depend on S and
has, for S � αkz (the αΩ approximation) the form

BαΩ = B̂αΩ
[
sin
(
kz(z − ct)

)
,
√

2
∣∣∣∣∣ cα
∣∣∣∣∣ sin
(
kz(z − ct) + φ

)
, 0
]
, (11)

c = sign(αS )
√|αS/2kz|. (12)

In the above, B̂αΩ is again an amplitude factor, φ represents, for
S > 0 (S < 0), the ±π/4 (±3π/4) phase shift between the x and
y components of the mean field, and upper (lower) signs apply
for positive (negative) values of αkz; see Table 3 of Brandenburg
& Subramanian (2005). The corresponding growth rate is

	{λαΩ} = √|αS kz|/2 − ηTk2
z . (13)

For equal |k|, the αΩ mode grows faster than the α2 mode2.
A key characteristic of α2Ω solutions is that the growth rate λ

has a non-vanishing imaginary part kzc which results in travel-
ing waves with phase speed c. The wave nature of α2Ω solutions
is a significant draw in explaining the solar magnetic cycle. For
a characteristic α2Ω dynamo found in direct numerical simula-
tions with a setup described below, we show in Fig. 1 the time-
series of rms values of B alongside the traveling wave in the
z− t plane (“butterfly diagram”). This solution is similar to those
considered recently by Käpylä & Brandenburg (2009). There are
other sources for such oscillations however. Admittance of a spa-
tially varying α enables oscillatory and hence traveling wave
solutions in pure α2 dynamos, see Baryshnikova & Shukurov
(1987), Rädler & Bräuer (1987), Stefani & Gerbeth (2003),
Mitra et al. (2010).

The mean fields of α2 modes are force free, while α2Ωmodes
cause a potential force which has minimal effect as long as the
peak Alfvén speed is subsonic so that the magnetic force can-
not generate significant density perturbations. Within kinemat-
ics, the induction equation allows for superimposed α2 and α2Ω
modes. Such a superposition can extend approximately into the
non-kinematic regime, and in Sect. 5 we will discuss the impli-
cations of the Lorentz forces generated when this occurs.

2 When assuming both kx and kz to be different from zero, but keeping
the αΩ approximation valid and kz fixed, the phase speed of the dynamo
wave does not change while the growth rate is reduced by ηk2

x . However,
the eigenmode has now a z component ∼ −kx/kzBx. Such modes were
not observed in our simulations.

3. Model and methods

3.1. Numerical setup

We have run simulations of helically forced sheared turbulence
in homogeneous isothermal triply (shear) periodic cubic do-
mains with sides of length 2π. The box wavenumber, which is
also the wavenumber of the observed mean fields, is therefore
k1 = 1. Unless otherwise specified, our simulations have 643 grid
points. For the shear flow we have taken the one defined by (6).
We solve the non-dimensionalized system

∂A
∂t
= −US · ∇A − S Ay x̂ + U × B + η∇2 A, (14)

DU
Dt
= −S Uxŷ − c2

s∇ ln ρ +
1
ρ

J × B + Fvisc + f , (15)

Dln ρ
Dt
= −∇ · U, (16)

where U is the fluid velocity excluding the shear flow, D/Dt =
∂/∂t+(U+US )·∇ is the advective derivative, cs = 1 is the isother-
mal sound speed, ρ the density, Fvisc = ρ

−1∇ · (2ρνS) the viscous
force, Si j =

1
2 (Ui, j + U j,i) − 1

3δi j∇ · U is the rate of strain tensor,
ν is the kinematic viscosity and f the forcing term. We use the
Pencil Code3, which employs sixth-order explicit finite differ-
ences in space and a third order accurate time stepping method.
While our code allows full compressibility, the simulations are
only weakly compressible (small Mach number). As in earlier
work (Brandenburg 2001), in each time step the forcing func-
tion is a snapshot of a circularly polarized plane wave. All these
waves have the same handedness, but their direction and phase
change randomly from one time step to the next. This forcing
provides kinetic helicity. The nondimensional forcing amplitude,
f0 (see Haugen et al. 2004, for details), is arranged such that the
Mach number associated with the turbulent rms velocity is of the
order of 0.1. In practice, this means that f0 is in the range 0.02
to 0.05. The wavevectors are taken from the set of vectors that
satisfy periodicity and whose moduli are adequately close to the
target forcing wavenumber kf .

The magnetic vector potential is initialized with a weak
Gaussian random field, the initial velocity is given by U = US
and the initial density is uniform. In Table 1 we have collected
the control parameters and some key derived quantities of the
model. Two parameters of note are the magnetic Reynolds and
Prandtl numbers,

ReM = urms/ηkf , PrM = ν/η. (17)

To characterize the turbulence, we provide values of α and
ηt which represent the corresponding tensors as described in
Sect. 2. These were determined using the test-field method (see
Sect. 3.2) with test-field wavevector k = x̂ or k = ẑ.

For our purposes, we require the helical turbulence to
be strong enough that the α2 dynamo can safely be excited.
Accordingly, we guaranteed that in all our simulations, ReM is
above the critical value (of the order of unity) for α2 dynamos in
the corresponding shearless setup (Brandenburg 2009). Further,
some of the transitions we will study require long simulation
times due to their rarity, which constrains us to modest numer-
ical resolutions. This in turn prevents our (explicit) numerical
resistivity from being small, so the turbulent velocities must
be reasonably large for the stated super-critical values of ReM .
Choosing furthermore subsonic shear speeds, we are restricted to
a modest region of parameter space. In light of these limitations
we operate mostly in a PrM > 1 regime.

