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ABSTRACT

Context. In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential
forcing by localized expansion waves is known to produce irrotational flows that have no vorticity.
Aims. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address
the problem of vorticity generation in the interstellar medium in a systematic fashion.
Methods. We use three-dimensional periodic box numerical simulations to investigate the various effects in isolation.
Results. We find that for slow rotation, vorticity production in an isothermal gas is small in the sense that the ratio of the root-mean-
square values of vorticity and velocity is small compared with the wavenumber of the energy-carrying motions. For Coriolis numbers
above a certain level, vorticity production saturates at a value where the aforementioned ratio becomes comparable with the wavenum-
ber of the energy-carrying motions. Shear also raises the vorticity production, but no saturation is found. When the assumption of
isothermality is dropped, there is significant vorticity production by the baroclinic term once the turbulence becomes supersonic. In
galaxies, shear and rotation are estimated to be insufficient to produce significant amounts of vorticity, leaving therefore only the
baroclinic term as the most favorable candidate. We also demonstrate vorticity production visually as a result of colliding shock
fronts.
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1. Introduction

Turbulence in the interstellar medium (ISM) is believed to be
driven by supernova explosions. Such events inject sufficient
amounts of energy to sustain turbulence with rms velocities of
∼10 km s−1 and correlation lengths of up to 100 pc (Beck et al.
1996). Simulations of such events can be computationally quite
demanding, because the bulk motions tend to be supersonic and
the flows involve strong shocks in the vicinity of individual ex-
plosion sites, as was seen early on in two-dimensional simula-
tions (Rosen & Bregman 1995). Nevertheless, such simulations
are able to reproduce a number of physical phenomena such as
the observed volume fractions of hot, warm, and cold gas (Rosen
et al. 1996; Korpi et al. 1999a), the statistics of pressure fluctu-
ations (Mac Low et al. 2005), the effects of the magnetic field
(de Avillez & Breitschwerdt 2005), and even dynamo action
(Gressel et al. 2008; Gissinger et al. 2009; Hanasz et al. 2009).
These simulations tend to show the development of significant
amounts of vorticity, which is at first glance surprising. Indeed,
each supernova drives the gas radially outward and can roughly
be described by radial expansion waves. In such a description,
turbulence is forced by the gradient of a potential that consists of
a time-dependent spherical blob at random locations. Obviously,
such a forcing is irrotational, so no vorticity is produced.

Earlier work of Mee & Brandenburg (2006) showed that un-
der isothermal conditions only the viscous force can produce
vorticity and that this becomes negligible in the limit of large
Reynolds numbers or small viscosity. In principle, vorticity can
also be amplified akin to the dynamo effect by the ∇ × (u × ω)
term, which is analogous to the induction term in dynamo the-
ory, where ω plays the role of the magnetic field. However, nei-
ther this nor the viscosity effect were found to operate – even

at numerical resolutions of up to 5123 meshpoints. This dis-
agreed with subsequent simulations by Federrath et al. (2010),
who solved the isothermal inviscid Euler equations with irro-
tational forcing using the Flash Code. They found significant
vorticity generation in proximity to shocks where some kind of
effective numerical viscosity must have acted.

Given that under isothermal conditions, only viscosity can
lead to vorticity production, one must ask whether numerical vis-
cosity or effective viscosity needed to stabilize numerical codes
might have contributed to the production of vorticity in some
of the earlier works. Indeed, it is possible that the directional
operator splitting used in the Flash Codemay have been respon-
sible for spurious vorticity generation in the work of Federrath et
al. (2010; Rosner, priv. comm.). On the other hand, when cool-
ing and heating functions are included to perform more realistic
simulations of the ISM, vorticity could be produced by the baro-
clinic term. Furthermore, even in the isothermal case, in which
the baroclinic term vanishes, vorticity could be produced if there
is rotation and/or shear.

The baroclinic term results from taking the curl of the pres-
sure gradient term and is proportional to the cross product of the
gradients of pressure and density. This term can play an impor-
tant role when the assumptions of isothermality or adiabaticity
are relaxed. Indeed, the baroclinic term can also be written as the
cross product of the gradients of entropy and temperature. This
formulation highlights the need for non-ideal effects, because in
the absence of any other heating or cooling mechanisms, the en-
tropy is just driven by viscosity. Again, it is not obvious that
in the absence of additional heating and cooling much vorticity
can be produced. On the other hand, it is clear that viscous heat-
ing must be significant even in the limit of vanishing viscosity,
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because the velocity gradients can be very large, especially in
shocks. Of course, the assumption about additional heating and
cooling is not realistic for the interstellar medium and will need
to be relaxed. Finally, there are the effects of rotation and shear,
that can contribute to the production of vorticity even in the ab-
sence of baroclinicity.

