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ABSTRACT

Context. Dynamos in the Sun and other bodies tend to produce magnetic fields that possess magnetic helicity of opposite sign at
large and small scales, respectively. The build-up of magnetic helicity at small scales provides an important saturation mechanism.
Aims. In order to understand the nature of the solar dynamo we need to understand the details of the saturation mechanism in spherical
geometry. In particular, we aim to understand the effects of magnetic helicity fluxes from turbulence and meridional circulation.
Methods. We consider a model with only radial shear confined to a thin layer (tachocline) at the bottom of the convection zone. The
kinetic α owing to helical turbulence is assumed to be localized in a region above the convection zone. The dynamical quenching
formalism is used to describe the build-up of mean magnetic helicity in the model, which results in a magnetic α effect that feeds back
on the kinetic α effect. In some cases we compare these results with those obtained from a model with a simple algebraic α quenching
formula.
Results. In agreement with earlier findings, the magnetic α effect has the opposite sign compared with the kinetic α effect and leads
to a catastrophic decrease of the saturation field strength proportional to the inverse magnetic Reynolds number. At high latitudes this
quenching effect can lead to secondary dynamo waves that propagate poleward because of the opposite sign of α. These secondary
dynamo waves are driven by small-scale magnetic helicity instead of the small-scale kinetic helicity. Magnetic helicity fluxes both
from turbulent mixing and from meridional circulation alleviate catastrophic quenching. Interestingly, supercritical diffusive helicity
fluxes also give rise to secondary dynamo waves and grand minima-like episodes.
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1. Introduction

The solar dynamo models developed so far that agree with solar
magnetic field observations usually solve the αΩ mean field dy-
namo equations. The turbulent α effect first proposed by Parker
(1955) is believed to be generated by helical turbulence in the
convection zone of the Sun. Because α is generated by quadratic
correlations of the small-scale turbulence, we need a closure in
order to complete the set of mean field equations, e.g., the first
order smoothing approximation (FOSA), and express the mean
electromotive force in terms of the mean magnetic fields. This
turbulent α encounters a critical problem when the energy of
the mean field becomes comparable to the equipartition energy
of the turbulence in the convection zone, and therefore it be-
comes increasingly difficult for the helical turbulence to twist
rising blobs of magnetic field. The solar dynamo modellers have
traditionally used what is referred to as algebraic alpha quench-
ing to mimic this phenomena. This involves replacing α by

α0/(1+B
2
/B2

eq), an expression introduced by Jepps (1975), or by

α0/(1+RmB
2
/B2

eq), where α0 is the unquenched value and Rm is

the magnetic Reynolds number, B is the mean magnetic field and
Beq is the equipartition magnetic field. The latter expression has
been discussed since the early work of Vainshtein & Cattaneo
(1992). The Rm in the denominator is included because the
small-scale fluctuating magnetic field reaches equipartition long
before the mean magnetic field does. This has been supported
by several numerical experiments to determine the saturation

behaviour of α (e.g. Cattaneo & Hughes 1996; Ossendrijver et al.
2002). Given the large magnetic Reynolds numbers of astro-
nomical objects, this phenomenon is referred to as catastrophic
quenching.

After the discovery of the layer of strong radial shear (called
the tachocline by Spiegel & Zahn 1992) at the bottom of the
solar convection zone, Parker (1993) proposed a new class of so-
lar dynamo models called the interface dynamo. In these mod-
els the shear is confined to a narrow overshoot layer immedi-
ately beneath the convection zone, which is also the region of
α effect. The dynamo wave propagates in a direction given by
the Parker-Yoshimura rule at the interface between the two lay-
ers defined by a steep gradient in the turbulent diffusivity. The
toroidal field produced by the stretching effect of the shear is
much stronger than the poloidal field and remains confined in
the overshoot layer, away from the region where the α effect
operates. Note that the interface dynamo model may have se-
rious problems when solar-like rotation with positive latitudi-
nal shear is included (Markiel & Thomas 1999). Similarly, in
the Babcock-Leighton class of flux transport models (Choudhuri
et al. 1995; Durney 1995) the toroidal and the poloidal fields are
produced in two different layers. Unlike in the interface dynamo
models, the coupling between the two layers is mediated both
by diffusion and the conveyor belt mechanism of the meridional
circulation.

It has been proposed that in interface and Babcock-Leighton
type dynamos, the α effect is not catastrophically quenched at
high Rm because the strength of the toroidal field is very weak in
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the region of finite turbulent α (e.g. Tobias 1996; Charbonneau
2005). However, according to our knowledge, not much has been
done to study the variation of the strength of the saturation mag-
netic field with the magnetic Reynolds number for these classes
of αΩ dynamos. Zhang et al. (2006) made an attempt to repro-
duce the surface observations of current helicity in the Sun with
a 2D mean field dynamo model in spherical coordinates cou-
pled with the dynamical quenching equation. In a separate paper
(Chatterjee et al. 2010) we demonstrated that interface dynamo
models are also subject to catastrophic quenching.

