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Magnetic helicity fluxes are investigated in a family of gauges in which the contribution from ideal
magnetohydrodynamics takes the form of a purely advective flux. Numerical simulations of
magnetohydrodynamic turbulence in this advective gauge family exhibit instabilities triggered by
the build-up of unphysical irrotational contributions to the magnetic vector potential. As a remedy,
the vector potential is evolved in a numerically well behaved gauge, from which the advective
vector potential is obtained by a gauge transformation. In the kinematic regime, the magnetic
helicity density evolves similarly to a passive scalar when resistivity is small and turbulent mixing
is mild, i.e., when the fluid Reynolds number is not too large. In the dynamical regime, resistive
contributions to the magnetic helicity flux in the advective gauge are found to be significant owing
to the development of small length scales in the irrotational part of the magnetic vector potential.
© 2011 American Institute of Physics. [doi:10.1063/1.3533656]

I. INTRODUCTION

Most astrophysical and laboratory plasmas are good con-
ductors. This, together with high-speed flows and large
length scales, nearly universal in the astrophysical context,
makes for large magnetic Reynolds numbers. In the limit of
infinitely large magnetic Reynolds number, and for domains
with closed boundaries, total magnetic helicity is a conserved
quantity. Here, an analogy can be drawn with mass conser-
vation in domains whose boundaries are closed to mass flux.
Furthermore, in open domains, the change in total mass is
governed by the mass flux across open surfaces. In ideal
magnetohydrodynamics (MHD), a similar property holds for
the total magnetic helicity. But unlike mass, magnetic helic-
ity depends on the choice of gauge. In the special case of the
advective gauge, the magnetic helicity flux is given by the
velocity times the magnetic helicity density,l making this
gauge particularly interesting for studying pointwise proper-
ties of magnetic helicity. This is an important goal of this
paper.

Magnetic helicity plays an important role in many fields
of plasma physics and astrophysics, and has applications
ranging from tokamaks and other plasma confinement ma-
chines, to dynamo action in the Sun and the galaxy. Our
physical understanding of the role of magnetic helicity in
MHD is greatly aided by concepts such as Taylor relaxation,”
selective decay,3 and the inverse cascade of magnetic
helicity.*

Furthermore, magnetic helicity is a crucial ingredient of
the turbulent dynamos which are believed to be the source of
the equipartition magnetic fields in astrophysical bodies such
as stars and g.'cllaxies.5 In all such cases the characteristic
length scales of the dynamo generated magnetic field exceed
those of the fluid’s energy carrying scale. In dynamo theory,
the formation of such a large-scale magnetic field is typically
possible through the « effect, which is nonzero for helical
turbulent flows. In periodic boxes with helical turbulence,
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the « effect becomes strongly quenched when the (appropri-
ately normalized) magnetic helicity in the small-scale field
(i.e., scales that are smaller than the energy-carrying scale of
turbulent fluid) is comparable to the helicity in the small-
scale velocity. Conservation of magnetic helicity implies that
the helicity in small- and large-scale fields will have compa-
rable magnitudes, so the quenching of the large-scale dy-
namo will occur for weak large-scale fields. This «
quenchingé’7 increases with scale separation and endures for
as long as magnetic helicity is nearly conserved, a resistive
time that scales with the magnetic Reynolds number
Rey, = UL/ 7. The quenching is called “catastrophic” because
for the Sun Re,, ~ 10° and the galaxy Re,,~ 10", and their
resistive timescales are problematically long. This rapid pre-
resistive saturation of the dynamo generated field poses clear
difficulties in applying theory to astronomical systems, but it
may be possible to alleviate the problem through magnetic
helicity fluxes.®’ It should also be pointed out that problems
with catastrophic quenching are often not clearly seen in
present-day simulations.'*"* While trend lines suggest that
catastrophic quenching will occur, simulations at currently
achievable, low to intermediate Re;, and scale separation
have shown significant large-scale fields.