3 http://pencil-code.googlecode.com
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Table 1. Control and derived parameters.

Quantity Definition Explanation
ν Control par. Microphysical viscosity
η ∼ Microphysical resistivity
S ∼ Shear (US = S x ŷ)
frms ∼ Forcing amplitude
kf ∼ Forcing wavenumber (generally ≈3.1)
PrM ν/η Magnetic Prandtl number
urms 〈u2〉1/2 RMS turbulent velocity
Beq urms Equipartition field (〈ρ〉 � 1 assumed)
ReM urms/ηkf Magnetic Reynolds number
k1 k1 = 1 Mean field wavenumber (2π/box size)
tres 1/ηk2

1 Resistive time (mean fields)
tturb 1/urmskf Turbulent time

3.2. Test-field method

A fundamental difficulty in extracting the tensors αi j and ηi j
from a numerical simulation of (14)–(16) is that (5) is under-
determined. However, turbulent transport depends only on the
velocity field, so “daughter” simulations of the induction equa-
tion, whose velocity fields are continuously copied from the
main run, share the same tensors αi j and ηi j. It is therefore
possible to lift the degeneracy by running an adequate num-
ber of daughter simulations with suitably chosen “test” mean
fields. We employ this test-field method (TFM); for an in-depth
overview see Schrinner et al. (2005, 2007) and Brandenburg
et al. (2008a,b). Recently the original method has been ex-
tended to systems with rapidly evolving mean-fields, requiring a
more complicated ansatz than Eq. (5) (Hubbard & Brandenburg
2009) and to the situation with magnetic background turbulence
(Rheinhardt & Brandenburg 2010).

In addition to calculating turbulent tensors for planar aver-
ages as described in the references above, we will be interested
in tensors that depend both on x and z (that is, are y-averages).
For this, we generalize (5) to

Ei = αi jB j + ηi jk
∂Bj

∂xk
+ . . . (18)

There are 27 tensor components (as ∂yB = 0), so nine test-fields
are required, which we choose to be of the form

Bpq = BT fq(x, z)δipêi, p = 1, 2, 3, q ∈ {cc, sc, cs}, (19)

where fq(x, z) is defined, according to the choice of q, to be one
of the following functions:

cos k1x cos k1z, sin k1x cos k1z, cos k1x sin k1z,

and BT is, as standard for test-field methods, an arbitrary ampli-
tude factor. Although the wavenumber of the test fields is usu-
ally treated as a varying parameter, we need here to consider
only the single value k1 because the fastest growing and also
the saturated dynamos in the simulations are dominated by this
wavenumber, the smallest possible in our periodic setup. As is
often the case in applications of the test-field method, we will
occasionally be faced with unstable solutions of the test prob-
lems. We treat that difficulty by periodically resetting the test
solutions (see Hubbard et al. 2009). Since it takes a finite time
for the stable parts of the test solutions to reach their stationary
values, and as this time is frequently close to the required re-
set time, only limited windows in the time series of the data are
valid.

4. Kinematic regime

The fruits of the linear analysis of Sect. 2.1 are not always
clear in the kinematic regime of direct numerical simulations.
Consider first a low value of ReM ≈ 5, slightly above its sup-
posed marginal values for both the α2 and the α2Ωmodes. When
starting with a Beltrami B X field as in (10) with kx = k1, the ini-
tialized dynamo mode indeed starts to grow exponentially after
a short adjustment stage. Its corresponding sibling mode, that is,
the α2Ω one, is fed via fluctuations and after a certain delay starts
to grow exponentially in turn. Even without including mem-
ory effects, the estimated growth rates are in good agreement
with those obtained from the transport coefficients measured by
the test-field method. Further, the expected geometries of both
modes can be identified satisfactorily. If instead one uses the
measured transport coefficients to generate an appropriate ini-
tial α2Ω field whose geometry is described by (12) with kz = k1,
it grows again at the right rate. Its α2 sibling, however, never ap-
pears. Instead a B X field follows the α2Ω mode, albeit with an
rms value one order of magnitude lower: we interpret this as “en-
slavement” of the B X field by the growing α2Ωmode: i.e., much
like in Sect. 6.3, the magnetic field of the α2Ω mode forces B X

via turbulent motions that can be represented by transport co-
efficients depending on both x and z. Only the geometry of the
α2Ω mode can be safely identified, while the B X field shows
a strong imprint of the forcing wavenumber, furthering the en-
slavement hypothesis.

Even for higher ReM the kinematic picture should still be
clear in the shearless case, S = 0: when starting with random
initial conditions one expects all three (Beltrami) α2 modes pos-
sible in a box, that is, with |k| = k1, to grow at similar rates. In
Fig. 2 we present time series, a butterfly diagram and spatial cuts
for Run A of Table 2 (ReM ≈ 37) along with its shearless coun-
terpart, where the spatial cuts show the mean fields during the
kinematic regime. For S = 0 all three fields B X , BY and BZ in-
deed appear with similar amplitudes and grow at a rate extracted
with the test-field method. Their identification as Beltrami fields,
however, is all but clear, see Fig. 2, BX

z in lower panel. At least a
strong |k| = k1 harmonic is detectable in each of these fields.