Magnetic helicity has been identified as a key player in any
dynamo process. Because the net magnetic helicity is conserved,
any process can only create large- and small-scale magnetic
helicities of opposite signs. This was shown in direct numer-
ical simulations of a twisted magnetic flux tube by Blackman
& Brandenburg (2003), in good agreement with observations
of sigmoid loops in the solar corona. However, the small-
scale magnetic helicity backreacts on the helical turbulence and
quenches the dynamo (Blackman & Field 2000; Kleeorin et al.
2000).

It has now been shown that this mechanism reduces the satu-
ration strength of the magnetic field (Bsat) with increasing mag-
netic Reynolds number (Rm). Nevertheless this constraint may
be lifted if the system is able to rid itself of small-scale helicity
through at least one of several ways such as open boundaries,
advective, diffusive and shear-driven fluxes (Shukurov et al.
2006; Zhang et al. 2006; Sur et al. 2007; Käpylä et al. 2008;
Brandenburg et al. 2009; Guerrero et al. 2010). Even though the
helicity constraint in direct numerical simulations (DNS) of dy-
namos with strong shear have been clearly identified, the results
can be matched with mean field models with a weaker alge-
braic quenching than α2 dynamos (Brandenburg et al. 2001). It
is possible to include this process in mean-field dynamo models
through an equation describing the evolution of the small-scale
current helicity. We shall refer to this equation as the dynamical
quenching mechanism.

In this paper we perform a series of calculations with mean
field αΩ models in spherical geometry along with a dynamical
equation for the evolution of α for magnetic Reynolds numbers
in the range 1 ≤ Rm ≤ 2×105. An important feature of the calcu-
lation is that the region of strong narrow shear is separated from
the region of helical turbulence. In addition to providing detailed
results not mentioned in Chatterjee et al. (2010), this paper is
also aimed at studying somewhat more complicated models like
flux transport (FT) models, which include meridional circulation
(MC). The role of diffusive helicity fluxes modelled into the dy-
namical quenching equation by using a Fickian diffusion term
is also discussed for various models. Helicity fluxes across an
equator can indeed be modelled by this diffusion term, as was
shown by Mitra et al. (2010). In Sects. 2.1 and 2.2 we discuss
the features of the two classes of αΩ models used. The formula-
tion of dynamical α quenching is given in Sect. 2.3. The results
for 1 < Rm < 2×105, with or without small-scale helicity fluxes,
are presented in Sects. 3.1–3.3, while Sect. 3.4 presents the re-
sults for the flux transport dynamo model. Finally, we draw the
conclusions of this study in Sect. 4.

2. αΩ dynamo models with dynamical α quenching

2.1. Interface dynamo

We solve the induction equation in a spherical shell assum-
ing axisymmetry. Our dynamo model consists of the induction
equations for the mean poloidal potential Aφ(r, θ) and the mean

toroidal field Bφ(r, θ) (see Eqs. (2) and (3) of Guerrero et al.
2010, GCB from now on). Axisymmetry demands that for all
variables ∂/∂φ = 0. The turbulent coefficients α and ηt in these
equations are estimated as follows: from the mixing length the-
ory we know that the turbulent diffusivity in the convection zone
is given by (cf. Sur et al. 2008)

ηt =
urms

3kf
, (1)

where urms is the rms velocity of the turbulent eddies, kf is the
wavenumber of the energy-carrying eddies, corresponding to the
inverse pressure scale height near the base of the convection
zone. In our models, we have taken kf = 10k1, where k1 is the
longest wave that can fit the domain latitudinally. Below the con-
vection zone the magnetic diffusivity has the molecular value, ηr .
Both regions are smoothly matched by the step function

Θ±(r, re, de) = 1 ± erf

(
r − re

de

)
, (2)

where re = 0.73 R�, and de = 0.025 R�. Thus the magnetic
diffusivity profile is given by

η(r) = ηr + ηtΘ
+(r, re, de). (3)

The turbulent kinetic α effect considered in this model has the
form

αK(r) =
α0Θ

+(r, ra, da) cos θ

1 + gαB
2
/B2

eq

, (4)

where gα is a non-dimensional coefficient equal to 1 or Rm de-
pending on the assumed form of algebraic quenching in the mod-
els and

Beq = (4πρ)1/2urms = (4πρ)1/23ηtkf

is the value of the magnetic field at equipartition between the
magnetic and the turbulent kinetic energies. The amplitude of
the kinetic α effect is estimated by considering the first order
smoothing approximation (FOSA) as being α0 = τεfωrmsurms/3,
where ωrms is the rms vorticity of the turbulence and τ ∼
(kfurms)−1 is the eddy correlation time scale. The prefactor εf ,
usually of the order of 0.1 or less, is used because (u · ω)rms <
urmsωrms. The case εf = 1 means that the flow is maximally heli-
cal. These approximations give us an estimate of α0 in terms of
eddy diffusivity ηt and forcing scale kf as

α0 = εf
τkfu2

rms

3
= εfηtkf .

