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ABSTRACT

Context. A strong toroidal field can exist in form of a magnetic layer in the overshoot region below the solar convection zone. This
motivates a more detailed study of the magnetic buoyancy instability with rotation.
Aims. We calculate the α effect due to helical motions caused by an unstable magnetic layer in a rotating density-stratified system
with angular velocity Ω making an angle θ with the vertical. We also study the dependence of the α effect on θ and the strength of the
initial magnetic field.
Methods. We carry out three-dimensional hydromagnetic simulations in Cartesian geometry. A turbulent electromotive force (EMF)
due to the correlations of the small scale velocity and magnetic field is generated. We use the test-field method to calculate the
transport coefficients of the inhomogeneous turbulence produced by the layer.
Results. We show that the growth rate of the instability and the twist of the magnetic field vary monotonically with the ratio of thermal
conductivity to magnetic diffusivity. The resulting α effect is non-uniform and increases with the strength of the initial magnetic field.
It is thus an example of an “anti-quenched” α effect. The α effect is also nonlocal, i.e. scale dependent, requiring around 8–16 Fourier
modes to reconstruct the actual mean EMF based on the actual mean field.
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1. Introduction

The magnetic fields in many astrophysical bodies have their ori-
gin in some kind of turbulent dynamo (Priest 1982). This means
that a part of the kinetic energy of the turbulent motions is di-
verted to enhancing and maintaining a magnetic field. This mag-
netic field is generally also random, but under certain conditions
a large-scale magnetic field can also emerge (Parker 1979). Here
by large-scale we mean length scales larger than the energy con-
taining scale of the fluid. In particular, large-scale fields may
show up when the turbulence is helical, owing, e.g., to the simul-
taneous presence of rotation and stratification (Moffatt 1978).

The evolution of large-scale magnetic fields can be described
by the mean-field equation that emerges upon averaging of
the induction equation. In the process of averaging, new terms
emerge (e.g., the α effect and turbulent diffusion) that result from
correlations between small-scale velocity and magnetic fields
(Krause & Rädler 1980). Here one usually considers the case
where the magnetic fluctuations are caused by the fluctuating
velocity acting on the mean field. However, under certain con-
ditions it might well be the other way around. Imagine, for ex-
ample, the case where initially no turbulent velocity is present,
but there is instead a strong large-scale magnetic field the pres-
ence of which makes the initial state unstable. The magnetic
field would then be responsible for driving velocity and mag-
netic fluctuations at the same time. This type of scenario was first
simulated in the context of accretion discs where the magneto-
rotational instability drives the turbulence (Brandenburg et al.
1995), and later in the context of the magnetic buoyancy in-
stability with shear (Cline et al. 2003). The latter is relevant to
the overshoot layer of the Sun. It had already been proposed by
Moffatt (1978) that, once the dynamo-generated magnetic field

in this layer reaches appreciable strengths, the magnetic buoy-
ancy instability can set in and govern the dynamics thereafter.
In this paper we consider a similar case in which an otherwise
stable layer of rotating fluid is made unstable by the presence of
a strong magnetic field. This is known as the magnetic buoyancy
instability.

If the length scale of the initial magnetic field is larger than
or of the same order as the height of the fluid layer, the mag-
netic Boussinesq approximation is often used. Linear stability
analyses for such cases (Acheson 1979; Hughes 1985a,b) have
shown that the initial state is unstable to both two-dimensional
perturbations in the plane perpendicular to the initial magnetic
field and three-dimensional perturbations. The two-dimensional
perturbations do not bend the the initial magnetic field lines and
are known as interchange modes. The three-dimensional pertur-
bations are often called undular modes. Here we concentrate on
the other limit where the length scale of initial magnetic field
is significantly smaller than the height of the fluid layer. Such a
magnetic field is also unstable to both the interchange and undu-
lar modes. The linear phase of this instability with stratification
and rotation has been studied in detail by Schmitt (1984, 1985)
and Ferriz-Mas et al. (1994) for ideal MHD. A necessary but not
sufficient condition for instability is (Eq. (3.3) of Acheson 1979)

∂

∂z
log

(
B
ρ

)
< 0, (1)

which essentially means that the magnetic field modulus B de-
creases faster with height z than the density ρ. Fan (2001) has
studied the linear stability of the same problem in absence of ro-
tation, yet in a parameter range where only the undular modes
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are unstable. Gilman (1970) considered the influence of large-
scale shear and the case where the thermal diffusivity is large
compared to viscosity and magnetic diffusivity. Silvers et al.
(2009) have studied the same but in the absence of rotation.
While the focus of the Gilman (1970) study has been on the for-
mation of flux tubes from a pre-existing toroidal magnetic layer
in a stably stratified atmosphere, in Silvers et al. (2009) a mag-
netic layer was generated from an initially vertical magnetic field
in presence of strong shear. It was further shown that, when the
ratio of magnetic to thermal diffusivities is sufficiently low, mag-
netic buoyancy can still operate.

In this paper we are not only interested in the linear growth
of this instability but also in the turbulent transport coefficients
characterizing the turbulence driven by such an instability. There
has been several earlier attempts to calculate the coefficient α
for the magnetic buoyancy instability. Brandenburg & Schmitt
(1998) performed numerical calculations in presence of rotation
and determined α for the resulting turbulence. Thelen (2000)
has used the linearly unstable eigenmodes to calculate α, but
this calculation is not applicable to the fully-developed turbulent
regime which is our main interest here. Wissink et al. (2000)
calculated αyy in the nonlinear stage of the instability, but both
works did not take into account the turbulent diffusivity. More
recently Davies & Hughes (2011) have used the same technique
as Thelen (2000) to compute the turbulent electromotive force
(EMF). They, however, claim that the complexity of their re-
sults renders a discussion of the EMF in terms of α effect and
turbulent diffusivity impossible. All these works rely upon fully
compressible numerical calculations and hence are closest to the
present one. In the concluding section of this paper we shall
compare their results with ours.

The focus of this work is twofold. Firstly, we study the nature
of the magnetic buoyancy instability in its initial linear stage.
In particular, we study its dependence on various parameters
such as magnetic and thermal Prandtl numbers, angular velocity,
strength of the initial field, etc., and compare against the linear
theory and previous numerical work. Secondly, to gain some in-
sights on whether the instability constitutes a viable dynamo pro-
cess, we measure the mean-field transport coefficients, namely
the tensors α and η using the quasi-kinematic test-field (QKTF)
method (Schrinner et al. 2005, 2007). Note that, with one ex-
ception (Vermersch & Brandenburg 2009), the QKTF method
has not been applied previously to the calculation of transport
coefficients for the case of an inhomogeneous turbulence in-
duced by the mean magnetic field. Therefore we validate the
QKTF method for this problem by reconstruction of the turbu-
lent EMF from the turbulent transport coefficients. For a review
on the transport coefficients and their determination using test
fields; see Brandenburg et al. (2010).

2. The model

We consider a setup similar to that described in Brandenburg
& Schmitt (1998). The computational domain is a cuboid with
constant gravity, gz, pointing in the negative z direction, and ro-
tation Ω making an angle θ with the vertical. The box may be
thought to be placed at a colatitude θ on the surface of a sphere
with its unit vectors x̂, ŷ, ẑ pointing along the local θ, φ, r direc-
tions, respectively, as shown in Fig. 1.