The sheared case is even more obscure. During the kine-
matic stage there are some indications of a dynamo wave, albeit
strongly entangled by fluctuating fields, see Fig. 2, middle panel.
More worrying however, the growth rates and amplitudes of the
BZ and B X fields are very similar and no pronounced features
of a Beltrami field can be found in B X . The spatial structure of
the BZ field, expected to be characterized by kz = k1, is even
less clear in this respect than that of the B X field in the shearless
case. However, an identifiable dynamo wave is markedly visible
after entering the saturation stage where the growth rate of B X

falls below that of BZ .
For an explanation we refer to the occurrence of a small-

scale dynamo at the given values of ReM and S , checked by in-
tegrating Eq. (4) with B = 0. It dominates the linear stage and
we hypothesize that it “enslaves” the B X and BZ fields, and is
responsible for the ragged character of their geometries. The fact
that with shear there is slower growth than without (see Fig. 2,
upper panel), contradictory to the linear analysis, can perhaps be
traced down to the reduction of α by the growing magnetic tur-
bulence, cf. the magnetokinetic contribution to α of Rheinhardt
& Brandenburg (2010). After the saturation of the small-scale
dynamo, the α2Ω mode can establish itself on the now settled
MHD turbulence, whereas the α2 mode had perhaps not enough
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Fig. 2. Time series of the rms values of B Z and B X for Run A and its
shearless counterpart. Top panel: black/thin for S = −0.05; red/thick for
S = 0; solid for BZ

rms, dashed for BX
rms. Middle panel: butterfly diagram

of BZ
y for the sheared case, where BZ

y is normalized to its instantaneous
rms value. Bottom panel: spatial cut of mean field components at a time
during the kinematic regime (indicated by the vertical line in the two
other panels); black/solid with shear, red/dashed without.

time to take shape. In the shearless case, in contrast, the small-
scale dynamo, if it exists at all, has at least a much smaller
growth rate and is hence less capable of influencing the mean
field growth. The appearance of a small-scale dynamo in this pa-
rameter range is plausible in view of the results in Schekochihin
et al. (2005) and Käpylä et al. (2008), although those works use
different setups.

5. Deterministic interactions of α2 and α2Ω modes

5.1. Numerical results

Here we report on the results of our simulations, a first set of
which is characterized in Table 2. In Fig. 3 we show time series
for Run A, which saw a transition from a z varying α2Ω dy-
namo (BZ) to an x varying α2 dynamo (B X). As is made clear
in the bottom panel, there was a prolonged period where the
two modes were coexisting while their relative strengths were
changing monotonically. However, note that BX

y is stronger than

BX
z , that is, the α2 field is distorted during the transition. Run A

was repeated 16 times with the same parameters, but differ-
ent random seeds, and all these runs exhibited similar behavior.
Likewise we performed runs where both the value of η and the
numerical resolution (cf. Runs B–D, I, J) were varied. As these
additional runs also showed the same transition pattern, we con-
clude that it is deterministic for this level of shear and forcing.
More, we conclude that for these cases the α2Ω mode is unsta-
ble to the growth of an α2 mode due to non-linear effects. Runs
with the dynamical parameters (S , urms) of Table 2 inevitably

Fig. 3. Time series for Run A. Upper row: same quantities as in Fig. 1.
Middle row: BX

y and BX
z , to be associated with the α2 mode. Note that

the α2Ω and α2 modes coexist during the transition. Lower panel: rms
values of the components of B X and BZ .

generate α2 fields from α2Ω fields after modest times, runs with
significantly different shear will usually (for most of the random
seeds) exit the kinematic regime into an α2Ω mode, and stay in
that mode for a prolonged time with no sign of an α2 field (but
with random transitions into the α2 mode, see Sect. 6).

Nonetheless all our simulation parameters allow runs to oc-
casionally fail to fully enter the α2Ω regime, instead exiting the
kinematic regime via a short transient α2Ω phase into the α2

mode, as shown in Fig. 4. One might speculate that this “weak-
ness” of the α2Ω dynamo is due to strong fluctuations driven
by powerful shear (compare the fluctuations of the α2Ω and α2

modes in Fig. 7) but the direct exit into the α2 mode has also
been seen with lower shear as well. We emphasize that this “di-
rect exit” seems to belong neither to the deterministic transitions
discussed here nor to the random transitions discussed later.
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Fig. 4. Time series for a run with same parameters as Run J of Table 2,
but different initial conditions, showing a transient, rather than a quasi-
stationary α2Ω regime. Top left: rms values of B Z and B X to be associ-
ated with the α2Ω (black) and the α2 mode (red). Note the lack of a well
defined phase with a dominating, but declining α2Ω mode. Top right:
butterfly diagram of BZ

y , showing the traveling dynamo wave during
the kinematic phase only, but later merely fluctuations. Bottom: compo-
nents of B X .

Table 2. Run parameters of deterministic transitions.