We would consider εf instead of α0 as a free parameter in the
model apart from ηt. Even though the helical turbulence per-
vades almost the entire convection zone, here we take ra =
0.77 R� and da = 0.015 R�, so that we can have a large spatial
separation between the shear and turbulent layers. Consequently
we consider a differential rotation profile like that in the high
latitude tachocline of the Sun given by

Ω(r) = −Ω0Θ
+(r, rw, dw), (5)

where Ω0 = 14 nHz, rw = 0.68 R� and dw = 0.015 R�. The
radial profiles of ηt, α and ∂Ω/∂r are plotted as a function of
fractional radius r/R� in Fig. 1. In that figure it is possible to see
that the region of strong radial shear is separated from the region
of helical turbulence and the diffusivity has a strong gradient at a
radius lying between these two source layers. The reason of this
is to decrease the cycle period Tcyl of the oscillatory dynamos to
a reasonably small fraction of the diffusion time tdiff .
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Fig. 1. Profiles of radial shear ∂Ω/∂r, α and η as a function of fractional
solar radius.

2.2. Flux transport dynamo

Apart from the interface dynamo, we also run numerical experi-
ments for models that include meridional circulation and con-
sider the so-called Babcock-Leighton (BL) α effect. In these
models the dynamo is thought to be operating in two separated
regions, the toroidal component of the magnetic field is produced
at the base of the convection zone and the poloidal field is pro-
duced by the decay of tilted bipolar active regions on the so-
lar surface. The MC plays an important role in the dynamics of
the system by advecting the magnetic flux and connecting both
source regions. For this reason, these models are often referred to
as flux-transport (FT) dynamo models. In the literature FT mod-
els have been studied extensively by several authors (Dikpati &
Charbonneau 1999; Chatterjee et al. 2004; Guerrero & Dal Pino
2008, and references therein). These models have now reached
a stage where they are able to reproduce the butterfly diagram as
well as the correct phase between the polar fields and the toroidal
fields.

We recall that the αK is now not due to the helical turbulence
in the bulk of the convection zone, but due to a phenomenologi-
cal BL α where the poloidal field is produced from the toroidal
field by decay of tilted bipolar active regions. For the models in
this section, the BL α is assumed to be concentrated only in the
upper 0.05% of the convection zone and becomes maximum at
±40◦ latitude and goes to zero at poles. The expression for αK is

αK =
1
4
αBLΘ

+(r, 0.95 R�, d) Θ−(r,R�, d) cos θ sin2 θ, (6)

where d = 0.015 R�.
For the meridional circulation we use the analytical expres-

sions given by van Ballegooijen & Choudhuri (1988), where the
radial and latitudinal components of the velocity field are given
by

ur = u0

(R�
r

)2

ζ

(
−2

3
+

cs1

2
ζ1/2 − 4cs2

9
ζ3/4

)
(2 cos2θ − sin2θ), (7)

uθ = u0

(R�
r

)3

(−1 + cs1ζ
1/2 − cs2ζ

3/4) sin θ cos θ, (8)

where ζ = R�/r − 1, rb = 0.71R�, ζb = R�/rb − 1, cs1 = 4ζ−1/2
b

and cs2 = 3ζ−3/4
b . In the equations above, the flow is poleward

at the surface with a maximum amplitude of u0 = 20 m s−1,
and the equatorward return flow occurs at rb with an amplitude
of around 3 m s−1. Unlike in flux transport dynamo models, the

meridional circulation does not reverse the direction of propaga-
tion of the dynamo wave in interface dynamo models as long as
the meridional circulation is confined within the convection zone
(Petrovay & Kerekes 2004). The shear is still radial and given
by Eq. (5) with rw = 0.7 R�. Finally, the turbulent diffusivity has
the same profile as in Eq. (3), but with ηt = 2 × 1011 cm s−1 and
re = 0.7 R�.

2.3. Dynamical α quenching

Pouquet et al. (1976) first showed that the turbulent α effect is
modified due to the generation of small-scale helicity in the way
given by Eq. (9) below. The second term is sometimes referred
to as the magnetic α-effect,

α = αK + αM = −τ3
(
ω · u − ρ−1 j · b

)
, (9)

where ω, u, j, b denote the fluctuating component of the vor-
ticity, velocity, current, and magnetic field in the plasma. Also,
b = ∇× a. It is possible to write an equation for the evolution of
the magnetic part of α or αM from the equation for the evolution
of the small-scale magnetic helicity density hf = a · b using the
relation

αM =
ηtk2

f

B2
eq

hf . (10)

As the equation for a · b is gauge-dependent, it makes sense
only to write an equation for the volume-averaged quantity in
order to avoid dependence on a specific gauge (Blackman &
Brandenburg 2002). Our dynamo equations are independent of
any gauge because we solve for the magnetic potential compo-
nent Aφ with an axisymmetric constraint. It is important for us
that the equation for αM is also gauge-independent.Subramanian
& Brandenburg (2006) used the Gauss linking formula for the
expression for hf and wrote an equation independent of the
gauge for the magnetic helicity density under the assumption
that the correlation length for all fluctuating variables remains
small compared to the system size at all times. Using Eq. (10)
we write the same equation in terms of αM,