There exists reasonable observational evidence is sup-
port of such fluxes of magnetic helicity. The Sun’s surface
magnetic field shows helical structures.'>'* Further, it was
shown'? that the S-shaped (helical) regions which are active
in the corona are precursors of coronal mass ejections
(CMEs) and later'® that those regions are more likely to
erupt. This suggests that the Sun sheds magnetic helicity via
CME:s. Since the Sun’s large-scale magnetic field is believed
to be generated by a helical dynamo”’18 this shedding of
magnetic helicity could play an important role in the 11 year
solar cycle. Physically, magnetic helicity fluxes out of the
domain can be mediated in many ways, such as the afore-
mentioned CMEs for the Sun'® or fountain flows in the case
of galaxies.]7 In direct simulations magnetic helicity fluxes
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are permitted by adjusting the boundary conditions, e.g., to
vertical field boundaries, but their actual presence can be
difficult to ascertain. Internal helicity fluxes have also been
found to alleviate « quenching18 in systems with internal
boundaries that separate zones of oppositely signed kinetic
and magnetic helicities.

A difficulty in addressing the generation and transport of
magnetic helicity is its gauge dependence. We denote the
magnetic vector potential as A such that B=V XA is the
magnetic field. Magnetic helicity H= [,A-BdV is indepen-
dent of the gauge for perfectly conducting boundaries, as
well as periodic boundaries so long as A is also required to
be periodic. However, if one wishes to study the transport of
magnetic helicity for physically motivated systems a nonvol-
ume integral formulation will be needed. Magnetic helicity
density, h=A-B, the quantity we will be working with,
clearly depends on the gauge choice for A. The gauge depen-
dence of fluxes of mean magnetic helicity contained in the
fluctuating fields was examined via direct numerical simula-
tions (DNS) for three different gauges,20 and it was found
that, averaged over time, they do not depend on the gauge
choice. This is a result of the fact that, for sufficient scale
separation, the magnetic helicity of the fluctuating field can
be expressed as the density of linkages, which in turn is
gauge-invariant.21 This result implies that the study of spe-
cific but useful gauge choices is a meaningful task.

In this work we examine the properties of magnetic he-
licity density in a particularly interesting gauge-family which
we call “advective” because in this gauge the effect of ve-
locity on the evolution equation of magnetic helicity takes
the form of a purely advective term. In previous work' this
gauge choice was shown to be crucial to understanding mag-
netic helicity fluxes in the presence of shear, including the
Vishniac—Cho flux.? Unfortunately, evolving A in this gauge
proves numerically unstable. This may be related to earlier
findings in smoothed particle MHD calculations.”** There,
the problem was identified as the result of an unconstrained
evolution of vector potential components, which were argued
to be connected with “poor accuracy with respect to
“reverse-advection”-type terms.”> Our present work clarifies
that this instability is related to the excessive build-up of
irrotational contributions to the magnetic vector potential.
These contributions have no physical meaning, but discreti-
zation errors at small length scales can spoil the solution
dramatically.

We shall therefore describe a novel method for obtaining
A in this gauge by evolving it first in a numerically robust
gauge and then applying a gauge transformation with a si-
multaneously evolved gauge potential. This will be referred
to as the A method throughout the text. Next, we show that
the magnetic helicity density in the advective gauge tends to
be small even pointwise, provided turbulent effects are still
weak, and discuss the analogy with passive scalar transport.
We conclude by pointing out that resistive terms break the
analogy with passive scalar advection through the emergence
of a turbulently diffusive magnetic helicity flux.
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Il. MAGNETIC EVOLUTION EQUATIONS
A. Weyl and advective gauges

In this work we remain within nonrelativistic MHD and
hence neglect the Faraday displacement current. So the cur-
rent density is given by J=V X B, where B is the magnetic
field and we use units where the vacuum permeability is
unity. At the core of MHD is the induction equation

B
E:VX(UXB—WJ), (1)

where U is the velocity and # is the molecular magnetic
diffusivity. Equation (1) can be uncurled to give an evolution
equation for the magnetic vector potential A, but only up to a
gauge choice. In the Weyl gauge, indicated by a superscript
W on the magnetic vector potential, we just have

dA"

but by adding the gradient of a scalar field, the vector poten-
tial can be obtained in any other gauge. Of particular interest
to this paper is the advective gauge

A =AY+ VAV, (3)

where A" is the gauge potential that transforms from A" to
A“ We demand that™

DA?
Dt

=_Uj,iA;‘l_ nJ;. 4)