We solve the following set of MHD equations. The continu-
ity equation is given by

Dln ρ
Dt
= −∇ · U, (2)

Fig. 1. The Cartesian simulation domain with respect to spherical
coordinates.

where D/Dt ≡ ∂/∂t + U · ∇ denotes the Lagrangian derivative
with respect to the local velocity of the gas U. Assuming an
ideal gas, we express the pressure in terms of density, specific
entropy s, and sound speed cs, which, in turn, is a function of
ρ and s. Thus the momentum equation in a frame of reference
rotating with angular velocityΩ reads

DU
Dt
= − c2

s∇
( s
cp
+ ln ρ

)
− 2Ω × U + gz ẑ +

J × B
ρ

+ ν

(
∇2U +

1
3
∇∇ · U + 2S · ∇ ln ρ

)
,

(3)

where J is the current density, B is the magnetic field, ν is the
constant kinematic viscosity, and S is the traceless rate-of-strain
tensor. The sound speed is related to temperature by c2

s = (cp −
cv)γT with cp and cv the specific heat at constant pressure and
constant volume, respectively, and γ = cp/cv is here fixed to 5/3.
The induction equation is solved in terms of the magnetic vector
potential A, such that ∇ × A = B, hence

∂A
∂t
= U × B + η∇2 A, (4)

where η denotes constant molecular magnetic diffusivity.
Finally, we have for the entropy equation with temperature T

and constant radiative (thermal) conductivity K

ρT
Ds
Dt
= ∇ · (K∇T ) + ημ0 J2 + 2ρνS2, (5)

where the temperature is related to the specific entropy by

s = s0 + cv ln
T/T0

(ρ/ρ0)γ−1
· (6)

We use the fully compressible Pencil Code1 for all our calcula-
tions.

1 http://www.pencil-code.googlecode.com
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For all quantities, periodic boundary conditions in the x and
y directions are adopted. In the z direction we use the no-slip
boundary condition for the velocity and the vertical field condi-
tion Bx = By = 0, that is, Jz = 0, for the magnetic field as a
proxy for vacuum boundaries. We keep the temperature at the
top and the (radiative) heat flux at the bottom fixed. Their values
were chosen to conform with the initial temperature profile of
the (not magnetically modified) polytrope described below.

2.1. Initial state

The base state is a polytrope that is, p = CρΓ, with index
m = 1/(Γ − 1) = 3. The initial z profiles of density, pressure,
temperature and entropy are given by

ρi = ρ0Φ
3(z), pi = p0Φ

4(z), Ti = T0Φ(z),

si = s0 − cv lnΦ(z),
(7)

where Φ is a non-dimensional gravitational potential given by

Φ(z) = 1 +
1
4

gz

(cp − cv)T0
(z − z0),

with the reference point z0 chosen to be at the bottom of the
domain and the values at this point given by ρ0, p0 = c2

s0ρ0/γ,
T0 = c2

s0/(cp−cv)γ and s0. Here, cs0 is the reference sound speed
to which we also refer to when calculating Mach numbers.

As the adiabatic index here is mad = 1/(γ−1) = 3/2, the sub-
adiabaticity in the domain is very large, namely ∂ ln T/∂ ln P −
(∂ ln T/∂ ln P)ad = −0.15. Thus, the initial stratification is highly
stable to convection in the absence of any magnetic field, guar-
anteeing that turbulence is generated solely by the buoyancy
instability.

The initial magnetic field is a horizontal layer of thickness
2HB, where By has the profile

By0 = B0HB
∂

∂z
tanh

(
z − zB

HB

)
, (8)

and the reference Alfvén speed is defined by vA0 = B0/
√
ρ0μ0

with μ0 being the vacuum permeability. If not indicated other-
wise, the initial magnetic field strength is fixed to vA0/cs0 = 0.5.
In order to satisfy the condition (1) initially, we have to ensure
2HB < Hρ(zB), where Hρ(z) = |∇ ln ρ(z)|−1 is the local density
scale height. When choosing zB − z0 = 0.3Lz this is satisfied for
2HB < 0.1Lz + 4T0(cp − cv)/3|gz| which is surely true for the
choice HB = 0.05Lz.

Upon addition of a magnetic field, we modify the base state
such that the density profile remains unchanged. In order to
obey magnetostatic equilibrium, pressure and temperature are
adjusted in the following way:

pi ⇒ pi −
B2
y0

2μ0
, Ti ⇒ Ti −

B2
y0

2μ0

1
ρi(cp − cv)

· (9)

The entropy is then re-calculated from Eq. (6). This leads to a
local minimum in the temperature profile which would smooth
out over a diffusion time scale H2

B/χ0, being in any case much
larger than the e-folding time of the instability. Another common
choice is to keep the temperature profile unchanged, but this im-
plies a decrease of the density in the magnetic layer, making it
immediately buoyant in presence of small perturbations.

The initial velocity components Ux and Uy are specified
such that they contain about 20 localized eddies in the plane
z = zB with Mach numbers of about 10−5. Also the initial

Table 1. Non-dimensional control parameters characterizing the buoy-
ancy instability.

Parameter Symbol Definition Value/Range

normalized pressure HP0/Lz 0.3
scale height

normalized temperature
scale height

HT/Lz 1.2

normalized sound speed cs0Ly/η 6 × 104

Prandtl number Pr ν/χ0 0.125 . . . 4.0

magnetic Prandtl no. PrM ν/η 0.125 . . . 4.0

Roberts number Rb χ0/η 0.25 . . . 1.0

magnetic Taylor no. TaM Ω2L4
y/η

2 0 . . . 3.2 × 1010

rotational inclination θ �(Ω, ẑ) (0 . . . 180)◦

(initial) Lundquist no. Lu0 vA0HB/η 500 . . . 600

(initial) modified β̃0 (ptot/pM)(zB, 0) 1.04 . . . 4.21
plasma-beta

Notes. Modified initial plasma-beta β̃0 refers to the midplane of the
magnetic sheet.

vertical velocity, Uz is Gaussian random noise with the same
Mach number and the rms value of the initial kinetic helic-
ity, scaled with the product of initial rms velocity and vorticity,
(
√〈(W · U)2〉/UrmsWrms)(t = 0), is 4 × 10−6. Here and in the

following angular brackets mean volume averaging.

2.2. Control parameters, non-dimensional quantities,
and computational grid

The problem posed by (2) through (5) is governed by five in-
dependent dimensionless parameters; (i) the Prandtl number
Pr = ν/χ0, with the temperature conductivity χ0 = K/ρ0cp;
(ii) the magnetic Prandtl number PrM = ν/η; (iii) the “magnetic
Taylor number” TaM = 2Ω2L4

y/η
2; (iv) the rotational inclination

(colatitude), θ, and (v) the normalized gravitational acceleration
gzL3
y/η

2. In addition there are two independent parameters of the
initial equilibrium (vi) the normalized pressure scale height at
the bottom, HP0/Lz = c2

s0/γgzLz and (vii) the initial Lundquist
number, Lu0 = vA0HB/η, based upon the thickness of the mag-
netic layer. In addition to this, we also have the non-dimensional
sound speed, cs0Ly/η. In this paper we shall keep the normalized
pressure scale height and the sound speed fixed, while varying
both Prandtl numbers, TaM, θ and Lu0. The definitions as well as
the values or ranges of the control parameters are summarized in
Table 1. We have also included in the same table two dependent
parameters namely the Roberts number Rb = PrM/ Pr = χ0/η

and the modified initial plasma beta β̃0 in the midplane of the
magnetic layer. It is defined as the ratio of the total pressure
ptot = p + pM to the magnetic pressure pM = B2

y0/2μ0, because

β̃0 then adopts a simple 1/B2 dependence on the magnetic field;
cf. Eq. (9).

The computational domain is defined by |x| ≤ Lx/2, |y| ≤
Ly/2, −Lz/4 ≤ z ≤ 3Lz/4, Lx = Lz = Ly/3, thus its aspect
ratio is 1:3:1. The results will be presented in non-dimensional
form, velocity in units of the reference Alfvén speed, vA0, time in
units of the corresponding Alfvén travel time in the y direction,
tA0 = Ly/vA0, and magnetic field in units of B0 or the rms value
(
∫

z
B2
y0dz/Lz)1/2.