∂αM

∂t
= −2ηtk

2
f

⎛⎜⎜⎜⎜⎝E · B
B2

eq
+
αM

Rm

⎞⎟⎟⎟⎟⎠ − ∇ · Fα, (11)

where E and B are the mean field EMF and the mean mag-
netic field. We recall that in the mean field approach, we do not
solve evolution equations for the fluctuating components a and
b. Instead we model the effect of the small scales by writing an
evolution equation for hf similar to Eq. (11). Because the evolu-
tion of the magnetic field components (Aφ, Bφ) in the large scales
is explicitly solved, we do not need a corresponding equation for
the large-scale helicity (A · B). Moreover, a · b and A · B are
in principle gauge-dependent. However, if there is scale separa-
tion, a · b can be written as a density of linkages and is therefore
gauge-independent (Subramanian & Brandenburg 2006), while
A · B is not. This was demonstrated in Hubbard & Brandenburg
(2010).

The flux term, Fα, consists of individual components,
e.g., advection owing to the mean flow, Vishniac-Cho fluxes
(Vishniac & Cho 2001), effects of mean shear, diffusive fluxes,
etc. When we make an ansatz for the flux of normalized small-
scale helicity, Fα, the effect on the large-scale helicity flux is also
taken into account by the nonlinear coupling between mean-field
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Fig. 2. Critical α in terms of a fraction of ηtkf as a function of magnetic
Reynolds number Rm for the interface dynamo model of Fig. 1.

induction equations and Eq. (11). If small-scale magnetic helic-
ity is removed by stellar winds in Eq. (11), a corresponding ad-
vection term in the mean field induction equation also changes
the large-scale helicity accordingly.

For the interface models we put Fα = 0 unless mentioned
otherwise. For the flux transport dynamo (Sect. 2.2), the normal-
ized helicity flux Fα in Eq. (11) is given by

Fα = αMup − κ∇αM, (12)

where κ = κ0η(r) is the diffusion coefficient for αM. Let us de-
fine the diffusion time in the model as tdiff = 1/ηtk2

1. The decay
time in Eq. (11) is then tα = Rm/ηtk2

f = 4.55 × 10−3Rmtdiff . Note
that we use gα = 0 in Eq. (4) whenever we employ the dynami-
cal quenching equation, because dynamical quenching is usually
more important.

Our computational domain is defined to be the region con-
fined by 0 ≤ θ ≤ π and 0.55 R� ≤ r ≤ R�. Unless otherwise
stated, the boundary conditions for Aφ are given by a potential
field condition at the surface (Dikpati & Choudhuri 1994) and
Aφ = 0 at the poles. We also performed some calculations with
the vertical field condition at the top boundary, which means that
Bθ = Bφ = 0. At the bottom we use the perfect conductor bound-
ary condition of Jouve et al. (2008) with Aφ = ∂(rBφ)/∂r = 0.
But a more realistic perfect conductor boundary condition in our
opinion would be ∂(rBθ)/∂r = ∂(rBφ)/∂r = 0. Also Bφ = 0
on all other boundaries. The equation for αM is an initial value
problem for Fα = 0. For finite fluxes we also set αM = 0 at all
boundaries. We checked that the results are not very sensitive
to the different bottom boundary conditions given above, mainly
because the bottom boundary is far removed from the dynamo
region.

3. Results
3.1. Nonlinear interface dynamo without helicity fluxes

In order to study the Rm dependence of the saturation of the mag-
netic field in the interface dynamo of Sect. 2.1, we keep all the
dynamo parameters the same for all runs and change ηr from
2 × 105 cm2 s−1 to 2 × 1010 cm2 s−1 while keeping ηt fixed at
4 × 1010 cm2 s−1.

To be able to correctly compare the dynamo models for dif-
ferent Rm, it is important to first calculate the critical value of
α0, denoted by αc for each model. This is done by solving the
mean field dynamo equations with an algebraic quenching with
gα = 1. The values of αc as a function of Rm are shown in Fig. 2.
From this figure we observe that the model is most efficient for

Fig. 3. Time evolution of the volume-averaged magnetic energy in the
domain scaled with the equipartition energy for the case with algebraic
quenching and gα = 1 for models with Rm = 1 (diamond), Rm = 20
(solid), Rm = 200 (dashed), Rm = 2 × 103 and Rm = 2 × 105 (triangles).

Fig. 4. Same as Fig. 3 but with dynamical quenching and gα = 0 for the
Rm indicated in the figure.

Rm ∼ 20, because for this value the critical dynamo number is
the lowest. A similar variation of αc with the ratio ηt/ηr was
obtained analytically for interface dynamos by MacGregor &
Charbonneau (1997, see their Fig. 5A). All the simulations from
now on are performed by setting α0 = 2αc, corresponding to the
Rm for each model. The cycle period of these dynamo models
(Tcyl) slightly increases with Rm and is found to be of the order
of 2 tdiff , for the investigated range of Rm. Figure 3 shows the
evolution of the volume-averaged magnetic energy as a function
of time for an algebraic form of quenching with gα = 1. Note
that in Fig. 3, the slopes in the kinematic phase are almost sim-
ilar for all Rm within the errors in the numerical determination
of αc.