Here, D/Dt=9/dt+U-V is the advective derivative. Conse-
quently one can show that A" obeys the evolution equation
(see Appendix A)

DAW:a
Dt

=—U-A". (5)

Thus, to obtain A%, one can either solve Eq. (4) directly or,
alternatively, solve Eq. (2) together with Eq. (5) and use Eq.
(3) to obtain A“. A possible initial condition for A":¢ would
be A"“=0, in which case A=A" initially. For numerical
reasons that will be discussed in more detail below, we shall
consider the indirect method of obtaining the magnetic
vector potential in the advective gauge, but starting from
more numerically stable gauge which will be discussed in
Sec. 11 B.

Variants on the advective gauge have seen significant
use, particularly in DNS with constant imposed shear. Al-
though the magnetic field in such simulations must obey
shearing-periodic boundary condition the vector potential
need not. In particular, the evolution Eq. (2) does not impose
shearing-periodicity on the vector potential, while Eq. (4)
does, enabling shearing-periodic numerical simulations®® in
terms of A.

For our purposes, the importance of Eq. (4) lies in the
form of the magnetic helicity density evolution equation. By
writing the induction equation in the form
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DB,
. =t UiBi= (V- U)B,~ (VX u]), (6)

computing D(A®-B)/Dt=A°-DB/Dt+B-DA%/Dt, and not-
ing that the A;U; ;B; terms from both equations cancel, we
find that
Dh*
Dt

=~h'V -U-V- (] XA -27]-B 7)

which shows that in ideal MHD (#%=0) under the assumption
of incompressibility (V-U=0) the magnetic helicity density
in the advective gauge, h“=A“-B is just advected with the
flow like a passive scalar, i.e.,

Dh*®
Dt

=0 (for =0 and V -U=0). (8)

In the general case with V-U # 0, the rate of change of the
local value of h“ is given by =V - (h*U), which is analogous
to the continuity equation for the fluid density. However, for
n# 0, there is also a source term

oh°
ot

=—29]-B-V - F°, )

as well as a resistive contribution to the magnetic helicity
flux

F=hU + nJ X A°. (10)

In this paper we address the question how the 7J XA“ con-
tribution scales in the limit »—0, i.e., for large values of
Re,,. It could either stay finite, just like the resistive energy
dissipation 77J2, which tends to a finite limit® as n—0, or it
could go to zero like the source term 7J B

B. Resistive and advecto-resistive gauges

There are two important issues to be noted about the
equations discussed above. First, for numerical reasons, Eq.
(2) is often replaced by

dA”

ot

=UX B+ VA, (11)
where A" is the magnetic vector potential in the resistive
gauge and we have assumed that m=const; otherwise there
would be an additional gradient term of the magnetic diffu-
sivity that results from”

-] +V(nV -A)=9V’A+(V-A)V 7. (12)

This “resistive” gauge introduces an explicit, numerically
stabilizing diffusion term for each component of A. Second,
and again for numerical reasons, Eq. (5) should be solved
with a small diffusion term proportional to V2AY¢. These
two issues are actually connected and can be resolved by

considering the gauge transformation
AT=A"+ VA" (13)

which allows us to obtain the magnetic vector potential A
in the advecto-resistive gauge obeying
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DA?I ar 2 qar
by solving Eq. (11) for A" together with
DAr::lr
=—U-A"+ gV?A™ 15
D 7 (15)

and finally using the gauge transformation Eq. (13). For a
full derivation of this equation we refer to Appendix B. Note
that the microscopic magnetic diffusivity automatically en-
ters the A”* equation as a diffusion term, which implies that
the A" equation is numerically well behaved.

The magnetic helicity density 4/*"=A-B in the advecto-
resistive gauge can be calculated from the magnetic helicity
in the resistive gauge through h*"=h"+VA"*-B, and it obeys

&hal‘
ot

=-29] B-V -F* (16)

with

F*=h"U - (V- A™B + 5] X A™. (17)

For comparison, the evolution equation of the magnetic he-
licity density in the resistive gauge is given by an equation
similar to Eq. (16), but with #* being replaced by 4" and F*
being replaced by

F'=hU-(U-A"+7V -A"B+n] XA" (18)

which contains a nonadvective velocity driven flux of the
form (U-A")B—even in the ideal case.