Run Res. −S urms −α† ηt
† ReM PrM τ‡

A 643 0.05 0.11 0.04 0.025 37 5 2–3
B 643 0.05 0.17 0.04 0.03 26 2.5 2
C 1283 0.05 0.14 0.04 0.027 44 3 4
D 1283 0.05 0.14 0.04 0.027 90 6 1.5
I 643 0.05 0.15 0.04 0.036 49 1 3
J 643 0.05 0.19 0.04 0.035 31 0.5 1.5

Notes. (†) Time-averaged values determined through the test-field
method using harmonic test fields with k = x̂ or k = ẑ. Results are
identical due to homogeneity of the time-averaged turbulent velocity.
(‡) τ = tdur/tres duration of the deterministic transition discussed in
Sect. 5. The range for Run A is because of multiple random seeds. In
all runs the nondimensional forcing amplitude is f0 = 0.04.

5.2. Analysis: mean-field approach

Clearly, the transition from the α2Ω mode to the α2 one must be
a consequence of the back-reaction of B onto the flow. Within
the mean-field picture, there are two channels available for it:
(i) the back-reaction onto the fluctuating flow, usually described
as a dependence of αi j (more seldom ηi j) on the mean field and
(ii) the back-reaction onto to the mean flow by the mean Lorentz
force, which might again be decomposed into a part resulting
from the fluctuating field, j × b, and one resulting from the mean
field, J × B. Here, we will deal with a flow generated by the lat-
ter force that straddles the distinction of means and fluctuations:
it survives under y-averaging, but vanishes under the xy and yz
averaging that reveals the α2Ω and α2 dynamos respectively. For
simplicity we consider magnetic field configurations that would

result from a superposition of linear modes of the αΩ and α2 dy-
namos, given in Eqs. (11) and (10) respectively. Such a situation
will inevitably occur during the kinematic growth phase if both
dynamos are supercritical, but is only relevant for analyzing the
back-reaction onto the flow if it at least to some extent continues
into the non-linear regime. Our analysis is linear in nature, so
while it provides a qualitative framework for understanding the
transition process, it is surely not quantitatively accurate.

In order to be able to consider both B X and BZ as mean fields
under one and the same averaging, we have now to resort to y
averaging. Moreover, for the sake of clarity we will occasionally
subject the resulting x and z dependent mean fields further to
spectral filtering with respect to these coordinates. That is, we
will consider only their first harmonics ∼eik1(x+z) as mean fields.

Let us represent the mean field 〈B〉y as superposition of a
B X resembling the (x varying) α2 mode Bαα (Eq. (10)) and a BZ

resembling the (z varying) αΩ mode BαΩ (Eq. (11)):

BZ = B̂Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
sin k1z′

G sin(k1z′ + φ)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , JZ = k1B̂Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−G cos(k1z′ + φ)

cos k1z′

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B X = B̂X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

H sin k1x

cos k1x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , JX = k1B̂X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

sin k1x

H cos k1x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (20)

with z′ ≡ z− ct, recalling that c is the speed of the dynamo wave
(Eq. (12)). In the above, π/4 ≤ φ ≤ 3π/4 and G,H, k1 > 0 are
appropriate for α > 0. The parameters G and H capture the dif-
ference in the strengths of the y and z components of B

αα
or the

x or y components of B
αΩ

, respectively. We expect G > 1 as
shear amplifies the y component of an α2Ω mode well above
its x component. The inclusion of the parameter H, which is
unity for pure α2 modes will be justified below, see the differ-

ent strengths of B
X
y and B

X
z in Fig. 3, lower panel.

The mean Lorentz force FL = J × B for the superimposed
fields can be written as

FL = 〈FL〉y
= k1 B̂X B̂Z cos k1x [ G cos(k1z′ + φ) + H sin k1z′ ] ŷ + ∇Φ.

(21)

As the Mach numbers were found to be small throughout, we as-
sume incompressibility and hence drop the potential component
∇Φ. Further, we assume that FL and the mean velocity driven
by it are simply linked by a coefficient K ≈ 1/νTk2

1, where the
total viscosity νT is the sum of the molecular ν, and the turbulent
viscosity νt. Thus we can approximate the mean velocity due to
the interaction of the superimposed mean fields as

UL = UL cos k1x
[
G cos(k1z′ + φ) + H sin k1z′

]
ŷ, (22)

where UL = Kk1B̂X B̂Z . Clearly, this flow, having merely a y
component, shows quadrupolar geometry in the x − z plane as
UL, y can be rewritten in the form U ′L cos k1x cos(k1z′ + φ′) with
a new amplitude and phase, U′L and φ′.

The simulations show indeed a dominant part of that shape
in the Lorentz-force generated mean flow as can be seen from
Fig. 5. There the y averaged Uy is shown together with its Fourier
constituent ∼eik1(x+z). The latter contains approximately 10% of
the energy in this component, or U ′L = Uy,rms/3, indicating that
the assumptions made in deriving (22) are reasonably well justi-
fied in a non-linear system.
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Fig. 5. 〈Uy〉y for Run A, taken at early time (t = 1.45 tres) when B X

is still of only modest strength. Plotting area is shifted in x and z to
make the quadrupolar geometry clear. Overplotted contours: quadrupo-
lar constituent ∼ cos k1 x′ cos k1z′.

Upon interaction with a B X or a BZ of the form (20), the
mean flow UL in (22) generates an Ex(z) and Ez(x), respectively.