Now, we set gα = 0 and consider a dynamically quenched α
by solving Eq. (11) along with the linear induction equations for
the mean fields Aφ and Bφ. The time evolution of the volume-
averaged magnetic energy for these systems for a range of mag-
netic Reynolds numbers is shown in Fig. 4. The strong Rm de-
pendence, which is reminiscent of catastrophic quenching in all
astrophysical dynamos, can be easily discerned from this figure.
For high values of Rm, the saturation phase is clearly different
from that obtained for algebraic quenching (see Fig. 3).

In this context it is important to recall an important dif-
ference between dynamos in periodic and open domains such
as those considered here. In a periodic domain, the dynamo is
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Fig. 5. Saturated value of the volume-averaged magnetic energy scaled
with the equipartition energy as a function of Rm for models with dy-
namical α quenching (triangles+solid) and algebraic quenching with
gα = 1 (squares + dashed) and with gα = Rm (cross + dashed-dotted).
Note that all runs included in this figure used α0 = 2αc.

Fig. 6. Radial profiles of Aφ and Bφ at two different latitudes (λ) in the
saturated phase for Rm = 2 × 103.

expected to reach and sustain mean fields of the order of the
inverse square root of the scale separation ratio (Blackman &
Brandenburg 2002). However, in an open domain the final satu-
ration field strength is always of the order of R−1/2

m (Brandenburg
& Dobler 2001; Brandenburg & Subramanian 2005), although
the mean field may reach an early equipartition strength peak just
at the time when the small-scale field reaches saturation (Fig. 3).
The physical reality of this peak remains somewhat mysteri-
ous, although direct simulations also sometimes show this peak
(Hubbard & Brandenburg 2010). In Fig. 5 we summarize the re-
sults of models with a simple algebraic quenching (Eq. (4)) for
both gα = 1 and gα = Rm, as well as models with dynamical
quenching (Eq. (11)). Both algebraically quenched models with
gα = Rm and those with dynamical α quenching exhibit a mono-
tonic decrease of the saturation magnetic energy with Rm.

In our models we see that the region of strong toroidal field,
Bφ, is different from that of the poloidal field produced by the α
effect as shown in Fig. 6. We verified that the same dependence
of the Bsat on Rm is reproduced in models where the two source
regions are further spatially separated by setting ra = 0.87 R�
instead of 0.77 R�.

The nature of the saturation curves of the magnetic energy
(Fig. 4) is strongly governed by the ratio of tα and Tcyl. For low

Rm, tα ≤ Tcyl, so that the time evolution of 〈B2〉/B2
eq is flat in

the saturation regime – similar to the algebraic quenching case

Fig. 7. Time-latitude plot of αM(0.72 R�, θ) for a) Rm = 20 and b)
Rm = 200.

(see Fig. 3). On the other hand, for Rm = 2 × 103, the decay
time tα 	 Tcyl and so the system is underdamped, i.e., there are
amplitude modulations of the magnetic energy before it settles
to a final saturation value (see dash-dotted line in Fig. 4). For
Rm = 2 × 105, the underdamped oscillation has a long period
(tα) so that the model has to be run for more than 500 tdiff before
the dynamo field starts becoming “strong” again. Because of the
long computational time involved in this exercise we have not
continued the calculation beyond 60 tdiff . Hence, the determina-
tion of saturation magnetic energy may be inaccurate.

A similar pattern is observed in the time-latitude plot of αM
as shown in Fig. 7. In this figure we note that for Rm = 20 (up-
per panel), αM shows strong oscillations (see the modulation in
the colour of the filled contours) since tα 
 Tcyl. For Rm = 200
(lower panel), tα ∼ Tcyl, so that the amplitude of the oscillation
is weak because the αM decays at the same rate at which it is
produced. From the same figure it may be concluded that the
small-scale current helicity, αM, is predominantly negative (pos-
itive) in the Northern (Southern) hemisphere. For high values
of Rm (�2000) the models start showing changes in parity for
t > 40tdiff . Nevertheless, the magnetic energy and the dynamo
period, Tcyl, remain fairly constant even while the system fluc-
tuates between symmetric and anti-symmetric parity at irregular
time intervals (see Fig. 8). This parity oscillation is absent in the
corresponding models with algebraic quenching.

3.2. Secondary dynamo waves with Fα = 0

An interesting result emerges when we increase the value of the
kinetic α effect (α0 = 4αc instead of 2αc as in Sect. 3.1) in
the interface dynamo model with dynamical α quenching and
Rm = 20. In this case we observe that in addition to the primary
dynamo wave travelling equatorward, a poleward-propagating
secondary dynamo wave appears in the butterfly diagram for Bφ
at r = 0.72 R� (see finger-like projections at high wave number
in Fig. 9a). A weak signature of this secondary wave can also be
seen in the butterfly diagram at 0.8 R� in Fig. 9b.
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Fig. 8. a) Evolution of parity (purely dipolar = −1 and purely quadrupo-
lar = +1) for an interface dynamo model with Rm = 2 × 103 and no
fluxes. b) A small part in the time-latitude diagram of Bφ indicated
by dotted lines in a) where the parity is changing from quadrupolar
to dipolar.