The goal of this paper is to study the relative importance of
the individual effects that contribute to vorticity production. It is
then advantageous to restrict oneself to simplifying conditions
that allow one to identify the governing effects. An important
simplification is the restriction to weakly supersonic conditions
so that shocks and other sharp structures can still be resolved
with just a uniform and constant viscosity. We also neglect the
effects of stratification which can only indirectly contribute to
vorticity production. In fact, a constant gravitational accelera-
tion drops out when taking the curl. Only in the non-isothermal
and non-isentropic case can gravity contribute to vorticity pro-
duction by enhancing the effect of the baroclinic term. We begin
with a preliminary discussion and a qualitative analysis of the
important terms in the vorticity equation.

2. Preliminary considerations

We recall that in the absence of baroclinicity, rotation, and shear,
the curl of the evolution equation of the velocity is given by (see,
e.g., Mee & Brandenburg 2006)

∂ω

∂t
= ∇ × (u ×ω − ν∇ ×ω) + ν∇ × G, (1)

where ν is the kinematic viscosity (assumed constant) and Gi =
2Si j∇ j ln ρ is a part of the viscous force that has non-vanishing
curl even when the flow is purely irrotational. Here,

Si j =
1
2 (ui, j + u j,i) − 1

3δi juk,k (2)

is the traceless rate of strain matrix, and commas denote par-
tial differentiation. The G term breaks the formal analogy with
the induction equation. It is convenient to express the resulting
rms vorticity in terms of the typical wavenumber kω of vortical
structures which we define as

kω = ωrms/urms. (3)

We monitor the ratio kω/kf , where kf is the adopted nominal forc-
ing wavenumber. In Mee & Brandenburg (2006), the resulting
vorticity, expressed in terms of the ratio kω/kf , was found to be
zero within error bars. This result is compatible with the idea that
the ν∇ × G term in Eq. (1) is insignificant for vorticity produc-
tion. By contrast, in vortical turbulence and at moderate values
of the Reynolds number, kω/kf is found to be of the order of
unity (Brandenburg 2001), although one should expect a mild
increase proportional to the square root of the Reynolds number
as this number increases.

2.1. Rotation

Rotation leads to the addition of the Coriolis force, 2Ω × u, in
the evolution equation for the velocity. Taking the curl, we obtain
the vorticity Eq. (1) with two additional terms, both proportional
to Ω, so we have

∂ω

∂t
= ... − 2Ω∇⊥ · u⊥ + 2Ω · ∇u⊥, (4)

where the dots denote the other terms in Eq. (1) that we dis-
cussed already. In order to estimate the production of vorticity,

one could derive an evolution equation for the enstrophy density,
1
2ω

2, by multiplying the right-hand side of Eqs. (1) and (4) byω,
and use a closure assumption for the resulting triple correlations.
However, it is then difficult to obtain a useful prediction forωrms,
because the right-hand side of such an equation would neces-
sarily be proportional to ω and would therefore vanish, unless
ωrms was different from zero to begin with. Instead, we estimate
ωrms by computing the rms value of ∂ω/∂t and replacing it by
ωrms/τΩ, where τΩ is a typical time scale of the problem. This
leads to

ωrms ≈ 2ΩτΩ
〈
(∇⊥ · u⊥)2 + (∇‖u⊥)2

〉1/2
, (5)

where ∇⊥ and ∇‖ denote derivatives in the directions perpendic-
ular and parallel to the rotation axis and u⊥ is the velocity vector
perpendicular to the rotation axis. Using Cartesian coordinates
whereΩ points in the z direction, we have

ωrms ≈ 2ΩτΩ
〈
(ux,x + uy,y)

2 + u2
x,z + u2

y,z

〉1/2
. (6)

We expect τΩ to be comparable to the turnover time, τ =
(urmskf )−1. We expect the rms values of the velocity derivative
term in Eq. (6) to be comparable to the rms velocity and some
inverse length scale. Typically, one would expect it to be propor-
tional to urmskf , although, again, there can be an additional de-
pendence on the square root of the Reynolds number. However,
for fixed Reynolds number, and not too rapid rotation, we expect
ωrms to increase linearly with the Coriolis number, i.e.,

Co = 2Ωτ, where τ = (urmskf)−1. (7)

Thus, we expect kω/kf = StΩ Co, where we have defined an ef-
fective rotational Strouhal number,

StΩ = τeff
Ω urmskf . (8)

We regard this as a fit parameter that will emerge as a result of
the simulations. We have here introduced the quantity τeff

Ω
, where

τeff
Ω
/τΩ is given by the ratio of the velocity gradient terms divided

by urmskf . However, for larger values of Co there may be a de-
parture from a linear dependence between kω/kf and Co. (We
note that, apart from a possible 4π factor, the Coriolis number is
just the inverse Rossby number.) One aim of this paper is there-
fore to verify this dependence from simulations and to determine
empirically the value of τΩ.