5.2.1. Dominating α2Ω mode

If B̂Z � B̂X , then B X can be treated as a perturbation, and we
can drop higher order terms in B̂X . Accordingly, the z-averaged
EMF due to the flow UL is

EX
= 〈UL × BZ〉z = Kk1

2
B̂X B̂Z2

(G sin φ − H) cos k1x ẑ. (23)

The curl of this EMF is

∇ × EX
= B̂X I sin k1x ŷ, I ≡ Kk2

1 B̂Z 2

2
(G sin φ − H) . (24)

If G sin φ > H, then I > 0 and for H > 0 this EMF reinforces
BX
y = B̂XH sin k1 x. Thus we see that the inclusion of the parame-

ter H in the ansatz for B X , Eq. (20), was justified as BX
y receives

enhanced forcing in comparison to BX
z .

5.2.2. Dominating α2 mode

If B̂X � B̂Z then we can in turn treat BZ as a perturbation.
Further, as the system is dominated by the α2 mode, we will
have H ∼ 1. In this case we find

EZ
= 〈UL × B X〉x (25)

=
Kk1

2
B̂Z B̂X 2 [

G cos(k1z′ + φ) + H sin k1z′
]

x̂,

and

∇ × EZ
= B̂Z

Kk2
1

2
B̂X 2[

H cos k1z′ −G sin(k1z′ + φ)
]
ŷ. (26)

We can write

H cos k1z′ −G sin(k1z′ + φ) =[
(H sinφ −G) sin(k1z′ + φ)

]
1 +
[
H cosφ cos(k1z′ + φ)

]
2 . (27)

If H sin φ − G < 0, as expected since H ≈ 1, G > 1, term []1

in (27) will act to damp BZ
y , that is, the perturbative α2Ω wave.

Further, term []2 is opposite in sign to the time-derivative of such
a wave, so it slows or reverses the direction of wave-propagation.

5.2.3. Mean-field evolution

Here we assume again domination of the α2Ω mode, that is,
B̂Z � B̂X . With Eqs. (7) and (24) the eigenvalue problem for
the modified α2 field BX is then (adopting kx = k1, kz = 0)

λX B X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−ηT k2

1 0 0
S −ηT k2

1 −i(αk1 + I)
0 iαk1 −ηT k2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ B X , (28)

with eigenvalues

λX
± = −ηk2

1 ±
√
αk1(αk1 + I). (29)

Making the approximation I � αk1, similar to the αΩ approxi-
mation S � αk1, we find

λX
± = −ηk2

1 ±
√
αIk1. (30)

The above should be compared with the growth rate of the αΩ
dynamo, λαΩ from (13) which is not touched by the occurrence
of I. The αΩ dynamo saturates when α has been quenched such
that the product αS settles at the marginal value |αS | = 2η2

T |k1|3.
If the parameter I becomes comparable with the shear, i.e.,
I ∼ S , then B X might grow even when the α2Ω field is saturated,
i.e. λX

+ > 	(λαΩ) = 0. In other terms, the saturated α2Ω mode is
unstable to the growth of a fratricidal α2 field, so the transition
will take a well defined time from the onset of the non-linear
stage, determined by λX .

We test this theory for Run A at the time of Fig. 5, t =
1.45tres, extracting G and H from the relative strengths of the x
and y or y and z components of the mean fields BZ or B X , respec-
tively, after a projection onto the first harmonics; see Eq. (20).
The parameter I is calculated from the magnetic and velocity
fields using

I =
k1B̂ZUL

2B̂X
(G sin φ − H) , (31)

with UL = U ′L/
√

G2 + H2 − 2GH sin φ, where U ′L is the ampli-
tude of the quadrupolar constituent of the velocity field seen in
Fig. 5. We find U ′L � 0.07, H � 2.9, G � 4.9, I � 0.09, and
confirm that φ � π/4. As I > S = 0.05, the growth of the x
varying mode even when the α2Ω mode is saturated is not sur-
prising. Repeating this run16 times with different random seeds
(keeping the control parameters fixed) changed the occurrence
time of the transition by only one resistive time, suggesting that
the transition is an essentially deterministic process.

We have never seen a reverse transition from the α2 state
back to the α2Ω state. This may be understood in terms of inter-
acting modes, with the α2Ω mode being suppressed once the α2

mode is dominating; see Sect. 5.2.2.
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Fig. 6. Time series for Run F (solid lines), with rms values of BZ (black)
and B X (red). Broken lines: restarts from the main run with new random
seeds, vertically offset for visibility. All the runs end up with the same
energies in B X and BZ . Vertical lines: restart times.

Table 3. Run parameters for random transitions.

Run f0 −S urms −α† ηt
† ReM PrM τ†

0 0.04 0.1 0.11 0.035 0.035 6.8 1 135
H 0.03 0.1 0.085 0.017 0.037 27 5 25
K 0.04 0.1 0.11 0.017 0.012 60 10 18, 36‡
L 0.05 0.1 0.14 0.015 0.005 90 10 22
M 0.04 0.2 0.11 0.013 0.012 30 5 8
G 0.03 0.2 0.099 0.01 0.16 63 10 5, 20‡
E 0.05 0.2 0.13 0.04 0.023 90 10 N/A
F 0.05 0.2 0.14 0.02 0.1 90 10 5, 9‡
N 0.05 0.3 0.14 0.03 0.012 90 10 3

Notes. (†) See Table 2. (‡) τ = ttrans/tres is the time when the transition oc-
curred; for F, G and K from multiple realizations with differing random
seeds; see Fig. 8. Run E is highlighted as it does not exhibit a stationary
α2Ω state. Resolution 643 in all runs.