C. Numerical details

We perform simulations for isotropically forced, triply
periodic cubic domains with sides of length 277, as was done
in earlier work.” The 7/ B term in Eq. (9) implies (and past
simulations have shown) that such a system will experience a
slow, but steady production of magnetic helicity. This is the
price to pay for a system which is both helical, providing us
with a signal, and homogeneous, so avoiding extraneous
magnetic helicity fluxes. In addition to the uncurled induc-
tion Eq. (11) and the gauge transformation evolution Eq.
(15), we solve

DU

—=—ch1np+2J><B+Fvisc+f, (19)
Dt p

D In

——P__v.u, (20)
Dt

where ¢ (=const) is the isothermal sound speed, p is the den-
sity, Fye=p 'V -(2p¥S) is the viscous force, Sijzé(UiJ
+U j,,-)—%(S,»jV-U is the rate of strain tensor, v is the kine-
matic viscosity, f the forcing term, and c¢;=1 is a prefactor
that can be put to 0 to turn off the Lorentz force in kinematic
calculations. As in earlier work™ the forcing function con-
sists of plane polarized waves whose direction and phase
change randomly from one time step to the next. The modu-
lus of its wavevectors is taken from a band of wavenumbers
around a given average wavenumber k. The magnetic vector
potential is initialized with a weak nonhelical sine wave
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along one direction. In some cases we shall also consider
solutions to the passive scalar equation in the incompressible
case

— = «kV?C, 21
pr @1

where « is the passive scalar diffusivity. Following earlier
work,30 we impose a linear gradient in C, i.e., C=Gz+c, and
solve for the departure from this gradient G, i.e.,

D
Fj =«V’c-GU., (22)

where GU, acts essentially as a forcing term.

We use the PENCIL CODE (http://pencil-code.
googlecode.com)31 to solve the equations for A", U, A", p,
and in some cases also c¢. The calculations involving
A" have been carried out with the publicly available
revision 115211 (or similar) of the module special/
advective_gauge.f90.

The control parameters we use are the magnetic
Reynolds number Re,;, the magnetic Prandtl number Pr,,
and the Schmidt number

Mrms

ReM = N
nky

PI'M = 5 Sc= 5 (23)

I I
X I=

where i, is the root mean square velocity. We use k;=3k,
where k;, the box wavenumber, is unity. The numerical res-
olution is varied between 32 and 256° meshpoints for values
of Re and Rej, between 3 and 300. In one case we used
Re,,=~ 800, which was only possible because in that case we
used Pry,=10, so that most of the energy gets dissipated vis-
cously, leaving relatively little magnetic energy at high

3
wavenumbers.>

lll. IMPORTANCE OF MAGNETIC HELICITY DENSITY
A. Implications of Eq. (7) for dynamo theory

Magnetic helicity is not only of interest by being a con-
served quantity in ideal MHD, but also by being the basis of
a methodology to treat nonlinear helical MHD dynamos,
namely, dynamical « quenching.33 This methodology relates
the current helicity in small scale fields with the magnetic
helicity in small-scale fields, j 'bZk]%wb, and invokes the
magnetic « effect.* The evolution equation of the magnetic
helicity density then becomes the evolution equation of the
magnetic part of the « effect and the nonlinear evolution of
the dynamo can be modeled. This methodology has been
used successfully in systems where no net helicity flux is
possible, and initial work invoking the methodology has cap-
tured the behavior of at least one system with finite helicity
fluxes.”* A major prediction of the theory is that in the ab-
sence of preferential helicity fluxes of small-scale fields, dy-
namo action is quenched to subequipartition mean field
strengths. This phenomenon is sometimes referred to as
“catastrophic quenching.”
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B. Magnetic helicity as passive scalar