It is instructive to look upon the relevant definitions of the
fluid Reynolds number, Re, and the magnetic Reynolds number,
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Rm, for this problem where the turbulence is driven solely by
the instability of the magnetic layer. From first principles, Re
characterizes the ratio of the advective term 〈(U · ∇U)2〉1/2 and
the approximate viscous term 〈(ν∇2U)2〉1/2 in the Navier-Stokes
equation, while Rm characterizes the ratio of 〈(∇× (U × B)

)2〉1/2
and 〈(η∇2B)2〉1/2 in the induction equation with the angular
brackets representing volume averaging. Let us denote these
ab initio definitions as “term based” and refer to them by Re∗
and R∗m. Note that with the term-based definitions Rm/Re may
well deviate from PrM. Alternatively, we can define a length
scale LU = Urms/2πWrms from the rms values of velocity
and vorticity and define the more conventional length-based
Reynolds numbers Re = UrmsLU/ν and Rm = UrmsLU/η.

The calculations were carried out on equidistant grids with
resolutions of either 643 or 1283. For numerical testing we have
also performed a few runs with 2563 or 1282 × 256 resolutions.

2.3. The test-field method

Here, for the sake of completeness, we give a concise descrip-
tion of the test-field method we use to calculate the turbulent
transport coefficients. For a more detailed discussion we re-
fer the reader to Brandenburg et al. (2008c) and Rheinhardt &
Brandenburg (2010).

Let us define mean magnetic and velocity fields, B and U,
where overbars denote Reynolds averaging. Fluctuations are de-
fined correspondingly as b = B − B and u = U − U. Following
these conventions, the induction equation may be correspond-
ingly averaged, resulting in

∂B
∂t
= ∇ ×

(
U × B

)
+ ∇ × E + η∇2B, (10)

where E ≡ u × b is the mean EMF resulting from the fluc-
tuating fields u and b. The essence of mean-field magneto-
hydrodynamics is to provide an expression for E as a functional
of the large scale magnetic field and its derivatives. A simple
ansatz reads

E = αB − η∇B, (11)

where α and η are called transport coefficients. Note that a much
more general representation of E is given by the convolution
integral

E(x, t) =
∫ t

t0

∫
G(x, x − x′, t, t − t′) B(x′, t′) d3x′ dt′ (12)

with an appropriate tensorial kernel G or Green’s function. When
considering Fourier transforms with respect to x′ (and now drop-
ping the time dependence) we have

E(x) =
∫

Ĝ(x, k) B̂(k) eik·x d3k (13)

with Ĝ(x, k) being the Fourier transform of G(x, x′) with respect
to x′. As shown in Brandenburg et al. (2008c) a decomposition
in the form

Ĝi j(x, k) = α̂i j(x, k) − iη̂i jk(x, k)kk (14)

with real α̂ and η̂ is always achievable. Further, the traditional
(local) coefficients are given by α̂(k = 0) and limk→0 η̂(k).

The aim of the test-field method is to provide an expression
for G as a functional of properties of the mean and fluctuating

fluid velocity, U and u by utilizing direct numerical simulations.
Subtracting the averaged induction Eq. (10) from the original
one (4), written in terms of B rather than A, we obtain the fol-
lowing equation for the fluctuating magnetic field b.

∂ bpq

∂t
= ∇ ×

(
U × bpq + u × Bpq + epq

)
+ η∇2 bpq, (15)

with epq = u × bpq − Epq. The superscripts pq now indicate that
this equation is solved for several suitably chosen test fields Bpq

with p, q = 1, 2. This is sufficient as we define the mean as hor-
izontal (xy) average. Thus Bz = 0, and only the components αi j

and ηi j3, i, j = 1, 2, are of interest. In the following we will hence
refer to the rank-2 tensor ηi j = −ηik3ε jk3 only which allows to
rewrite the second term in (11) into −η curl B. Equation (15) is
the central relation invoked by the test-field method. The test-
field suite of the Pencil Code has the provision for using either
harmonic test fields, i.e.,

B
11
= (cos k, 0, 0), B

12
= (0, cos k, 0),

B
21
= (sin k, 0, 0), B

22
= (0, sin k, 0),

(16)

or linear test fields i.e.,

B
11
= (1, 0, 0), B

12
= (0, 1, 0),

B
21
= (z, 0, 0), B

22
= (0, z, 0).

(17)

Harmonic test fields with varying wavenumber k allow us to cal-
culate for each k the 2×2 tensors α̂ and η̂ by solving an algebraic
system of 8 equations given by

Epq
i = α̂i jB

pq
j − η̂i jJ

pq
j , with p, q, i, j = 1, 2. (18)

As shown above, expressing the mean EMF by α̂ and η̂ avoids
the shortcomings of a truncation like in (11) and provides the
desired non-local relationship between E, B and J .

In the present context, the buoyancy-driven turbulence and
hence the transport coefficients necessarily show an intrinsic in-
homogeneity both due to stratification and the mean magnetic
field itself. No specific complication is induced by it as α̂ and η̂
emerge straightforwardly from the testfield method as functions
of z and k.

In the nonlinear situation, the Green’s function approach re-
mains valid if E is considered as a functional of U and B which
is then linear and homogeneous in the latter. However, we have
to label G by the B actually acting upon U, that is, G(x, x′; B),
and can thus only make statements about the transport tensors
for just the particular B at hand. Hence, the tensors have to be
labelled likewise: α̂(z, k; B), η̂(z, k; B).

3. Results

3.1. Nature of the instability

To start with we have performed a number of runs with differ-
ent values of Pr and PrM, but all other dimensionless parame-
ters held fixed, see Table 2. In particular, we have used a value
of TaM = 3.24 × 1010 for the magnetic Taylor number and
Lu0 = 500 for the initial Lundquist number. Table 2 shows the
Reynolds numbers according to the two alternative definitions
provided in Sect. 2.2. Note that with the exception of the run
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Table 2. List of runs with high resolution.

Run Pr PrM Ma ωI tA0 tsat/tA0 104 × Esat
y /vA0 B0 Length based Term based

min max Re (LU) Re∗ R∗m R∗m/Re∗

B128a 4.0 4.0 0.017 15.6 1.99 −1.01 2.34 0.5 0.4 2.3 5.8
B128b 1.0 4.0 0.036 21.6 1.42 −3.39 7.32 0.9 0.6 2.8 4.5
B128c 1.0 1.0 0.020 13.2 1.64 −1.49 3.03 1.8 1.4 1.9 1.4
B128d 0.25 1.0 0.038 25.2 1.27 −4.02 7.52 2.9 2.1 2.8 1.3
B128e 0.125 0.5 0.036 24.0 1.22 −5.47 6.19 3.6 3.3 2.9 0.9
B128f 0.125 0.125 0.043 19.9 1.54 −3.50 4.84 8.2 16.1 3.1 0.2
B128g 0.5 0.5 0.018 19.2 1.72 −2.06 3.69 2.9 2.5 1.9 0.8
B128h 0.5 1.0 0.032 21.6 1.67 −3.94 3.97 1.7 1.9 3.2 1.7

Notes. Computational box at colatitude θ = 30◦. Magnetic Taylor number TaM = 3.24 × 1010, initial Lundquist number Lu0 = 500, initial plasma-
beta β̃0 = 1.51 and resolution 1283 throughout. Mach number Ma = Urms/cs0, ωI growth rate. Saturation reached at tsat defined by the end of the
linear growth phase. Saturated mean EMF characterized by global extrema of the dominating Esat

y with respect to z and t.

B128f, Re from the length-based and the term-based definitions
are in agreement. Also the ratio R∗m/Re∗ from the term-based
definitions approaches PrM reasonably.

We first show the temporal evolution of the magnetic field for
a few representative cases in Fig. 2. In all of them, we can clearly
distinguish a first stage of exponential growth from a subsequent
saturation phase. The x and z components of the magnetic field
are generated at the expense of its y component. Although there
exists a persistent energy source in the form of a constant heat
flux into the domain, the final saturated stage always undergoes
a slow decay. This decay is most clearly visible in By. Thus the
instability is not able to maintain a dynamo on its own.

We suppose that the magnetic layer formed by Bx, though
having a vertical scale suited to maintain the instability, is even-
tually not strong enough to take over the role of the initial mag-
netic layer. Let us first discuss the initial linear stage of the in-
stability.