6. Random transitions

6.1. Non-interacting modes

Not all transitions fit into the above deterministic picture of in-
teracting α2Ω and α2 modes. The behavior above and below the
shear value S = −0.05 that applies to the runs in the previous
section is qualitatively different. In Fig. 6 we present a set of time
series of the rms values of BZ and B X , all related to Run F of
Table 3. Secondary runs were performed by branching off from
the original simulation either at t = 5tres, when the α2Ω mode
is well established and stationary, or at t = 8.25tres, immedi-
ately before the transition to the α2 mode in the primary run is
launched. The only difference between all these runs is in the
random seed, which is used by the forcing algorithm. In all, the
time until the transition starts varies by ≈2.5tres, and many more
turbulent turnover times (ReMk2

f /k
2
1 � 800 turbulent turnover

times per resistive time). The time elapsed during a transition
is always of the order of tres/2, unlike 3tres for the process seen
in Fig. 3. Thus it is suggestive to assume that there might be a
very slow, still essentially deterministic process, preparing the

Fig. 7. Time series of Run G (solid, thick) along with a sibling
run (dashed) with different seeds, showing significant differences in
the transition start time. Dash-dotted: a run which never entered the
α2Ω regime. Colors as in Fig. 6.

transition, which is likely resistive in nature as that is the longest
obvious “native” timescale of the system. Slow resistive effects
are known to exist in dynamos, for example the slow resistive
growth of α2 dynamos in periodic systems. However, transitions
can indeed occur at very different times including the extreme
case in which a run never develops a quasi-stationary α2Ωmode,
but instead enters the α2 state almost immediately after the end
of the kinematic phase, see Fig. 7 (run G of Table 3). We believe
therefore that under certain circumstances the transition process
is not a deterministic one, in that it is impossible to predict or at
least estimate the time until the transition. Figure 8 is a synopsis
of simulations that belong to that type, hence do not show the
instability discussed in Sect. 5. Note that, while corresponding
setups without shear are known to enable α2 modes for the en-
tire ReM range studied (Brandenburg 2009), we cannot rule out
that the α2 mode is sub-critical for ReM = 10, S = −0.1 (i.e.,
it is possible that the run denoted by the bottom left diamond in
the upper panel did not transition because it simply could not).

The picture of random transitions is different from the inter-
acting mode one of Sect. 5 in several interesting ways. Crucially,
the α2Ω mode is here at least meta-stable against growth of the
α2 mode, as evinced by its prolonged life-time (hundreds of tur-
bulent times) and the small magnitude of B X , which further is
not dominated by an α2 mode. A reasonable working hypoth-
esis for the cases of Sect. 5 is then that, there, the α2 mode is
the only stable solution and, as soon as the nonlinear stage has
been entered, it starts to devour the α2Ω one, settling after a time
which is related to basic parameters of the system and hence not
random. In contrast, for the cases considered here, we conclude
that both the α2 and the α2Ω solutions are indeed stable (not
only metastable) and the latter has a well extended basin of en-
trainment. Due to its higher growth rate the system settles first
in the α2Ω mode and suppresses the α2 mode efficiently. A tran-
sition to the latter can only occur if a random fluctuation in the
forcing is strong enough to push the system over the separatrix
into the basin of entrainment of the α2 mode. This may happen
after only a long time or even never during a simulation’s run
time, cf. diamond and square symbols, respectively, in Fig. 8,
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Fig. 8. Synopsis of runs which did not exhibit the instability discussed
in Sect. 5. Crosses/black: a significant α2Ω mode was never developed
(cf. Fig. 4), symbol size indicates the corresponding number of runs (1,
2 or 3). Square/blue: a transition occurred, size represents the time un-
til transition (4 to 25tres). Diamond/red: the α2Ω stage was entered, but
no transition occurred. Size represents the time span of simulation (5
to 35tres). Runs at the same position differ only in random seeds. Upper
panel: high-shear runs, see Table 3 for those exhibiting a random transi-
tion. Lower panel: low-shear runs. Symbols scaled down by a factor of
3 with respect to upper panel. All runs in the lower panel had f0 = 0.04.

see also the absence of a transition in Fig. 1 where S = −0.1,
ReM = 20. From these data one can also derive that the tendency
to leave the α2Ω state by a random transition increases both with
growing shear and ReM (note the corresponding reduction in the
blue squares’ size = time until transition in Fig. 8). Although one
would expect the basin of entrainment of the α2Ω mode to en-
large with growing S , it is conceivable that at the same time the
level of velocity fluctuations is raised, making transitions even-
tually more likely. Growing ReM can readily be thought of in-
creasing the fluctuation level and hence the transition probability
likewise. As already mentioned in Sect. 5, we see in addition “di-
rect exits” from the kinematic stage into a saturated α2 dynamo;
see Fig. 8 (cross symbols) and Fig. 9.

Given that the examples for the first scenario (Table 2) dif-
fer from those for the second (Table 3) mainly in their lower
rate of shear, our conclusion seems reasonable as stronger shear
should result in a clearer preference of the α2Ω mode because
the α2 mode does not feel the shear. Or, in other terms, from a
certain shear rate S on, the α2Ω mode should acquire a basin of
entrainment with a finite “volume” that grows with S . If this pic-
ture is true, transitions in the two scenarios should have clearly
different characteristics, and indeed, the transition in Fig. 6 is
markedly faster than that seen in Fig. 3.