Fig. 9. Time-latitude plot of the toroidal field a) and c) and αM b) and
d) for interface dynamo models with α = 4αc and Rm = 20.

The existence of these secondary dynamo waves can be ex-
plained by studying the source term in Eq. (11), i.e., E · B =

αB
2 − ηt J · B. Because of a low value of Rm, the toroidal field

generated in the shear layer diffuses into the overshoot layer,
and by virtue of the term −ηt J · B, generates a region of αM
that is positive (negative) in the northern (southern) hemisphere.

Because αK → 0 for r ≤ 0.73 R�, the total α effect there has the
sign of αM. The new dynamo wave therefore travels poleward
according to the Parker-Yoshimura rule.

Vishniac & Cho (2001) also presented a case of an αΩ dy-
namo driven by a supercritical helicity flux. Their mechanism
requires a finite initial magnetic field unlike here, where the
initial field is ∼10−6Beq. The difference compared to the case
above is that the mean field dynamo is not driven by supercritical
Vishniac & Cho fluxes, but by a local generation of small-scale
magnetic helicity. Note that in this case the secondary dynamo
wave is energetically powered by the kinematic part of the heli-
cal convection. Blackman & Field (2004) also found a magnetic-
helicity driven dynamo (MHDD) in addition to a kinetic-helicity
driven dynamo (KHDD) by solving a coupled set of equations
for large-scale helicity and the mean small-scale helicity. They
highlight an important difference between KHDD and MHDD,
namely that in the former, the αK produces small-scale and large-
scale magnetic helicity of opposite signs, whereas in the latter
magnetic helicity has same sign in both scales. Our calculations
in this section agree with their observation in the sense that αM

has the same sign as J · B. Evidence for dominance of magnet-
ically generated α in stratified magnetorotational turbulence in
accretion discs has also been found by Gressel (2010).

We have not observed any evidence of chaotic behaviour in
the range of magnetic Reynolds number 20 ≤ Rm ≤ 2 × 105

for supercritical α ≤ 4αc in agreement with Covas et al. (1997).
However, if the α effect is highly supercritical, the dynamical
quenching formula for αM is insufficient for dynamo saturation,
and additional algebraic quenching terms are needed (Kleeorin
& Rogachevskii 1999). We continue the discussion of secondary
dynamo waves driven by diffusive magnetic helicity fluxes in the
next section.

3.3. Supercritical diffusive magnetic helicity fluxes

Recently, Brandenburg et al. (2009) showed that catastrophic
quenching in one-dimensional α2 dynamos can be alleviated by
introducing a Fickian diffusive flux in Eq. (11) given by

Fα = −κ∇αM. (13)

There was an attempt to calculate the diffusion coefficient from
direct numerical simulations and it was found that κ ∼ 0.3ηt for
Rm ∼ 20 (Mitra et al. 2010). In the context of of αΩ dynamos
GCB showed that even a very small diffusive flux for the mean
small-scale helicity alleviates catastrophic quenching for a scale
separation kf/k1 ∼ 10. Their Fig. 7 moreover shows that Bsat/Beq
levels off at high Rm for finite diffusive fluxes even though the
value of Bsat at which the curve levels off may vary with kf .

For κ = 0, the saturation curves in Fig. 4 show that the Bsat
either displays underdamped oscillations for Rm = 2 × 103 or
goes through very low values for Rm ∼ 2 × 105 and takes a long
time to relax to a steady amplitude. In this section we introduce a
diffusive flux with κ(r) = κ0η(r). Figure 10 shows the results for
models with two different values of Rm and κ. For Rm = 2 × 103

and κ0 = 10−5, the saturation energy is comparable to the cor-
responding case with κ = 0 (see dash-dotted line in Fig. 4).
But now grand minima-like episodes with respect to the primary
mode appear in the system, as may be seen in the oscillations in
the volume-averaged energy (represented by ∗’s in Fig. 10a) with
a period ∼5 times the period of the equatorward-propagating
mode long after saturation. Another interesting behaviour can
be discerned from the butterfly diagram of the toroidal field
(Fig. 10b, c). It appears that the dynamo here is governed by
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Fig. 10. a) Time evolution of the volume averaged magnetic energy in
the domain scaled with the equipartition energy for models with Rm =
2 × 103 and κ0 = 10−5 (∗) as well as with Rm = 2 × 105 and κ0 = 10−5

(solid line) for the interface dynamo model of Sect. 3.1 with dynamical
α quenching. The saturation curve for zero fluxes for the model with
Rm = 2 × 105 has been shown by the dashed line; b) and c) show time-
latitude diagrams for the toroidal field at the depths indicated for models
with Rm = 2 × 103 and κ0 = 10−5.

the competition between the equatorward-propagating primary
mode and the poleward-propagating secondary mode.