2.2. Shear

In the presence of linear shear with uS = (0, S x, 0), the evolution
equation for the departure from the mean shear attains additional
terms, −uS∇·u−u·∇uS . This implies a dependence ofωrms on S ,
analogous to the Ω dependence discussed above. In components
form, this means that

ωrms ≈ S τS

〈
(ux,x + uy,y)

2 + u2
x,z + u2

z,y + O(xu′′)
〉1/2
, (9)

which is quite similar to Eq. (5), except that in the penultimate
term in angular brackets the indices are now interchanged, i.e.
we now have uz,y instead of uy,z. In analogy to τΩ, we define
τS as a typical time scale of the problem and we expect it to
be again related to the turnover time τ. The O(xu′′) denotes the
presence of additional terms that are proportional to x and to sec-
ond derivatives of u. However, when adopting the shearing box
approximation with shearing-periodic boundaries (Goldreich &
Lynden-Bell 1965; Wisdom & Tremaine 1988), each point in the
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xy plane is statistically equivalent. We would therefore not ex-
pect there to be a systematic x dependence, which corresponds to
the assumption of Galilean invariance that is sometimes used in
the study of turbulent transport coefficients in linear shear flows
(Sridhar & Subramanian 2009). We will postpone the possibility
of additional terms until later. Since we expect τS to be compa-
rable to τ = (urmskf )−1, the rms vorticity should be proportional
to the shear parameter,

Sh = S τ ≡ S/urmskf , (10)

although for large values of |Sh| we may expect departures from
a linear dependence. Determining this dependence is another
aim of this paper. Again, a linear dependence is characterized
by the values of τS and τeff

S , where, in analogy with the previous
case with rotation, the ratio τeff

S /τS is given by the derivative term
in Eq. (9), normalized by urmskf . A convenient non-dimensional
measure of the value of τeff

S is what we call the shear Strouhal
number,

StS = τeff
S urmskf , (11)

which can be determined provided there is a range in Sh over
which ωrms increases linearly with Sh.

The study of vorticity production by rotation and shear is
quite independent of thermodynamics and can in principle be
studied even in the incompressible case. However, in the present
paper we study this effect in the weakly compressible case of
low Mach numbers and under the assumption of an isothermal
equation of state, where the baroclinic term vanishes.

2.3. Baroclinicity

As mentioned in the introduction, the baroclinic term, propor-
tional to ∇ρ × ∇p, emerges when taking the curl of the pressure
gradient term, ρ−1∇p. This term can also be written as

ρ−1∇p = ∇h − T∇s, (12)

where h and s are specific enthalpy and specific entropy, respec-
tively, and T is the temperature. Thus, we have

∂ω

∂t
= ... + ∇T × ∇s. (13)

In order to study the effect of the baroclinic term, it is useful to
look at the dependence of the mean angle θ between the gradi-
ents of s and T , defined via

sin2θ = 〈(∇T × ∇s)2〉/〈(∇T )2〉〈(∇s)2〉. (14)

An important aspect is then to study first the dependence of the
rms values of the gradients of s and T . We can do this by looking
at a one-dimensional model where, of course, θ = 0.

Next, we need to determine θ from three-dimensional simu-
lations. The hope is then that we can express baroclinic vorticity
production in the form

kω/kf = Stbaro(∇T )rms(∇s)rms sin θ/u2
rmsk

2
f . (15)

On dimensional grounds we expect the product of (∇T )rms and
(∇s)rms to be of the order of u2

rmsk
2
f , and so a possible ansatz

would be

kω/kf = Steffbaro sin θ, (16)

where we have subsumed the scalings of (∇T )rms and (∇s)rms in
that of an effective baroclinic Strouhal number Steffbaro.