3.2. Linear stage

At first we verify that the instability is indeed driven by magnetic
buoyancy. As the coefficients in Eqs. (2)–(5) are constant, the
initial state (7) depends only on z, and the boundary conditions
in the x and y directions are periodic, all eigensolutions ψ =
(ρ, u, b, s) of the linearized problem must have the form

ψ(x, t) = ψ̂(z) e2πi(mx/Lx+ny/Ly)−iωt, (19)

where m and n are integers and ω = ωR + iωI. For n � 0 the
undular modes are obtained. Corresponding dispersion relations
ω(m, n) have been found by Fan (2001), using variational mini-
mization of energy, and by Schmitt (1985), using eigenmode de-
composition of linearized MHD equations. The former considers
the non-rotating case, and the latter the rotating one. Both works
use the anelastic approximation and their results are strictly
applicable only for ideal MHD. Fan (2001) reports only non-
oscillatory modes. Schmitt (1985), who further uses the mag-
netostrophic approximation, finds that the growing modes also
have an oscillatory part, with the ratio ωR/ωI decreasing with
latitude. Note however that the results of Schmitt (1985) do not
directly apply to the present case because our boundary condi-
tions are different2.
2 Note also that Hughes (1985a,b) uses the magnetic Boussinesq ap-
proximation to obtain the linear stability diagram for the case where the
characteristic scale of the magnetic field is larger than the depth of the
fluid layer. In this paper we consider the opposite limit, i.e., the limit of
a thin magnetic layer.

For the runs in Table 2 we find that the early exponential
growth phase is dominated by a mixture of several eigenmodes
having almost the same growth rates, but different x wavenum-
bers, 5 ≤ m ≤ 8, whereas for all of them n = 1. This is further
substantiated by the occasional occurrence of a beating in the
x dependence with a modulation period given by m = 1 which
indicates the presence of two almost equally strong eigenmodes
with m and m ± 1. By setting the initial conditions to be har-
monic in x and y it is also possible to select single eigenmodes
cleanly. Figure 3 shows the velocity pattern of the fastest grow-
ing mode with m = 8, n = 1. According to the terminology
of Hughes (1985a) we may qualify our eigenmodes as undular
as they change periodically in the direction of the initial mag-
netic field. Our results are consistent with the findings of Thelen
(2000) where for moderate rotation the fastest growing mode had
always the smallest possible (non-vanishing) wavenumber in the
direction of the field while the wavenumber perpendicular to the
field was high.

The growth rates ωI = �(ω) presented in Table 2, have
to be considered as average values for a (not precisely known)
number of eigenmodes. While the ωI could be easily identified
from the averaged quantities shown in Fig. 2, it is difficult to ac-
cess the oscillation frequencies �(ω). This is because they are
small compared to the growth rates and saturation sets in too
early to allow for the observation of a complete oscillation pe-
riod. Nevertheless, some indications for temporal variations in
the eigenmode geometries have been found. Generally, we ob-
serve an increase of the growth rate with increasing magnetic
Prandtl number, but a decrease with increasing Prandtl number.
We find that the growth rate increases with the Roberts number
as shown in Fig. 4. This means that increasing the efficiency of
heat conduction in comparison to magnetic diffusion destabilizes
the sub-adiabatic stratification in the system in agreement with
the destabilizing effect of thermal diffusion studied by Acheson
(1979).

3.3. Dependence on initial magnetic field and rotation

Another piece of evidence for the magnetic character of the in-
stability is its dependence on the initial magnetic field strength.
From Fig. 5 we see a clear increase of the growth rate and sat-
uration level with decreasing β̃0, that is, increasing Lu0, while
keeping the rotation rate fixed at TaM = 3.24× 1010 (see also the
last three runs in Table 3 below). Schmitt (2003) predicted in the
magnetostrophic approximation a growth rate ∝ v2A0/Ω inversely
proportional to ζ = β̃0

√
TaM.
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Fig. 2. Time evolution of the runs in Table 2. Upper panel: mean
squared values of velocity and generated magnetic field components
Bx, Bz of run B128c (Pr = PrM = 1) scaled by 〈B2

y0/μ0ρ0〉 and 〈B2
y0〉

respectively. Note the clear exponential growth until t ≈ 1.4tA0. Fast
oscillations in 〈U2〉 until t ≈ tA0 indicate g-modes originating from
the initial velocity perturbation. Middle panel: mean squared values of
generated magnetic field components for different runs. For legend see
lower panel. Lower panel: rms value of By. Prandtl numbers indicated
as (Pr, PrM).

Next we keep β̃0 constant at 1.51 and decrease ζ gradually
from 4.09 × 105 to 0. Inspecting Fig. 5, we find that growth rate
and saturation level of 〈B2

x + B2
z 〉 increase monotonically and

reach their maxima at ζ = 0 (Ω = 0) while the saturation time is
decreasing. The impeding effect of rotation onto the instability at
largeΩ is plausible in view of the Taylor-Proudman theorem be-
cause the unstable eigenmodes do show pronounced z gradients
in U, see Fig. 3.

Fig. 3. Top: velocity components Uy (in color), Ux and Uz (vectors) in
the plane y = 0. Bottom: Ux (in color), Uy and Uz (vectors) in the plane
x = 0. Both during the linear evolution phase of the run B128a. The
initial condition for U was set to be harmonic in x and y with kx =
8 × 2π/Lx and ky = 2π/Ly.

Fig. 4. Dependence of growth rate ωI on the inverse Roberts number
derived from the runs in Table 2. Solid line: best linear fit. Size of circles
codes for the value of Rm (length based, see Table 2).

3.4. Saturated stage

At later time the instability reaches saturation, characterized by
turbulent magnetic, velocity, density and temperature fields, that
decay slowly thereafter. However, in most of the analysis be-
low, this decay will be ignored and the turbulence considered as
approximately statistically stationary. The turbulence is neces-
sarily both inhomogeneous and anisotropic and we shall further
show that it is also helical. Under such conditions we expect the
emergence of a mean EMF. Indeed magnetic fields perpendicular
to the initial magnetic layer are produced having non-vanishing
horizontal averages.

In order to give a better idea of the 3D geometry of the mag-
netic field we provide in Fig. 6 a volume rendering of By at a
time after tsat for the runs B128e and B128f (see Table 2) which
differ only in their magnetic Prandtl numbers. Notice how the
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Fig. 5. Dependence of the instability on initial magnetic field strength,
expressed by β̃0, and rotation, expressed by ζ = β̃0TaM

1/2. Upper panel:
〈B2

x + B2
z〉. Lower panel: 〈B2

y〉. Legend shows (β̃0, 10−5ζ). Pr = PrM = 1,
colatitude θ = 30◦, resolution 643 throughout. Note that the normaliza-
tion time tA0 is not the same for all curves, but proportional to β̃1/2

0 .

magnetic layer breaks into flux tubes – similar to what is seen in
Fig. 3 of Fan (2001) and also in Matthews et al. (1995). More rel-
evantly, it is also similiar to the findings of Wissink et al. (2000)
who include rotation. The difference between the two runs is
most striking in the nature of corrugation in the surface shown.
We attribute it to larger twist in the rising tubular structures in the
run B128e compared to B128f which becomes clearly visible in
the field line pictures also depicted in Fig. 6 (right).

Figure 7 demonstrates the breakup of the magnetic layer into
tubular structures of concentrated magnetic field which are also
regions of low density, hence rising. Notice also the high density
regions just above and below these tubular structures. They show
a significantly lower temperature than their surroundings (Fig. 7,
bottom).