In the advective and advecto-resistive gauges, the veloc-
ity appears in the evolution equations of the magnetic helic-
ity density, Egs. (7) and (16), only as advection terms in the
fluxes, Egs. (10) and (17). In the limit of ideal, incompress-
ible, kinematic MHD, Eq. (7) is the evolution equation for a
passive scalar. Even in nonideal MHD, if the fluctuations
of h* due to the velocity field U were purely advective
in nature (i.e., passive), magnetic helicity transport would
only be resistive, large-scale advective, and/or turbulently
diffusive. This would forbid the preferential export of
small-scale magnetic helicity and might call for alternate so-
lutions to the catastrophic quenching problem than helicity
fluxes.'®

While in ideal MHD (#%=0) the resistive terms in Eq. (7)
vanish, resistive terms need not vanish in the limit of 7—0
(high Re,,). For example, in a turbulent flow, Ohmic dissi-
pation 7J? tends to a finite value as 7 decreases. The need
for nonresistive solutions to the build-up of magnetic helicity
is therefore not a given. We will examine this by performing
kinematic simulations where the Lorentz force is turned off,
ie., ¢,=0.

If the Lorentz force is significant, the fluctuations of A%
and U might be correlated beyond simple turbulent diffusion
concerns (i.e., the fluctuations of #* could drive flow pat-
terns). In the limit of incompressible flows, if the helicity is
uniform, then the only source terms for helicity patterns of
finite k are the resistive terms. The terms are small compared
to dimensional estimates for the velocity terms when
Rey>1. We will look for signals of magnetic helicity
transport by examining spectra of A" and h*" as (pseudo)
scalars, together with spectra of a true passive scalar. As
we will show, the advecto-resistive gauge is adequately
efficient at turbulently diffusing magnetic helicity that no
inertial range for the magnetic helicity density can be
identified. However, the spectra of 4" help elucidate previous
results®® which found diffusive fluxes, but at values well
below turbulent diffusivities. Instead, our spectra show
clear diffusive behavior in the inertial range, but the
mere existence of the inertial range implies nondiffusive be-
havior.

We emphasize that our spectra of 4" and h*" have nothing
to do with the usual magnetic helicity spectrum that obeys a
realizability condition and whose integral gives the volume-
averaged magnetic helicity. Here we are looking instead at
the power of the magnetic helicity density as a (pseudo) sca-
lar field. Our h;, measures the spatial variation of 4. In order
to avoid confusion, we shall refer to these spectra as scalar
spectra.

IV. RESULTS

The results reported below for the magnetic helicity den-
sity h refer to the advecto-resistive gauge and have been
obtained by the A method, unless indicated otherwise. The
results from the direct method agree (Sec. IV A), but this
method develops an instability when nonlinear effects be-
come important (Sec. IV B).
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FIG. 1. (Color online) Time dependence of the normalized helicity for the
advecto-resistive gauge with the direct method and the A method. Both
curves agree perfectly just until the moment when the code develops an
instability in the direct calculation. Time is normalized in terms of the mag-
netic diffusion time. The fit is an exponential relaxation to a constant value
proportional to 1—exp(-27k%Ar), where At=t—ty is the time after the
small-scale magnetic field has saturated (Ref. 28) and k,,=1.4k, has been
chosen for a good fit.

A. Agreement between A and direct methods

To test the agreement between the A method and directly
solving the induction equation in the advecto-resistive gauge,
we plot the normalized rms magnetic helicity A, . with re-
spect to time (Fig. 1). Note that the nondimensional ratio
kh™ /B has a well-defined plateau during the kinematic
stage. Below we shall study the average value of this plateau
as a function of magnetic Reynolds and Prandtl numbers. At
the end of the kinematic phase, there is a slow saturation
phase on a resistive time scale during which the large-scale
field of the dynamo develops.28 The results of the two calcu-
lations agree just until the moment when the direct calcula-
tion develops a numerical instability, whose nature will be
discussed in more detail below. The perfect agreement until
this moment can be taken as confirmation that the A method

works and is correctly implemented in the code.

B. Nature of the instability

In Fig. 2 we show time series for a range of modest
values of Re,, and two resolutions, 32° and 64°. Reducing
the magnetic Reynolds number may stabilize the system
somewhat, but changing the resolution has no clear effect. In
Fig. 3 we present data from equivalent runs that solve either
Eq. (14) or alternatively Egs. (11) and (15). We can see that
the solutions match up until time 1=220/ck;, where the run
that solves Eq. (14) becomes unstable.