An important issue is the fact that viscous heating leads
to a continuous increases of the temperature. As a result, the
sound speed changes and it becomes then impossible to study
the behavior of the system in a steady state. In order to avoid
this inconvenience, we add a volume cooling term that is non-
vanishing when the local sound speed cs is different from a given
target value, cs0. Thus, in the presence of finite thermal diffusiv-
ity χ, and with a cooling term governed by a cooling time τcool,
our entropy equation takes the form

T
Ds
Dt
= 2νS2 + ρ−1∇ · (cpρχ∇T ) − 1

τcool
(c2

s − c2
s0), (17)

where cs is the adiabatic sound speed. We assume a perfect gas
so that c2

s = (γ− 1)cpT , where γ = cp/cv = 5/3 for a monatomic
gas, and cp and cv are the specific heats at constant pressure and
constant volume, respectively. The value of τcool can have an in-
fluence on the results, so we need to consider different values.
We express τcool in terms of cs0 and kf , and define the nondimen-
sional quantity Stcool = τcoolcs0kf .

3. The model

In this paper we solve the continuity equation for the density ρ,

Dln ρ
Dt
= −∇ · u, (18)

together with the momentum equation for the velocity u,

Du
Dt
= −ρ−1∇p − 2Ω × u − S uxŷ + ∇φ + Fvisc, (19)

where D/Dt = ∂/∂t + (u+ uS ) ·∇ is the advection operator with
respect to the sum of turbulent flow u and laminar shear flow uS ,
p is the pressure, φ is the forcing potential, and

Fvisc = ρ
−1∇ · (2νρS) (20)

is the viscous force, where S was defined in Eq. (2). The forcing
potential is given by

φ(x, t) = φ0 N exp
{
−[x − xf(t)]2/R2

}
, (21)

where x = (x, y, z) is the position vector, xf(t) is the random
forcing position that changes abruptly after a time interval Δt, R
is the radius of the Gaussian, and N is a non-dimensional fac-
tor proportional to Δt−1/2. This ensures that the amplitude of the
correlation function of φ is independent of Δt. Thus, we choose
N =

√
R/cs0Δt. Since N is non-dimensional, the prefactor φ0

has the same dimension as φ, which is that of velocity squared.
We consider two forms for the time dependence of xf . First, we
take xf such that the forcing is δ-correlated in time. In that case,
Δt is equal to the length of the time step δt. Alternatively, we
choose a finite forcing time δtforce that defines the interval dur-
ing which xf remains constant, after which the forcing changes
again abruptly. Thus,

Δt = max (δt, δtforce) (22)

is equal to δt in the δ-correlated case or equal to δtforce in the case
of finite correlation time.

The work of Mee & Brandenburg (2006) showed that the
peak of the energy spectrum depends on the radius R of the
Gaussian. Indeed, the Fourier transform of exp(−r2/R2) is also a
Gaussian with exp(−k2/k2

f ), where

kf = 2/R. (23)
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In the following we use this as our definition of kf and check a
posteriori that this is close to the position of the peak of the ener-
gy spectrum. In the following, we characterize our simulations
in terms of the ratio kf/k1, and consider values between 2 and 10.

We use the Pencil Code1, which is a non-conservative, high-
order, finite-difference code (sixth order in space and third or-
der in time) for solving the compressible hydrodynamic and hy-
dromagnetic equations. We adopt non-dimensional variables by
measuring speed in units of a reference sound speed, cs0, and
length in units of 1/k1, where k1 is the smallest wavenumber in
the periodic domain. This implies that the nondimensional size
of the domain is (2π)3.

In order to study the effects of rotation and shear, we ignore
entropy effects and restrict ourselves to an isothermal equation
of state with constant sound speed cs. This means that ρ−1∇p
reduces to c2

s∇ ln ρ = ∇h, which has vanishing curl. Here,
h = c2

s ln ρ is the relevant enthalpy in the isothermal case. On
the other hand, in order to study the effects of baroclinicity, we
do need to allow the entropy to vary, so we also need to solve
Eq. (17), and study the dependence of kω/kf on the Mach num-
ber,

Ma = urms/cs. (24)

In order to characterize the degree of turbulence, we define the
Reynolds number based on the energy-carrying scale, corre-
sponding to the typical wavenumber where the spectrum peaks,
i.e.

Re = urms/νkf . (25)

For vortical turbulence, this definition is known to be a good
measure of the ratio of the resulting turbulent viscosity divided
by the molecular diffusivity (Yousef et al. 2003). The two num-
bers, Ma and Re, can be varied by changing ν and/or the strength
of the forcing. In all cases we use χ = ν. Another input parameter
is the forcing Strouhal number

Stforce = τforceurmskf , (26)

which is zero for δ-correlated forcing and equal to about 0.3 in
cases with finite correlation time. These are also the values used
by Mee & Brandenburg (2006).