Studies of rising flux tubes in simulations of the solar
convection zone have shown that their ability to rise de-
pends crucially on how twisted they are (see, e.g., Emonet
& Moreno-Insertis 1998). Hence it behooves us to measure
the twist of the large-scale magnetic field in our simulations.
For a quantitative measurement we utilize the dimensionless
parameter εJ = 〈J · B〉/JrmsBrms, the relative current helic-
ity, essentially measuring the overall degree of alignment be-
tween B and J . Here, angular brackets denote volume averages.
The corresponding horizontally averaged quantity is εJ(z) =
J · B/JrmsBrms. Figure 8 shows the normalized current helicity

density J ·B/JrmsBrms (filled contours) as well as By in the plane
y = 0 for run B128e. Notice that the contours are bend leftward
because of the Coriolis force withΩ · ẑ > 0. The contour plots of
By in this figure also show the formation of rising tubular struc-
tures from the magnetic layer.

In Fig. 9 we show the dependence of εJ on Rb and the profile
of εJ(z) for some selected runs. The latter quantity can be as
strong as 30% near to the initial location of the magnetic sheet,
but the total helicity reaches only values of a few per cent. The
clear dependence of εJ on Rb is in contrast to the only weak
dependences on PrM and Pr individually. This is an important
result from this section. Our conjecture is that, at large Rb, the
magnetic buoyancy instability may play an important role in the
formation of twisted flux tubes in the Sun, where Rb � 1 is
expected.

To demonstrate the emergence of a mean magnetic field we
present in Fig. 10 time-height plots of By and Bx for the run
B128g (note that Bz = 0). There, t ≈ 1.6 tA0 marks the end of
the exponential growth phase after which a strong growth of Bx,
obviously at the expense of By, sets in. Bx reaches its maximum
around t ≈ 3tA0 and is then subject to the overall decay. Note the
strong vertical concentration of Bx, approximately antisymmet-
ric about the midplane of the magnetic sheet.

3.5. Calculation of turbulent transport coefficients

The turbulence resulting from the buoyancy instability generates
a mean magnetic field component Bx from an initial By which is
also modified compared to its initial shape (see Fig. 10). We em-
ploy the quasi-kinematic test-field method to calculate transport
coefficients like the α and η tensors which describe this pro-
cess. So far, the method has mostly been applied in situations
where a hydrodynamic background was already present in ab-
sence of the mean magnetic field (see, e.g. Brandenburg et al.
2008a,b,c). Here, in contrast, the (magnetohydrodynamic) turbu-
lence results entirely from the instability of a pre-existing mean
magnetic field, By0(z). In other words, our simulations do not
posses a kinematic stage in which the influence of B would be
negligible. The applicability of QKTF to such a situation has
been questioned by Courvoisier et al. (2010). We emphasize,
however, that Eq. (15) continues to be valid also in that case
and hence all conclusions drawn from it, because the decisive
criterion for its validity is that there exists no magnetic turbu-
lence in the absence of the mean magnetic field, that is, b → 0
if B→ 0 (see Rheinhardt & Brandenburg 2010, for a more thor-
ough explanation). As this is the case here the QKTF method is
applicable. Furthermore, we explicitly check the applicability of
QKTF to this problem by reconstructing the turbulent EMF from
the turbulent transport coefficients we calculate. The only pecu-
liarity occurring is the fact that all components of α and η vanish
for 0 ≤ Brms ≤ Bthreshold, because fluctuating velocity and mag-
netic fields develop only after the instability has set in. Another
aspect not considered in most previous test-field studies is the
strong intrinsic inhomogeneity of the turbulence not only as a
consequence of the strong z dependence of B, but also due to
the stratified density background. Thus the transport coefficients
need to be determined as z dependent quantities.

In the next section we demonstrate that the test-field method
works reasonably well for our problem. Note that to calculate
the transport coefficients in addition to the usual MHD equations
four additional evolution equations of the form (15) for four in-
dependent test-fields have to be solved. Hence the test-field runs
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Pr = 0.125, PrM = 0.125, Re = 8.2

Pr = 0.125, PrM = 0.5, Re = 3.6

Fig. 6. Left: volume rendering of the By = 0.1B0 isosurface. Right: field lines, colored according to the value of vorticity Wy for runs B128f (top)
and B128e (bottom) at t = 2tA0 (saturated stage). The contours of By are shown on side walls.

are computationally almost thrice as expensive. We have thus
reduced resolution to 643 grid points for all these runs.

3.5.1. Reconstruction of the mean EMF

To validate the test-field method we first confirm that the quan-
tity E, taken directly from the direct numerical simulation
(DNS), can be reproduced by employing the relation (11) be-
tween E and B with the tensors α̂ and η̂ determined using the
quasi-kinematic test-field method. In mathematical terms,

ER
i (z; B) =

∑
kc

K̂ c
i j(z, k

c; B)B̂
c
j(k

c) +
∑

ks

K̂ s
i j(z, k

s; B)B̂
s
j(k

s) (20)

with

K̂ c
i j = α̂i j(z, k

c; B) cos(kcz̃ ) − η̂il(z, k
c; B) εl j3 kc sin(kcz̃ ),

K̂ s
i j = α̂i j(z, ks; B) sin(ksz̃ ) + η̂il(z, ks; B) εl j3 ks cos(ksz̃ ),

B̂
c
j(k

c) =
2
Lz

∫
z

B j(z) cos(kcz̃ ) dz,

B̂
s
j(k

s) =
2
Lz

∫
z

B j(z) sin(ksz̃ ) dz,
(21)

kc =
(2k − 1)π

Lz
, ks =

2kπ
Lz
, k = 1, 2, . . . ,

z̃ = z − z0 − Lz

2
,
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δρ/ρi

δT/Ti

Fig. 7. Relative density perturbation, δρ/ρi (top) and relative tempera-
ture perturbation δT/Ti (bottom), with δρ = ρ − ρi, δT = T − Ti and
ρi(z), Ti(z) taken from Eq. (7), in the plane y = 0 at t = tsat ∼ 2tA0 for
the run B128h. Both plots overlaid with contours of By (solid lines).

Fig. 8. Top: relative current helicity J · B/JrmsBrms for run B128d at
t = tsat ∼ 2tA0; arrows: vx, vz. Bottom: By/B0 for the same run; arrows:
Bx, Bz. Both panels show the plane y = 0.
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Fig. 9. Top: dependence of the total relative current helicity εJ on inverse
Roberts number. Size of circles codes for value of Rm (length based).
Bottom: dependence of εJ = J · B/JrmsBrms on z after saturation for
runs B128e (solid, Rb−1 = 0.25), B128h (dashed, Rb−1 = 0.5), and
B128c (dotted, Rb−1 = 1).

By/B0

102 Bx/B0

Fig. 10. Time-height diagram for Bx,y normalized on B0 for run B128c
in Table 2 (z extent of the box clipped). Note the difference of two orders
of magnitude between By and Bx.
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where the superscript R indicates reconstruction. Here, the
boundary condition for B gives rise to the selection of discrete
cosine and sine modes with wavenumbers kc and ks, respectively.
The additional argument B is to indicate that the quantities K̂c,s

,
related to Ĝ(x, k) eik·x in Eq. (13), as well as the tensors α̂ and η̂,
are valid just for that mean field B which is present in the main
run. As a consequence, the reconstruction of the mean EMF can
be successful only when employing exactly this B in (21). That
is, the mean field representation of the turbulence in terms of α̂
and η̂ has, at this level, merely descriptive rather than predictive
potential. In order to possess the latter, α and η have to be for-
mulated as functionals of B and z. Consequently, the mean EMF
will appear as a nonlinear functional of B. Since it is addition-
ally also non-local, we are confronted with a task of considerable
mathematical complication which is not addressed here.

Let us denote ER as the reconstructed EMF according to
Eq. (20) truncated by k′ ≤ K′, with kc,s = 2πk′/Lz. Here k′
can now take both integer and half-integer values where the in-
teger (half-integer) values of k′ correspond to the family of sine
(cosine) modes in Eq. (21). An initial estimate of K′ required for
a reasonable reconstruction of E was obtained from the power
spectra of both Bx and By. It turned out that Bx has significant
spectral power up until k′ = 16, whereas for By the power spec-
trum has levelled off already at k′ = 8.