For Rm = 2 × 105 and κ = 0.01, we observe underdamped
oscillations with a final Bsat ∼ 0.1Beq. On studying the corre-
sponding butterfly diagrams (Fig. 11a–d) we find a poleward-
propagating mode caused by the radial diffusion of the αM into
the stable layers. This was not possible for the model with the
same Rm but κ = 0. Figures 11e, f show meridional snapshots of
sign(Bφ)(|Bφ|/Beq)1/2 and αM in order to get a clear idea of the
distribution of magnetic fields.

The poleward-propagating mode is now driven by supercriti-
cal diffusive helicity fluxes, as opposed to supercritical Vishniac
& Cho fluxes (see Brandenburg & Subramanian 2005, for ex-
amples of this behaviour). For the same model (Rm = 2 × 105)
there exists a critical κc ∼ 10−5 such that the secondary dynamo

Fig. 11. The time-latitude plot of toroidal field a) and c), and αM b) and
d) with α = 2αc for Rm = 2 × 105 and κ0 = 0.01. Meridional snapshots
of e) sign(Bφ)(|Bφ|/Beq)1/2 and f) αm × 103 for the same case.

wave does not appear if κ0 < κc. The volume-averaged mag-
netic energy in this case decays eventually. Note that this thresh-
old for κ is highly dependent on Rm. For instance a model with
Rm = 2× 103 and κ0 = 10−5 produces a dynamo with finite satu-
ration magnetic energy and dynamo wave propagation governed
by αM, whereas for κ0 = 10−4, the dynamo shows a runaway
growth.

Unlike in GCB, we used super-critical helicity fluxes in this
section. Note that the critical value, κc, is much lower than that
used in GCB where the maximum value of κ0 used is ∼10.
Interface dynamo models are a particular case of αΩ models
where a strong toroidal field is produced below the convection
zone. Even a low flux of αM into the stable layers can pro-
duce very large magnetic fields and power a secondary dynamo.
Direct numerical simulations of α2 dynamos have established
that a large-scale magnetic field is easily excited on the scale of
the system i.e., k−1

1 for a high kf/k1 ratio (Archontis et al. 2003).
However the length scale of the magnetic field in Figs.10b, c
and 11a, c, e is comparable to k−1

f , which suggests that the degree
of scale separation may have become insufficient to write the
electromotive force as a simple multiplication, as is done in the
expressionE = αB−ηt J . Then it may become necessary to write
the electromotive force as a convolution, which essentially cor-
responds to a low-pass filter (see, e.g., Brandenburg et al. 2008).
However, we have not pursued this aspect any further.
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Fig. 12. Time evolution of the volume averaged magnetic energy for the
flux transport dynamo model of Sect. 3.2 for Rm = 2×103 with κ0 = 0.3
(dashed); Rm = 2 × 105 with κ0 = 0.3 (solid); Rm = 2 × 103 with κ = 0
(dashed-dotted); Rm = 2 × 105 with κ0 = 0 (diamond+dashed).

3.4. Flux transport Babcock-Leighton dynamo

In this section we perform numerical experiments of the flux
transport dynamo model described in Sect. 2.2. As in Sect. 3.1,
we first find the critical αBL required to have a self-excited dy-
namo. In this case αc = 5.1 m s−1 for Rm = 2 × 103. We pursue
the rest of the calculations with αBL = 6.0 m s−1 and includ-
ing dynamical α quenching. This slightly supercritical choice
of αBL avoids the production of very large αM leading to sec-
ondary dynamos as discussed in Sect. 3.2. We should emphasize
that Eq. (9) represents a first order correction to α and should be
treated with caution while in supercritical regimes.

At first we do not consider any small-scale helicity fluxes in
the model, i.e., Fα = 0 in Eq. (11). The saturation curve for Rm =
2 × 103 in Fig. 12 is now under-damped, whereas the dynamo
fails to generate a finite Bsat for Rm = 2 × 105 even though it
initially has the same growth rate. On increasing αBL = 10 ms−1

from 6 ms−1 the saturation curve for Rm = 2 × 105 also displays
underdamped behaviour. This indicates that for αBL = 6 ms−1,
the total α in the domain was simply becoming sub-critical and
the dynamo was not able to sustain itself through the saturation
phase. In Fig. 13a, b, we show the meridional snapshots of the
magnetic fields and αM for a saturated state. In this figure, the
colour bars indicate that αM increases while Bφ decreases with
Rm for the same value of αBL.

Now we include an advective flux of αM caused by the
meridional circulation in Eq. (11). In order to keep the system
numerically stable, we also require a diffusive flux in Eq. (11).
It is clear from Fig. 12 that the underdamped behaviour in the
model without fluxes is suppressed due to a diffusive flux of αM.
The production of αM is now countered by a diffusive decay in
a time scale much shorter than that given by tα = Rm/ηtk2

f . The
same figure shows that the saturation value of the magnetic en-
ergy is now almost independent of Rm. With diffusive and ad-
vective fluxes owing to the meridional circulation in Eq. (11)
the small-scale helicity is distributed through out the convection
zone as shown in Fig. 14a, b. It is instructive to compare the
magnitudes of αM in Figs. 13 and 14.