The key point is that when we evolve Egs. (11) and (15),
A never enters the equations for physical quantities. How-
ever, when we evolve Eq. (14), the magnetic field includes a
term V X (VA), which, when computed numerically, is not
zero. The first panel in Fig. 3 shows the power spectra of the
vector potential. Comparing the advecto-resistive gauge
(dashed/red) with resistive gauge (dotted/blue) we see that
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FIG. 2. (Color online) Evolution of B,/ B, for small values of Re,, be-
tween 4.3 (top) and 2.1 (bottom), using 323 (solid lines) and 64> (dashed, red
lines). In each case, time on the abscissa is normalized by the growth rate \,
whose value is given in each panel in units of the inverse turnover time,
7! =utymsky. The ends of each line mark the point when the solution became
unstable.

A*=A"+VA has significantly more power at high k than A".
Numerics cannot adequately handle the requirement that
V X VA=0 at high k in the direct method, introducing errors
in B, as can be seen in the second panel. This fictitious
increase in magnetic power at high k (and the attendant in-
crease in current) result in a fictitious high k increase in the
velocity field (third panel) that produces the numerical insta-
bility. The results of Fig. 2 suggest that the power of A
(remembering that J includes that the third derivative of A)
drops slowly enough at high &k that numerical stability can
only be achieved by enforcing an adequate resistivity 7 to
damp A for only modest wavenumbers. Indeed, any gauge
with large power in A for high k is expected to be numeri-
cally unstable, and the method sketched in Appendix A
orAppendix B may be used to make the connection between
analytical results in such a numerically unstable gauge and
numerical results produced in a stable gauge.

C. Evolution of rms helicity density

In Fig. 4 we present a time series of the normalized rms
magnetic helicity density in the kinematic regime (Lorentz
force turned off, i.e., ¢, =0). In both the advecto-resistive and
resistive gauges, there is an initial adjustment of the nondi-
mensional ratio kyh,,s/ BrzmS to a certain value, followed by a
plateau. In the kinematic regime the magnetic helicity
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FIG. 3. (Color online) Power spectra of A, B, and U for two runs that are
identical except that the first run solves for A directly while the second
solves for A” and A. In the top panel we plot the spectrum of A obtained
either via A=A"+VA (dashed) or directly, A% (solid/red), and compare
with A” (thick gray/yellow), showing that the vector potential in the advecto-
resistive gauge has much more power at high k. The inset shows the time
evolution of the normalized h,,, shortly before the time of the numerical
instability. The dash-dotted line indicates the time for which the power
spectra is taken. In the second panel we present magnetic energy spectra
obtained in the direct gauge (solid/red), with the A method (dashed/black) as
well as kA* (dotted/blue), showing that there is significant power in the
irrotational part of A. We see that in the direct calculation of A* the numer-
ics are unable to adequately handle the high wavenumber power of A™ with
consequences for the velocity seen in the last panel (solid/red line). The
spectra of B and U agree for resistive and advecto-resistive gauges (thick
gray/yellow line underneath the dashed black line) because the evaluation of
the curl of a gradient has been avoided (last two panels). The three spectra
are all taken for r=210/ck;.

density is passive and the advection term in the advecto-
resistive gauge merely serves to turbulently diffuse any local
concentrations of h*. Therefore there cannot be any sponta-
neous growth of h*, except for effects from the resistive
terms in the early adjustment phase. Turbulent diffusion it-
self, on the other hand, cannot generate variance of 4™

In Figs. 5 and 6 we plot the height of the rms-magnetic
helicity density plateau as a function of Re,, for several val-
ues of the magnetic Prandtl number and constant forcing
amplitude. The differences between the evolution equations
for 4" and h™ are contained entirely in the flux terms so the
volume integral of % is the same in the two gauges. Any
difference between the rms values of /4 therefore is due to
spatial fluctuations generated by the flux terms.

We fit the data points in Fig. 5 with functions of the form
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FIG. 4. (Color online) Time dependence of the rms values for the helicity in
the advecto-resistive (solid/red) and resistive (dashed/blue) gauges with the
Lorentz force switched off, i.e., ¢;=0 in both cases.

har
L— = cRe;f(1 + bRek). (24)

rms

The fit results for the parameters are presented in Table I. Of
interest is ¢, which increases with Pry, and scales approxi-
mately with Pr,lv/,z. A more general, although less accurate fit
is given by

kb Re,,/Pri?3\?
2?—-z3Reﬁ[l+<—4%aiL (25)
see Fig. 7.