In the following we also consider kinetic energy and enstro-
phy spectra, EK(k) and Eω(k), respectively. They are normalized
such that (Lesieur 1990)∫

EK(k) dk = 1
2 〈u2〉,

∫
Eω(k) dk = 1

2 〈ω2〉, (27)

where 1
2 〈u2〉 and 1

2 〈ω2〉 are kinetic energy and enstrophy, re-
spectively. For comparison we also consider spectra of enthalpy,
Eh(k), which are normalized such that

∫
Eh(k) dk = 1

2 〈h2〉.
Throughout this paper we assume periodic boundary condi-

tions, except that in the presence of shear we employ shearing-
periodic boundary conditions where the x direction is periodic
with respect to positions in y that shift with time, i.e.

f (− 1
2 Lx, y, z, t) = f ( 1

2 Lx, y + LxS t, z, t), (28)

where f represents any one of our four dependent variables
(u, ρ). This boundary condition was first proposed by Goldreich
& Lynden-Bell (1965) and has been routinely used in local sim-
ulations of accretion disk turbulence (Hawley et al. 1995). Note,
however, that recent work of Regev & Umurhan (2008) and

1 http://pencil-code.googlecode.com/

Fig. 1. Time-averaged kinetic energy and enthalpy spectra for two val-
ues of the Coriolis number for Re = 25 and Stforce = 0.4. The two
straight lines give the slopes −2 and −3, respectively. In both cases we
have kf/k1 = 4.

Bodo et al. (2008) called attention to the possibility of problems
with the shearing sheet approximation when the size of the per-
turbations is large. In somewhat weaker form, this problem also
applies to a non-shearing periodic box. Indeed, we shall kept this
in mind when interpreting some of the results presented below.

4. Results

We begin by studying the effect of rotation. In Fig. 1 we plot
time-averaged kinetic energy and enthalpy spectra, EK(k) and
Eh(k), respectively. Note that rotation has a tendency to move
the peak of EK(k) to the left of the nominal value of kf . However,
at the Reynolds number of 25 shown here, there is no inertial
range, but in all cases, the energy spectra show a clear viscous
dissipation range, suggesting that these runs are sufficiently well
resolved. At somewhat larger Reynolds number or smaller forc-
ing wavenumber, earlier work of Mee & Brandenburg (2006) be-
gan to show a short k−2 subrange. Such a slope is predicted for
shock turbulence (Kadomtsev & Petviashvili 1973), and it has
also been seen in the irrotational component of transonic turbu-
lence (Porter et al. 1998).

In Fig. 2 we plot the dependence of kω/kf on Co for three
groups of runs: group 1 with Re = 15, kf/k1 = 10, Stforce = 0.3;
group 2 with Re between 25 and 130, kf/k1 = 4, Stforce = 0.4;
and group 3 with Re = 30 and 150, kf/k1 = 2, Stforce = 0. In all
cases we use 1283 mesh points, average the results over at least
200 turnover times and, in some cases, even several thousand
turnover times. It turns out that for Stforce � 0 a linear relation-
ship between kω/kf and Co is a good approximation for Co <∼ 10,
where kω/kf ≈ 0.03 Co, i.e. StΩ = 0.03. Furthermore, we see
from Table 1 that the normalized velocity derivative terms are
all about 0.5, so the root of the sum of their squares is slightly
larger than unity, corresponding to τeff

Ω
/τΩ ≈ 1.3. For Co > 10

the value of kω/kf seems to saturate at about unity.
A similar result is also found for Stforce = 0, except that there

remains a spurious contamination of vorticity even for small val-
ues of Co, a limit in which we expect to observe no vorticity
production. By varying the value of Re, while keeping Co ≈ 1
fixed, we see that kω/kf asymptotes to zero for sufficiently small
values of Re; see Fig. 3. This suggests that there can easily be
spurious vorticity generation, possibly due to marginally suffi-
cient resolution. The possibility of spurious vorticity is indeed
verified by Fig. 4, where we compare enstrophy spectra, Eω(k),
with k2EK(k). Note that for large values of Co, the enstrophy
spectrum decays like k−3. However, for smaller values of Co the
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Fig. 2. Dependence of kω/kf on Co for three groups of runs: group 1
with Re = 15, kf/k1 = 10, Stforce = 0.3; group 2 with Re between 25
and 130, kf/k1 = 4, Stforce = 0.4; and group 3 with Re = 30 and 150,
kf/k1 = 2, Stforce = 0.

Fig. 3. Dependence of kω/kf on Re for Co ≈ 1, kf/k1 = 2, and Stforce = 0
(δ-correlated forcing).