The components of the tensors α̂ and η̂ also show rather dif-
ferent spectral behavior, both in the midplane of the magnetic
layer and near the midplane of the box as seen in Fig. 11. Given
that the spectrum of the mean field clearly converges to zero, this
guarantees that the mean EMF will also spectrally converge. The
tensor components either appear to converge to a constant value
or to zero. For coefficients like α̂12 and α̂21, converging to a con-
stant, this asymptotic, say α̂0

12, can in principle be separated and
would appear as a part α̂0

12δ
3(x − x′) of the convolution kernel

of (12), representing a local part of the relation between E and
B. This is, however, not done here. Instead we simply employ
the k dependent coefficients up to the maximum required by the
spectra of B, that is, k′ = 16. Note that the values for k′ = 0 are
not relevant here as, due to the boundary conditions, B does not
possess a k′ = 0 contribution.

The α tensor can be decomposed in symmetric and antisym-
metric parts, the latter being representable by a turbulent pump-
ing velocity γ, which gives rise to the term γ × B in the mean
EMF. Since Bz = 0, the only relevant component of γ is here
γ̂z = (α̂21 − α̂12)/2. Analytic results indicate that in a wide range
of situations, the turbulent pumping is directed away from the re-
gion of strong turbulence (“turbulent diamagnetism”, see Krause
& Rädler 1980). γ̂z(k′) is presented in Fig. 11 together with
α̂12 in one panel. As α̂21 decreases in modulus beyond k′ = 1
and even changes sign at k′ = 8 while α̂12 increases in mod-
ulus, but preserves its sign, we observe a sign change in γ̂z at
k′ = 4 and k′ = 3 in the midplane of the magnetic layer and
above it, respectively (see also Fig. 18 below). A similar depen-
dence of turbulent pumping on wavenumber has been found by
Käpylä et al. (2009) in DNS of convection. Consequently, mag-
netic fields with scales up to ≈ (5 . . .6)HB, that is, k′ > 4 are
pumped into the layer, but those with larger scales are pumped
away from it the former being contrary to the standard concept
of “turbulent diamagnetism”. It is thus difficult to comment on
the transport of the total B by γ̂. Only if the pumping were ori-
ented away from the magnetic layer for all the wavenumbers of

the dominating constituents in B it would lead to a broadening
of the initial layer i.e., a reduction of ∂By/∂z and would hence
inhibit the instability. With respect to its saturation, however, the
strong turbulent magnetic diffusion given by η̂22 is likely to be
more important, as for low k′ it reaches ≈20 times the molecular
value, cf. Fig. 11.

The result of the assembly of ER from (20) with (21), is pre-
sented in Fig. 12, middle column. From simple visual inspection
we find it to be a faithful reproduction of E from the DNS shown
in the left column. Clearly, a naive application of the test-field
procedure with harmonic test fields with only the lowest k′ = 0.5
results in an inadequate description as shown in the right column.
We define two measures for the quality of the mean EMF recon-
struction at a given K′ namely χ2

K′ and the correlation coefficient
rK′ defined as

χ2
K′ =

〈(Ex,y − ER
x,y)

2〉z,t
〈E2

x,y〉z,t
, rK′ =

〈Ex,y × ER
x,y〉z,t√

〈E2
x,y〉z,t〈ER2

x,y〉z,t
, (22)

where the subscript “z, t” denotes that the averaging has been
carried out over the vertical coordinate z as well as over the tem-
poral range 1.2tA0 ≤ t ≤ 3.4tA0. The relative error of the re-
construction, χ2

K′ , and the correlation coefficient, rK′ , are plotted
in Fig. 13 as a function of the truncation wavenumber K′. The
χ2

K′ reach a minimum value of about 35% and 30% for Ex and
Ey, respectively, and level off around K′ = 8. This implies that
including higher harmonic test fields beyond k′ = 7 does not
improve the reconstructed EMF. Similarly, rK′ for ER

x (ER
y ) con-

verges to a value of 0.98 (0.93) at K′ = 4 (8). It is important
to note that even though the tensor components α̂12 and α̂21 do
not converge with increasing k′, the reconstructed EMFs do as
a consequence of the sufficiently fast convergence of B with k′.
Also, including transport coefficients for k′ ≥ 8 does not im-
prove the reconstruction any further. Clearly, one reason behind
the discrepancies is that we have neglected memory effects in
the turbulent transport coefficients (see Hubbard & Brandenburg
2009). It can be particularly important in the present situation as
we are not in a statistically stationary regime. Apart from this,
enhancement of resolution might further improve the results.

3.5.2. Dependence of the transport tensors on inclination

In view of the solar dynamo problem it is important to look
at α̂ and η̂ as functions of the rotational inclination θ or lati-
tude λ = 90◦ − θ. We expect the growth rate of the instability to
increase from the equator to the pole (Schmitt 2003). This can be
explained by the buoyant nature of the turbulence, for which ver-
tical motions are essential: At the poles, the effect of the Coriolis
force on them is weakest whereas they are strongly deflected
at the equator. This is indeed confirmed by Fig. 14, where the
growth rate is seen to decrease continuously when changing θ
from 0◦ (pole) towards 90◦ (equator). The corresponding runs
are summarized in Table 3.

Let us now consider the symmetry properties of our solu-
tion with respect to λ = 0, which is the solar equator. Moving
from the northern hemisphere at λ to the southern at −λ, that is
changing θ to 180◦ − θ, but keeping all other problem parame-
ters invariant, is equivalent to inverting the sign of Ωz. The same
can be accomplished by reflecting the corresponding rigid rota-
tion about the plane x = 0. Hence we can construct the solution
(ρ,U, B, s) of (2)–(5) for −λ simply by reflecting the solution

A46, page 10 of 15



P. Chatterjee et al.: Buoyancy instability of magnetic layer

0 4 8 12 16
−1

0

1

2

3

α̂ 11
/ U

rm
s

0 4 8 12 16
−1

−0.5

0

0.5

α̂ 12

ˆ γ  γ  z 

/ U
rm

s

0 4 8 12 16
−1

−0.5

0

0.5

1

α̂ 21
/ U

rm
s

0 4 8 12 16
−0.05

−0.025

0

0.025

0.05

α̂ 22
/ U

rm
s

0 4 8 12 16
0

0.5

1

η̂ 11
/ U

rm
s H

B

0 4 8 12 16
−1

0

1

2

η̂ 12
/ U

rm
s H

B

 k’

0 4 8 12 16
−0.02

0

0.02

0.04

ˆ  η
 21

/ U
rm

s H
B

0 4 8 12 16
0

0.5

1

1.5

η̂ 22
/ U

rm
s H

B

 kí

 z = z B
 z = 0.2  L z

Fig. 11. Dependence of α̂ and η̂ time averaged between t = tsat to t = tsat+ tA0 on the test-field wavenumber k′ in the midplane of the magnetic layer
(z = zB) and near the midplane of the box (z = 0.21Lz) for run TF30+ of Table 3. Thick lines in panel for α̂21: turbulent pumping coefficient γ̂z =
(α̂21 − α̂12)/2. Rescaling of η̂i j to the molecular value η by the factor UrmsHB/η = 21.5. Integer and half-integer values of k′ belong to sine and
cosine modes in B, respectively. Note that k′ = 0 refers to constant and linear test fields and that the corresponding coefficients do not enter the E
– B relation for the given setup.

for λ properly about the same plane. Under this reflection, polar
vectors like velocity transform as,{
Ux,Uy,Uz

}
(x, y, z)→

{
−Ux,Uy,Uz

}
(−x, y, z), (23)

and axial vectors like the magnetic field as{
Bx, By, Bz

}
(x, y, z)→

{
Bx,−By,−Bz

}
(−x, y, z). (24)

(Note that the gravitational acceleration is invariant under this
reflection.) Hence, for the initial magnetic field, By0(z), the tran-
sition to −λ requires only a sign inversion. However, since the
induction equation is linear in B, and Lorentz force as well as
Ohmic dissipation are quadratic, inverting the sign of By0(z)
would just transform the solution {ρ,U, B, s} to {ρ,U,−B, s},
that is, would leave the turbulence essentially unchanged and
can be omitted. Moreover, as the transport coefficients which
express the correlation properties of the turbulent velocity u are
functions of z only, the reflection operation cannot change their
magnitudes. With respect to possible sign inversions in the coef-
ficients upon reflection, we note that E and J , being polar vec-
tors, invert the sign of their x components under reflection, but

keep their y components unchanged. The axial vector B behaves
just the opposite way. Thus, we have α̂ii → −α̂ii for i = 1, 2
(no summation) and α̂i j → α̂i j for i � j, whereas η̂ii → η̂ii

for i = 1, 2 and η̂i j → −η̂i j for i � j when moving from λ
to −λ. Consequently, it appears that the results for the southern
hemisphere can be derived from those for the northern by simple
operations. Strictly speaking however, this is only true when the
initial condition for U is also reflected upon the transition from
λ to −λ. From a naive point of view we might suppose that omit-
ting this reflection can hardly be of any importance, because the
initial conditions are anyway random. But we have found this
not to be true.