Once the shear rate is dropped markedly below S = 0.05,
the typical value for deterministic transitions, the system again
seems to settle in a domain similar to the high-shear (S >∼ 0.1)
one, namely one with both the α2 and the α2Ω modes being

Fig. 9. Time series for Run E of Table 3 showing a transient, not a sta-
tionary α2Ω regime. For explanations see Fig. 4. Note the considerably
faster growth of the α2Ω mode during the kinematic phase and the lack
of a well defined phase with a dominating, but declining α2Ω mode.

stable. However, entering into the α2 state immediately after the
kinematic stage (the “direct exit”) appears now to be more likely,
while at the same time random transitions away from a settled
α2Ω state become extremely rare: Over a run time of 3 × 103 tres
accumulated over several runs with S = 0.01, 0.02 as well as tar-
get values of ReM around 30, 60, and 90, only one transition was
observed (for ReM = 80, PrM = 5, S = 0.02, after 8 × 102 tres);
see also Fig. 8, lower panel. Plausibility arguments for the occur-
rence of this “low shear” domain, in particular for the apparent
regaining of a finite basin of entrainment by the α2Ωmode which
has to be implied, are not in sight.

As in the transitions discussed in Sect. 5, we have not here
seen the α2 mode transition back into the α2Ω mode. Some at-
tempts were made to provoke this reverse transition by perturb-
ing the α2 state with a (sufficiently strong) α2Ω mode. While in
some runs it indeed took over, velocities were attained for which
the numerics are unreliable, and often proved numerically unsta-
ble, making the results inconclusive. However, such a behavior is
not entirely surprising as the α2Ω saturation process can anyway
be somewhat wild, cf. Fig. 4.

The absence of spontaneous reverse transitions appears plau-
sible insofar the time variability of the α2 mode is much smaller
than that of the α2Ω mode, which can clearly be seen in Fig. 10
for Run H. That is, events capable of pushing the system over
the separatrix are simply much rarer. Significantly longer inte-
gration times are likely needed for their eventual detection, but
it is also conceivable that the triggering event never shows up.

6.2. Large scale patterns

Run H will be examined here in more detail. Curiously, 〈Uy〉y
taken just during the transition as shown in Fig. 11 does not show
the quadrupolar pattern of Fig. 5. It is therefore not surprising
that the butterfly diagrams in Fig. 12 do not show a direct transi-
tion from the α2Ω to the α2 dynamo, as BX

z develops significantly
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Fig. 10. Time series of Run H. Upper panel: rms values of B X and BZ .
Note the long time before the transition starts in comparison to Run F
(see Fig. 6) and the dramatic difference in the fluctuation levels be-
fore and after the transition. Lower panel: rms values of the compo-
nents. Note the strong difference between BZ

y and BZ
x , expected for an

α2Ω field. More significantly, notice that BX
y develops before BX

z .

later than BX
y . This is clearly visible in Fig. 10, lower panel.

As consideration of the mean flow due to the Lorentz force of
the mean field alone is obviously not fruitful in explaining this
transition, we recall that the back-reaction of the mean field onto
the turbulence opens another channel of nonlinear interaction.

According to elementary mean-field dynamo theory, the
α effect is caused by the helicity in the flow: α ∼ 〈w · u〉, where
w ≡ ∇ × u is the fluctuating vorticity. Further, the back-reaction
of the mean field on the turbulence, which saturates the dynamo,
is assumed to be captured by the current helicity 〈 j · b〉. It is of-
ten related to the magnetic helicity 〈a · b〉 and thought to reduce
the original α by producing a magnetic contribution of opposite
sign. In Fig. 13 we present time-series of the power spectra of
these helicity correlators across the transition. However, we see
no clear signal around the transition event.

Fig. 11. 〈Uy〉y taken during the transition of Run H shown in Fig. 10
(t = 25.2tres). Note the lack of a quadrupolar geometry.

Fig. 12. Butterfly diagrams for Run H (see Fig. 10). Note that BX
y de-

velops before BX
z , i.e., B does not transition from an α2Ω field straight

to an α2 one.

6.3. Mean-field analysis with y averaging

To examine the problem more closely, we recall Eq. (18) for a
mean defined by the y average:

Ei(x, z) = αi j(x, z)Bj(x, z) + ηi jk(x, z)Bj,k(x, z). (32)

It is clear that the Fourier constituents of αi j and ηi jk with
wavenumber k1 in both x and z (the quadrupolar constituents)
can create an EMF EX out of a field BZ , both with the same
wavenumber:

EX
i =

〈
α11

i1 BZ
x + α

11
i2 BZ
y + η

11
i13
∂BZ

x

∂z
+ η11

i23

∂BZ
y

∂z

〉
z

, (33)

where the superscripts indicate the coefficients to be the Fourier
constituents ∼eik1(x+y) and BZ

z is assumed to vanish. Note that
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Fig. 13. Time series of the helicity power spectra for Run H. Horizontal
line: forcing wavenumber kf ≈ 3.1. Vertical line: border between
low-resolution observations (every 0.5tres) for t < 25tres and higher-
resolution observations (every 0.1tres ) for t > 25tres. Possible features
in the latter range are likely due to the increased temporal resolution.