Table 1. Root-mean-squared values of components of the velocity
derivative tensor, normalized by urmskf , as well as the three diagonal
components of the 〈uiuj〉 tensor for 4 values of Co.

Co 0.11 0.35 0.99 2.80
(∇⊥u⊥)rms/urmskf 1.26 1.20 1.21 1.04
urms

x,x /urmskf 0.76 0.74 0.75 0.70
urms
y,y /urmskf 0.79 0.74 0.75 0.70

urms
x,z /urmskf 0.49 0.47 0.48 0.63

urms
y,z /urmskf 0.49 0.47 0.48 0.63

urms
z,y /urmskf 0.49 0.47 0.46 0.58
〈u2

x〉/u2
rms 0.32 0.33 0.35 0.42

〈u2
y〉/u2

rms 0.34 0.34 0.35 0.41
〈u2

z 〉/u2
rms 0.35 0.34 0.29 0.18

level of enstrophy at the mesh scale remains approximately un-
changed and is thus responsible for the spurious vorticity found
above for small values of Co and not too small values of Re.
Nevertheless for larger values of Co, the production of vorticity
is an obvious effect of rotation in an otherwise potential velocity
field, and it is most pronounced at large length scales, as can also
be seen in Fig. 4.

Next, we study the dependence of the ratio kω/kf on shear;
see Fig. 5. We use a resolution of 643 or 1283 mesh points, av-
erage the results over at least 200 turnover times and, in cases
of lower resolution, over several thousand turnover times. It
turns out that in the presence of shear, some level of helicity

Fig. 4. Time-averaged enstrophy spectra, Eω(k), compared with
k2EK(k), for Re = 25, Stforce = 0.4, and three values of the Coriolis num-
ber. The curves of k2EK(k) are close together and overlap for Co = 0.01
(dotted) and 0.15 (dashed), so it becomes a single dash-dotted line. The
k−3 slope is shown for comparison. In all three cases we have kf/k1 = 4.

Fig. 5. Dependence of kω/kf on Sh for Re ≈ 40 and kf/k1 = 2 and δ-
correlated forcing (Stforce = 0). Different resolutions are shown to give
similar results. At small values of |Sh|, comparisons with Stforce = 0.3
(keeping kf/k1 = 2) or kf/k1 = 10 (keeping Stforce = 0) are also shown.

production can never be avoided – even in the limit of small Sh.
Again, this appears spurious and demonstrates the general sensi-
tivity of vorticity generation on resolution effects. An additional
problem is of course the finite size of the shearing box (Regev &
Umurhan 2008; Bodo et al. 2008), which may be responsible for
spurious vorticity generation. On the other hand, there is vortic-
ity generation even for large scale-separation ratios, kf/k1 = 10;
see the dash-dotted line in Fig. 5. This suggests the possibility
of a more general problem that would not go away even in the
limit of small eddies and small values of |Sh|. Nevertheless, there
is a clear rise of kω/kf when |Sh| > 0.1, which is in agreement
with our expectations outlined in Sect. 2.2. However, the slope
in this relationship is rather steep, StS ≈ 6. The velocity deriva-
tive terms are only slightly larger than in the case with rotation,
corresponding to τeff

S /τS ≈ 1.5; see also Table 2. Tentatively, this
suggests that for comparable values of Co and Sh, τS 
 τΩ. On
the other hand, given that even for small values of Sh there is
spurious vorticity generation, we cannot be certain that the re-
sults are reliable for larger ones either. The case with shear must
therefore remain somewhat inconclusive.
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Table 2. Similar to Table 1, but for the case with shear.

Sh −0.01 −0.03 −0.06 −0.12 −0.26
(∇⊥u⊥)rms/urmskf 1.35 1.36 1.36 1.37 0.87
urms

x,x /urmskf 0.87 0.87 0.90 0.97 0.75
urms
y,y /urmskf 0.81 0.81 0.76 0.66 0.47

urms
x,z /urmskf 0.51 0.50 0.51 0.53 0.72

urms
y,z /urmskf 0.46 0.47 0.47 0.46 0.74

urms
z,y /urmskf 0.46 0.48 0.46 0.43 0.57
〈u2

x〉/u2
rms 0.37 0.38 0.37 0.36 0.25

〈u2
y〉/u2

rms 0.31 0.31 0.32 0.34 0.56
〈u2

z 〉/u2
rms 0.32 0.31 0.31 0.31 0.25

Finally, we consider the possibility of vorticity generation by
the baroclinic term. In a preparatory step we study first the de-
pendence of the product (∇T )rms(∇s)rms on both Ma and Re in a
one-dimensional model. In all cases we vary the strength of the
forcing amplitude in the range 1 ≤ φ0/c2

s0 ≤ 500 for different
values of viscosity and cooling time. As we increase the value of
φ0, the Reynolds number increases for a given value of the vis-
cosity. For small values of φ0, the Mach number also increases
linearly, where the ratio of Ma/Re increases with increasing vis-
cosity. However, for larger values of φ0 there is saturation and
Ma no longer increase with φ0.