The diffusive flux of small-scale helicity is therefore crucial
for the operation of a successful mean field αΩ dynamo. An in-
teresting observation is the distribution of αM in the concentrated
region at the lower part of the convection zone (see Fig. 13) in
contrast to Fig. 14. Even though αBL is a surface phenomena,
considerable magnetic helicity is generated in the entire convec-
tion zone when the meridional circulation sinks the poloidal field

Fig. 13. Meridional cross-sections showing the distribution of toroidal
field and αM for a Babcock-Leighton dynamo without MC and diffusive
helicity fluxes in Eq. (11) for a) Rm = 2 × 103 and b) Rm = 2 × 105.
The streamlines of the positive and negative poloidal field are shown
by solid and dashed lines respectively. Note that the magnetic field has
decayed to very small values for Rm = 2 × 105.

Fig. 14. Meridional cross-sections showing the distribution of toroidal
field and αM for a Babcock-Leighton dynamo with MC and diffusive
helicity fluxes for Rm = 2×103 at two different epochs. The streamlines
of the positive and negative poloidal field are shown by solid and dashed
lines respectively.

lines at high latitudes and brings them near the tachocline where
the toroidal fields are generated.

4. Conclusions

We have performed calculations for αΩ dynamos in a spheri-
cal shell for spatially segregated α and Ω source regions. The
two classes of models we studied resemble Parker’s interface dy-
namo and the flux transport dynamo with a Babcock-Leightonα.
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In agreement with earlier work (Chatterjee et al. 2010), we
found that it is not possible to escape the catastrophic α quench-
ing by merely separating the regions of shear and α-effect. The
saturation value of magnetic energy in the interface model de-
creases as ∼R−1

m for both dynamical quenching with gα = 0 and
the algebraic quenching with gα = Rm (Fig. 5). Nevertheless, we
found that a richer dynamical behaviour emerges for the cases
with dynamical α effect, in terms of parity fluctuations (Fig. 8)
and the appearance of “secondary” dynamos (Fig. 9), namely
dynamo waves governed by the magnetic α effect. We observe
this interesting behaviour in two different situations. Firstly, for
low Rm, the toroidal field is weakly confined below the overshoot
layer and therefore αM is generated there by the term −ηt J · B
in the expansion of the forcing term E · B in Eq. (11). Secondly,
for high Rm, the secondary dynamos are only observed if there is
a supercritical diffusive helicity flux where the αM diffuses into
the stable layers. However, because of the lack of scale separa-
tion between the mean field and the forcing scale of the helical
turbulence we refrain from interpreting this in terms of the pole-
ward migration seen in the Sun. We have to be cautious about
using the dynamical quenching equation for dynamo numbers
that are not very large compared to the critical dynamo number.
For highly supercritical αK, the behaviour of the system begins
to be governed by αM. According to our knowledge, there are no
direct numerical simulation of secondary dynamos or magnetic-
helicity driven dynamos applied to stellar magnetic fields. This
will be explored in a future paper.

We do not see any evidence for chaotic behaviour in the time
series of magnetic energy because the dynamo period and the
saturation energy remain fairly constant. This may not be the
case for diffusive helicity fluxes, which introduce further com-
plexity to the system. Yet the addition of a diffusive helicity flux
relaxes the catastrophic R−1

m dependence of the saturation mag-
netic energy (Figs. 10a, 12).

We would expect that the magnetic field affects all turbulent
coefficients including α and η. But for this analysis we did not
included an equation for the variation of ηt. This is justified for
the simple two layer model with a lower ηt in the region of the
production of strong toroidal fields and a higher ηt in the region
of weaker poloidal fields. Note also that by quenching the dif-
fusivity inversely with magnetic energy in a nonlinear dynamo
model, Tobias (1996) was able to produce a bonafide interface
model where the magnetic field was restricted to a thin layer at
an interface between a layer of shear and cyclonic turbulence.
None of the previous interface models have used the dynamical
quenching equation.

In the flux transport dynamo model, the magnetic energy
fails to reach significant saturation when both the meridional cir-
culation and the diffusive helicity fluxes are artificially turned off
in the helicity evolution equation. This is expected and is demon-
strated in Fig. 12. It is interesting that the Babcock-Leighton dy-
namos, where α is concentrated only in a narrow layer at the
surface, also produce considerable amount of magnetic helicity
inside the convection zone when dynamical quenching is em-
ployed (Figs. 13, 14).

It remains to explore the role of solar wind and coronal
mass ejections, which might help in disposing of small-scale
helicity from the Sun and thus alleviate catastrophic quench-
ing. An investigation of the effects of Vishniac & Cho fluxes
found them to be of secondary importance compared to diffusive

helicity fluxes for αΩmean field dynamos (Guerrero et al. 2010).
Unfortunately the direct numerical simulations have not yet
reached the modest Reynolds numbers used in this paper (∼104),
which are still much lower than the astrophysical dynamos. In
order to verify if the equation for dynamical quenching works
for the αΩ dynamos in the same way as it does in α2 dynamos,
we need to embark upon systematic comparisons between DNS
with shear and convection and mean field modelling.
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