In Fig. 15 we show z–λ plots of B and E, constructed from
the runs with Ω � 0. We expect Bx and Ey to be antisymmetric
about the equator. This is indeed true for higher latitudes but
not in the neighbourhood of the equator where they are rather
symmetric. Violation of the expected symmetry properties can
also be inferred from the extrema of Ey given in Table 3.

Symmetry can formally be restored as follows. From Fig. 15
we construct another set of plots by “symmetrizing” By and Ex,
but “anti-symmetrizing” Bx and Ey, that is, setting By(z, λ) to

A46, page 11 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016108&pdf_id=11


A&A 534, A46 (2011)

Ex

Ey

Fig. 12. Reconstruction of the mean EMF for the run TF30+ using α̂ and
η̂ from the test-field method. Top: Ex(z, t), bottom: Ey(z, t), both scaled
by 10−4vA0 B0. Left: directly from u × b. Middle: reconstruction using
all contributions k′ = 0.5, 1, 1.5, ...16 in (20). Right: same as before, but
using only the k′ = 0.5 contribution.

Fig. 13. Quality of the mean EMF reconstruction as a function of the
truncation wavenumber K′: χ2

K′ (left) and correlation rK′ (right) calcu-
lated for ER

x (solid) and ER
y (dashed) using Eq. (22).

(
By(z, λ) + By(z,−λ))/2 and Bx(z, λ) to

(
Bx(z, λ) − Bx(z,−λ))/2,

analogously for E. The result is shown in Fig. 16. In the
same way, we have obtained the transport coefficients shown in
Figs. 17 and 18 for the test-field wavenumber k′ = 0.5, that is,
for the largest possible wavelength (cosine mode). We find that
the moduli of all turbulent transport coefficients increase mono-
tonically for all z as we go from the equator to the poles, except
α̂21 and α̂22 which exhibit local extrema at |λ| ≈ 30◦.

A careful look at the “symmetrized” and “anti-symmetrized”
plots reveals a discontinuity at the equator best seen in the plots
of α̂11,22 (Figs. 17). This phenomenon is counterintuitive at first:
if we regard the computational box as a local area within a
spherical body, changing λ from positive to negative values im-
plies travelling along a meridian across the equator. If quantities
like Bx and Ey change their sign there, they should vanish for

Table 3. List of runs with test-field calculations.

Run θ/◦ Ω β̃0 tsat/tA0 104 × Esat
y /vA0B0

min max
TF00l 0 0 4.21 3.12 −0.84 1.38
TF00 0 0 1.51 2.21 −3.25 3.12
TF0+ 0 ↑ 1.51 2.42 −1.82 3.52
TF0− 0 ↓ 1.51 2.42 −4.41 1.44
TF30+ 30 ↑ 1.51 2.58 −1.71 3.68
TF60+ 60 ↑ 1.51 2.87 −1.33 3.16
TF89+ 89 ↑ 1.51 3.00 −1.21 2.10
TF90+ 90 ↑ 1.51 3.50 −1.35 1.62
TF120+ 120 ↑ 1.51 3.00 −2.71 2.27
TF150+ 150 ↑ 1.51 2.45 −2.98 1.09
TF180+ 180 ↑ 1.51 2.41 −4.53 1.42
TF30l 30 ↑ 4.21 4.90 −0.05 0.12
TF30m 30 ↑ 2.36 3.00 −1.49 2.89
TF30n 30 ↑ 1.04 2.01 −4.53 8.43

Notes. Pr = PrM = 4, TaM = 3.24 × 1010, except for first two runs with
TaM = 0. Re ∼ 0.45 and resolution 643 throughout. tsat and Esat

y defined
like in Table 2. Arrows in the Ω column indicate the sign of Ωz. Note
that the initial velocity is the same for all the runs.

Fig. 14. Dependence of the instability on rotational inclination θ in
terms of rms value of generated field components 〈B2

x + B2
z 〉 for the

runs TF0+, TF30+, TF60+ and TF90+ in Table 3.

continuity reasons and the same should hold true for α̂11,22 and
η̂12,21. Instead of looking at the “symmetrized” quantities we can
reflect the initial velocity U0 according to (23) upon the transi-
tion λ → −λ. This restores exact symmetry/antisymmetry about
the equator and we again observe a discontinuity at the equator.

In conclusion, near the equator the initial conditions play a
crucial role in determining the saturated values of Bx and Ey and
consequently the values of the turbulent transport coefficients.
As the coefficients in α̂ are typically connected with the kinetic
helicity density hK, we have calculated it for the saturated states.
Indeed, at the equator the solutions resulting from the initial con-
dition U0 and its reflected counterpart show opposite signs of hK.
This is an example of spontaneous symmetry breaking with bi-
furcation into helical solutions of opposite handedness which en-
ables finite values of Bx and Ey as well as of α̂11,22 at the equa-
tor. (Note, that η̂12,21 are not related to the non-vanishing helicity
at the equator and consequently show no discontinuity in their
anti-symmetrized profiles in Fig. 17.) As a prerequisite for such
a bifurcation, the unstable eigenmodes of the buoyancy instabil-
ity must be degenerate. That is, two linearly independent modes
with opposite signs of helicity, but identical growth rate must ex-
ist. This has been noticed forΩ � 0 at the equator (Thelen 2000)
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tudes.) Dashed line: initial position of the magnetic layer.
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Fig. 16. Same as Fig. 15, but with symmetrized By(z, λ), Ex(z, λ) and
anti-symmetrized Bx(z, λ), Ey(z, λ). For explanation see text.

and also holds true forΩ = 03. A detailed discussion of this phe-
nomenon for Ω = 0 is the subject of a separate paper Chatterjee
et al. (2011).

3.5.3. Dependence on initial magnetic field strength

In standard mean-field theory for a prescribed hydrodynamic
background the turbulent transport coefficients usually decrease
as the mean magnetic field increases (“quenching”). The present
problem is different, however, because the instability and hence
the turbulence is just caused by the initial (mean) magnetic field.
In Fig. 19 we show the z averages of α̂11 and η̂22 at tsat as func-
tions of the initial magnetic field B0 ∝ β̃−1/2

0 . These components
have been selected because they essentially do not invert sign

3 Another example of spontaneous symmetry breaking in magnetohy-
drodynamics has been recently observed in the case of the Tayler insta-
bility of a purely toroidal magnetic field (Gellert et al. 2011).
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culated using test fields with k′ = 0.5 and averaged between t =
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symmetrized analogously to B, E in Fig. 16. α̂ scaled by Urms for the
run TF30+, η̂ scaled by the molecular diffusivity η. Dashed line: initial
position of the magnetic layer.

in the domain during the entire evolution. Because of its impor-
tance for the generation of Bx from By we have also given α̂22 in
this figure. However, as this coefficient shows a significant sign
change with respect to z, its maximum value with respect to z
and the time span 0 < t < 2tsat was plotted.