Furthermore, in the range where Ma still increases linearly
with φ0, the rms value of the entropy gradient increases, but it
also saturates when Ma saturates. The rms value of the temper-
ature gradient, however, decreases with increasing values of φ0,
but this seems to be a special property of the one-dimensional
model that is not borne out by the three-dimensional simulations
where it stays approximately constant.

Remarkably, the results are fairly independent of the cooling
time, except that the break point where (∇s)rms saturates occurs
for smaller values of φ0 as we increase the cooling time; see
Fig. 6. This break point is also related to the point where the
Mach number saturates, as can be seen from Fig. 7. However,
for longer cooling times there can be longer transients, making it
difficult to obtain good averages. Therefore we focus, in the rest
of this paper, on the case of shorter cooling times using Stcool =
0.2. Another remarkable result is that the normalized value of
(∇T )rms(∇s)rms is always of the order of about 10−3, independent
of resolution, cooling time, or the value of the viscosity.

Most of the basic features of the one-dimensional model
are also reproduced by two- and three-dimensional calculations.
Two-dimensional simulations have the advantage of being easily
visualized and are therefore best suited for illustrating vorticity
production by the baroclinic term. In Fig. 8 we demonstrate that
vorticity production is associated with the interaction between
the fronts of different expansion waves. In this example we chose
δtforcecs0/R = 0.1, so the first expansion wave is launched at t = 0
and the second one at tcs0/R = 0.1. The top row of Fig. 8 shows
that at tcs0/R = 0.09, i.e. just before launching the second expan-
sion wave, the baroclinic term and the vorticity are still just at the
noise level. At that time the most pronounced feature is the dis-
continuity between the Gaussian expansion waves in the periodic
domain. This leads to negligibly weak vorticity, and no baro-
clinic term. At tcs0/R = 0.11, the effect of the second expansion
wave becomes noticeable in visualizations of both (∇T × ∇s)z
and ωz, while our visualizations of T and s barely show the sec-
ond expansion wave. At tcs0/R = 0.14, the first expansion wave
is clearly no longer circular, which is obviously associated with
the second expansion wave that is now quite pronounced in our
visualizations of both T and s.

Fig. 6. Dependence of the rms values of temperature and entropy on φ0

for ν/csR = 1 and Stcool = 0.2 (top panel), 0.6 (middle panel), and 2
(bottom panel).

Fig. 7. Dependence of Mach number and the rms value of entropy on φ0

for ν/csR = 1 and Stcool = 0.2, 0.6, and 2 (solid, dotted, and dashed line
types, respectively).

In order to have a more accurate quantitative determina-
tion of vorticity production, we now consider three-dimensional
models. In Fig. 9 we show the dependence of various quanti-
ties on φ0 for Stcool = 0.2 and ν/csR = 1. In all cases we
use 1283 mesh points and average the results over between 20
and 70 turnover times. Note that here Re ≈ 0.05 φ0/c2

s0. Given
that Re depends inverse proportionally on ν/Rcs0, we can also
write Re ≈ 0.05 φ0R/cs0ν. The Mach number saturates at about
Ma = 3, and the rms value of the entropy gradient increases
up until this point. Given that the rms value of the temperature
gradient also stays approximately constant, we find a weak in-
crease of (∇T )rms(∇s)rms. The value of (∇T × ∇s)rms is always
found to be a certain fraction below this value, resulting in a
typical baroclinic angle of about 45 degrees; see the third panel
of Fig. 9. Finally, the amount of vorticity production in terms
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Fig. 8. Images of T , s, (∇T × ∇s)z, and normalized vertical vorticity for a two-dimensional run with δtforcecs0/R = 0.1 at an instant shortly before
the second expansion wave is launched (top row), and shortly after the second expansion wave is launched (second and third row). Note the
vorticity production from the baroclinic term in the second and third row, while in the top row, (∇T × ∇s)z and ωz are just at the noise level of
the calculation. Even under our weakly supersonic conditions shock surfaces are well localized and the zones of maximum production of vorticity
appear to be those in which the fronts encounter each other. Here we have used φ0/c2

s0 = 100, ν = χ = 0.1cs0R, with 5122 mesh points. Only the
inner part of the domain is shown.