each of them is actually given by four values, e.g., the two am-
plitudes and phases in:

α11
i j = α

c
i j cos(k1x + φc

i j) cos k1z + αs
i j cos(k1x + φs

i j) sin k1z. (34)

The coefficients relevant for the generation of BX
y (from EX

z

alone) are α11
31, α

11
32, η

11
313 and η11

323. We have used the test-field
method (see Sect. 3.2) to find them and present the results in
Fig. 14. They turn out to be surprisingly large, when compared
to the rms velocity (e.g., (αc

31
2 + αs

31
2)1/2 >∼ 4urms) and some may

show a trend across the transition from the α2Ω to the α2 field.
This overall trend is hypothesized to be due to the increase in
urms that accompanies the transition from a stronger α2Ω field
to a weaker α2 field with less potential to inhibit the flow. It is
interesting that the large transport coefficients (ignoring α11

33 and

η11
311 which are without effect) are all those which generate an E

out of BZ
x , i.e., out of the component that feels the effect of shear.

We speculate that these coefficients feel the shear quite strongly.

7. Discussion and conclusions

We have demonstrated that, while α2Ω modes are kinematically
preferred to α2 modes in homogeneous systems that support
both, the α2 mode acts in a fratricidal manner against the former
after the nonlinear stage has been reached. This transition can
occur in at least two different fashions. Further, we have not ob-
served the reverse process. One of the two transition processes,
based on superposed α2Ω and α2 modes, operates in a basi-
cally deterministic fashion through a large-scale velocity pattern
generated by the interaction of the modes. In contrast, we inter-
pret the mechanism of the second process, which may start only
many resistive times past the saturation of the α2Ω dynamo, by
assuming that both the α2Ω and the α2 modes are stable solutions
of the nonlinear system. Transitions occur if due to the random
forcing a sufficiently strong perturbation builds up which tosses
the system out of the basin of entrainment of the α2Ω mode into
that of the α2 mode. This hypothesis is bolstered by both the ran-
dom timing of these transitions and by the large time-variability

Fig. 14. Run H. Upper left panel: rms values of B X , BZ and u (urms =
〈u2〉1/2), cf. Fig. 10. Remaining panels: selected quadrupolar moments
of αi j and ηi jk determined by the test-field method and given by
(αc

i j
2 + αs

i j
2)1/2, see Eq. (34); likewise for ηi jk. Normalization is by the

temporally averaged urms, as urms undergoes a slow, steady drift over
time. Vertical lines mark the times of events visible in the first panel.

seen in the amplitude of the α2Ω field. A return seems to be
much less likely as the level of fluctuations of the α2 mode is, by
contrast, greatly reduced. Random transitions are influenced by
the shear rate. Above the shear level of S = 0.05 associated with
deterministic transitions, eventual random transitions appear to
be inevitable. Markedly below that level they are, at best, ex-
tremely rare. This suggests strongly that the vulnerability of an
α2Ω mode to transitions increases with its dynamo number.

These results fit with earlier work studying dynamos whose
non-linear behavior is fundamentally different from their linear
one (e.g., Fuchs et al. 1999). While our simulations are limited
to Cartesian, cubic, shearing-periodic domains, they are partic-
ularly exciting given that the only dynamo which has been ob-
served over a long baseline and which could be either α2Ω or
α2, the solar dynamo, indeed shows differing modes of operation
(regular cycles vs. deep minima). The results are also disturb-
ing in that we have evidence for non-deterministic, rare (as they
occur on scales of multiple resistive times or hundreds of turbu-
lent turnovers) mode changes that show no evidence for a return.
While a bifurcation between different stable modes has long
been an acknowledged possibility for dynamos (Brandenburg
et al. 1989; Jennings 1991; Covas & Tavakol 1997), a rare,
stochastic, possibly uni-directional transition is perhaps the most
troublesome consequence of such bifurcations except for the ul-
timate self-extinction.

Given that the mean-field transport coefficients have been
systematically derived for many of the runs, it may sound plau-
sible to study the nonlinear stability of different dynamo regimes
by means of mean field models. This would allow to construct
a stability map for the system to test the hypothesis made in
the paper. However, there are two difficulties: firstly, the derived
transport coefficients apply only for the specific mean field for
which they have been calculated, i.e. they are not the functional
derivatives of the mean EMF with respect to the mean field or
current density and to our knowledge the technology to do better
does not yet exist. This deficiency applies only to the non-linear
regime, of course. Secondly, to overcome this restriction one
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could assume that the transport coefficients are smooth function-
als of the mean field and so can be obtained from a finite set
of data points by interpolation. This would require only to per-
turb the system into neighboring states, from which, however,
it would tend to return to the original state in a self-regulated
way. As the transport coefficients can only be calculated for suf-
ficiently slowly changing flows, the set of obtainable data points
would be strongly limited.

The αΩ dynamo is believed to be common and important for
systems like the Sun or accretion disks, which all have long life-
times compared to turbulent turnover times. It is then a daunt-
ing possibility that we could be forced to stretch our simulations
over very long temporal base-lines to find the actual long-lasting
field configuration. More positively, our result, while in a differ-
ent geometry, increases the importance of recent work on non-
oscillatory αΩ and oscillatory α2 modes in spherical shells for
the solar dynamo (Mitra et al. 2010; Schrinner et al. 2011).
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