Clearly, α̂11, α̂22, and η̂22 increase with the initial mag-
netic field strength supporting earlier ideas of a possible “anti-
quenching” in the case of the buoyancy instability (see, e.g.,
Brandenburg et al. 1998). Note, however, that the dependence on
the initial field strength in Fig. 19 might differ from the depen-
dence on the local field strength to which the term “quenching”
usually refers.

4. Conclusions

We have studied in detail the generation of the α effect due
to the buoyancy instability of a horizontal magnetic layer in
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Fig. 19. Vertical averages of α̂11/cs0 (solid) and η̂22/η (dashed) for k′ =
0.5 at t = tsat and maximum of α̂22 with respect to all z and t (dotted) as

functions of β̃
−1/2

0 ∝ B0.

a stratified atmosphere by using direct numerical simulations.
We find that both the magnetic energy and the current helic-
ity (twist) in the system increase monotonically with the ratio
of thermal conductivity to magnetic diffusivity, i.e. the Roberts
number Rb (Fig. 4). This agrees with earlier analytical work of
Gilman (1970) and Acheson (1979), as well as numerical work
of Silvers et al. (2009), who find that efficient thermal diffusion
or heat exchange can destabilize a stable stratification. The in-
crease of the resulting twist with Rb is an important result since
the buoyancy instability would thus produce twisted flux tubes
from a magnetic layer, if it existed in the overshoot layer of the
Sun where Rb � 1. Vasil & Brummel (2008) also report the for-
mation of twisted flux tubes from a horizontal magnetic layer,
but in their case it is due to the action of shear on a weak vertical
magnetic field. We further find that the growth rate of the buoy-
ancy instability is reduced in presence of rotation compared to
the case with Ω = 0.

Most of the earlier work on the magnetic buoyancy instabil-
ity resorted to either the magnetic Boussinesq approximation or
the anelastic approximation. Here we have performed fully com-
pressible numerical calculations (for differences between anelas-
tic and compressible calculations see also Berkoff et al. 2010).
Let us now relate our results to corresponding earlier calcula-
tions. The work of Wissink et al. (2000) comes closest to our
own as they not only included rotation, but also employed a
thin magnetic layer. However, both thermal and magnetic bound-
ary conditions were different from ours and the initial magne-
tostatic equilibrium was established by lowering the density in
the layer, thus making it immediately Rayleigh-Taylor unstable.
Moreover, their simulations were done for different parameters
(our values in brackets): Rb = 17 [0.25 . . .1] (bottom), density
contrast 5.8 [223], TaM ≈ 107 [1010] and Lu0 ≈ 50 [500 . . .600].

Hence, a quantitative comparison is not possible, although the
occurrence of similar tubular structures in the saturated stage
(see our Fig. 6 and their Fig. 4) indicates that those might be
a robust feature of magnetic-buoyancy driven turbulence.

Thelen (2000) has also performed fully compressible cal-
culations and provides the α coefficient, but only as a result
from individual unstable eigenmodes in the linear stage. In con-
trast, our calculations of α and magnetic diffusivity were done
in the saturated stage and are hence not comparable to the re-
sults of Thelen (2000). Furthermore, in his analysis, the relation
αyy〈B0y〉 = 〈u × b〉y was employed with 〈·〉 being either a vol-
ume or horizontal average. In the first case it yields the correct
αyy, but this is valid only for uniform mean fields. In the second
case the result is not a measure of the actual αyy, because the
contribution of ∂B0y/∂z to E is ignored. Hence, in both cases no
description of the mean EMF that would be useful for a mean-
field dynamo model is provided. Further, he admits only a local
relationship between E and B.

Kersalé et al. (2007) considered a non-rotating box with a
linear vertical profile of the horizontal magnetic field, which
is supported by the boundary condition. Perturbations to this
state were subjected to perfect conductor boundary conditions,
and the background state was a polytrope with index 1.6 along
with Pr = 1/Rb = 0.02. Hence, both their model and the em-
ployed parameters are too different from ours to allow a mean-
ingful comparison of the results. Nevertheless, their magnetic
field structure for random initial conditions (their Fig. 4) resem-
bles our finding in Fig. 6.

We have run our simulations only until the time taken by the
initial magnetic layer to break up due to the back-reaction of
the unstable modes and ohmic diffusion. In the absence of any
other forcing such as a strong shear, the buoyancy instability is
found to be incapable of sustaining itself past the break-up phase
since the scale height of the magnetic layer becomes comparable
to that of the density. We may hence say that strong shear is
not imperative to the production of tubular structures from the
magnetic layer, but is likely to play a key role in keeping the
layer from breaking up. It may also be possible that turbulent
downward pumping (Nordlund et al. 1992) arrests the decay of
a magnetic layer in the overshoot region. However, it is not yet
clear if such a layer exists at all in the real Sun and, moreover, if
it is subject to the buoyancy instability there.

For mean fields defined by horizontal averaging we have
“measured” the turbulent transport coefficients using the tech-
nique of the quasi-kinematic test-field method. In order to prove
that the α̂ and η̂ tensors obtained from this method are reason-
ably accurate, we have verified the agreement between u × b
from the DNS and the representation of E by the convolution
α ◦B−η ◦ J , with corresponding tensors α̂(k) and η̂(k) obtained
for harmonic test fields with wavenumbers 0 ≤ (Lz/2π)k ≤ 16.
A technique for the quantitative assessment of this agreement is
presented. We find that, even in presence of magnetically driven
turbulence, the obtained α̂ and η̂ provide a reasonably accurate
description of the turbulent EMF; see Figs. 12 and 13 (although
the relative errors are still about 30 . . . 35%). This is an impor-
tant outcome of our study.

We find that Ey, determined using a harmonic test field with
the lowest wavenumber that fits in the vertical extent of the box,
already comprises a considerable part of the total EMF. Hence it
can be enlightening to look at the turbulent transport coefficients
obtained by the QKTF method for this wavenumber only. At fi-
nite Ω their dependence on (solar or stellar) latitude λ is of par-
ticular interest. The component α̂22 contributes to the generation
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of Bx from the strong initial field By in the layer. The off-diagonal
components of α̂ contribute to a vertical turbulent pumping ve-
locity directed away from the region of turbulence surrounding
the magnetic layer. The effect of this pumping systematically
broadens magnetic structures with increasing latitude. We find
that all transport coefficients except α̂21 and α̂22 increase with
latitude and are significantly reduced near the equator due to the
suppressing effect of the Coriolis force on the instability. For the
first time the turbulent magnetic diffusivity given by the diagonal
components of η̂ has been computed for the magnetic buoyancy
instability; see Fig. 17. In particular, near the magnetic layer, the
diagonal component η̂22 is 25 times larger than the molecular
value η.

The buoyancy instability has the property that the EMF, as
indicated by the extrema of Ey/vA0B0, increases progressively
with the magnitude of the magnetic field in the horizontal layer
(compare solid and dashed lines in Fig. 5). Indeed, as a remark-
able result, we demonstrate that the most significant coefficients
α̂11, α̂22, and η̂22 increase with the initial field strength; see
Fig. 19. This feature makes the buoyancy instability an attractive
candidate for generating an α-effect inside the Sun. Unlike tur-
bulent convection which yields an α that is quenched for strong
mean magnetic fields, this one increases with increasing field
strength. Our findings support suggestions by Brandenburg et al.
(1998) that, if turbulent transport coefficients are caused by flows
that are magnetically driven like in the present case or, e.g., in the
magneto-rotational instability, then both α and η may increase
with magnetic field strength. This trend is sometimes referred to
as “anti-quenching” and could be useful to explain the steepness
of the observational relation between the ratio of dynamo cy-
cle to rotation frequencies, ωcyc/Ω and inverse Rossby number
for stellar data (Brandenburg et al. 1998; Saar & Brandenburg
1999).

Although highly desirable, modelling of α and η as function-
als of position and the mean magnetic field for use in a predictive
mean field dynamo model is a difficult proposition that needs to
be postponed to future work.
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