of kω/kf is about 0.3 for φ0/c2
s0
>∼ 20. For smaller values, on

the other hand, there is an approximately linear increase with
kω/kf ≈ 0.014 φ0/c2

s0.
The possibility of spurious vorticity is easily eliminated in

this case by looking at enstrophy spectra; see Fig. 10, where we
compare Eω(k) with k2EK(k). All spectra fall off rapidly with
increasing k. Thus, even though the initial vorticity generation
occurred evidently at the smallest available scales, once the flow
becomes fully developed, most of the enstrophy resides at scales
equal to or larger than the driving scale. Furthermore, the spec-
tra of Eω(k) and k2EK(k) are close together, suggesting that the
vorticity is close to its maximal value.

5. Applications

The level of vorticity that is produced in the usual case of
solenoidal forcing of the turbulence is such that kω/kf ≈ 1 (see,
e.g., Brandenburg 2001). For turbulence whose driving force has
finite correlation time (Stforce = 0.3, for example), and small val-
ues of Re, we have kω/kf = O(1) when Co >∼ 10. However,
for larger values of Re, the turbulence becomes vortical already
for smaller values of Co. Comparing with the galaxy, we have
Ω ≈ 10−15 s−1, urms = 10 km s−1, and an estimated correlation
length of about 70 pc, so kf = 3 × 10−20 cm, so Co = 0.07,

which is rather small. Thus, rotation may not be able to pro-
duce sufficient levels of vorticity. Given that in galaxies with flat
rotation curves, S ≈ −Ω, shear should not be very efficient ei-
ther. However, the Mach numbers are undoubtedly larger than
unity in the interstellar medium, so this should lead to values
of kω/kf ≈ 0.3, which is the saturation value found in Fig. 9.
Given that one of the reasons for studying the production of vor-
ticity is the question of dynamo action, we should point out that
such values of kω/kf are large enough for the small-scale dy-
namo. Large-scale dynamo action should be possible in galax-
ies as well, because of their large length scales, but it suffers
from the well-known problem of a small growth rate. It then
remains difficult to explain large-scale magnetic fields in very
young galaxies (Beck et al. 1996).

The question of vorticity generation is also important in stud-
ies of the very early Universe, where phase transition bubbles
are believed to be generated in connection with the electroweak
phase transition (Kajantie & Kurki-Suonio 1986; Ignatius et al.
1994). Here the equation of state is that of a relativistic fluid,
p = ρc2/3, where c is the speed of light. Thus, there is no baro-
clinic term and no obvious source of vorticity. However, the rel-
ativistic equation of state may be modified at small length scales,
but it is not clear that this can facilitate significant vorticity pro-
duction.
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Fig. 9. Dependence of Ma, Re, the rms values of ∇s and ∇T , the angle
θ between them, as well as kω/kf , on φ0/c2

s for ν/csR = 1.

6. Conclusions

The present work has demonstrated that vorticity production is
actually quite ubiquitous once there is rotation, shear, or baro-
clinicity. This implies that the assumption of potential flows as
a model for interstellar turbulence might be of academic inter-
est and could only be realized under special conditions of weak
forcing, weak rotation, and no shear. In galaxies, however, the
shear and Coriolis number are well below unity, leaving only
the baroclinic term as a viable candidate for the production of
vorticity. This agrees with early work of Korpi et al. (1999b),
who analyzed the production terms in supersonic, supernova-
driven turbulence quantitatively; see also Glasner et al. (1997),
who showed that on long enough time scales significant vortic-
ity can also be produced for subsonic flows. We have also ob-
served how vorticity is mainly produced close to shock front en-
counters. This motivates a more detailed investigation of these
zones as the next step in the study of vorticity generation in the
interstellar medium. It should also be pointed out that the baro-
clinic term corresponds to the battery term in the induction equa-
tion Kulsrud et al. (1997); Brandenburg & Subramanian (2005).
Thus, when studying the possibility of dynamo action, this bat-
tery term provides an intrinsic and well defined seed for the dy-
namo and should therefore be included as well.

Fig. 10. Time-averaged enstrophy spectra, Eω(k) (thick lines), com-
pared with k2EK(k) (thin lines below the corresponding thick lines), for
the three-dimensional baroclinic case with φ0/c2

s0 = 10 (dashed), 100
(dotted), and 500 (solid lines). The k−2 slope is shown for comparison.
In all three cases we have kf/k1 = 4.
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