It is clear that high wavenumber fluid eddies (which are
damped for small Re, i.e., large Pr,,, contribute significantly
to Al for Rey, > 100, while from Fig. 6 we see that they do

That these eddies could contribute in

not contribute to Ay,
the advecto-resistive gauge is to be expected as the advective

10 T T
e o« Pry=1.0
[ ] PI'MZS.O
+ + Pry=10.0
ol ,
mé 10
A
3
= g
58
Q!-‘
~ 10"} 1
.. )
-
2 ; ;
10
10° 10' 10° 10°

Rey;

FIG. 5. (Color online) Re,, dependence of k k¥, /B2 for the kinematic
phase. Values are averages over times where they reach a stationary state.

The curves represent fits according to Eq. (24).
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FIG. 6. (Color online) Re,, dependence of kA, /B>, for the kinematic

phase. Values are averages over times where they reach a stationary state.
A —1/4 power law can be seen.

nature of that gauge implies the existence of an efficient
turbulent cascade; the fact that they do contribute there and
that the 7J X A* and 7(V-A*)B terms remain important im-
plies that resistive terms both become important at small
length scales and have nondissipative effects. This is ex-
plained by the fact that A*" develops a strong high-k tail; see
also Fig. 3. This is confirmed in Fig. 8, which shows that the
resistive magnetic helicity fluxes in the advecto-resistive
gauge are proportional to Re,,. In this gauge the rms resistive
helicity fluxes are therefore independent of the actual value
of the resistivity, staying finite even in the high Re,, limit.
This is quite different from the resistive magnetic helicity
fluxes in the resistive gauge, and the global magnetic helicity
dissipation (which is gauge-independent): both terms are
only proportional to Re}é2 and, after multiplying with 7 these
terms tend to zero for Rey,— .

D. Comparison with passive scalar

In Fig. 9 we present scalar spectra of the magnetic he-
licity density for both the resistive and advecto-resistive
gauges and for the passive scalar concentration c, in the ki-
nematic (arbitrary units) and saturated regimes. The passive
scalar spectrum shows a peak at the forcing scale, ky/k;=3,
followed by an approximate k>3 subrange and an exponen-
tial diffusive subrange. As long as the magnetic energy den-
sity is still small compared with the kinetic energy density,
the field exhibits exponential growth and a Kazantsev k*?
energy spectrum, which is well seen in simulations even at
magnetic Prandtl numbers of unity both with and without

TABLE I. Fit parameters for Eq. (24) and Fig. 5.

Pry, a b c Line type
1 0.7 3x1073 1.2 Solid/blue
5 0.9 4x10™ 2.0 Dashed/green
10 1.0 5%1073 35 Dotted/red
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FIG. 7. (Color online) Dependence of k™ /B2, scaled by Prj’ on

Re,,/Pr}? for the kinematic phase and Pry=1 (filled circles), 5 (open
circles), and 10 (plus signs). The solid line represents the fit of Eq. (25).

kinetic helicity in the velocity field.”> This ¥2 spectrum is
also reflected in the scalar spectrum of 4*. The scalar spec-
trum of A" is somewhat steeper and closer to k2, indicating
that 4" is dominated by white noise in space at large scales.

The saturated regime exhibits some interesting proper-
ties. The pronounced peak of the power of the passive scalar
at the driving scale is easily understood as being due to the
source of c. However, the magnetic helicity density in the
resistive gauge shows a significant peak there as well, while
it does not in the advecto-resistive gauge. This implies that
the velocity term in Eq. (18) generates significant spatial
variations in the magnetic helicity density—even in the ab-
sence of external modulations. As in dynamical a quenching,
h influences the « effect, this suggests a way to quantify the
appropriateness of different gauge choices: systems where
spatial and temporal fluctuations in « can be adequately con-
strained would allow one to determine whether spatial fluc-
tuations in A, as seen in Fig. 9, are fictitious as suggested by
the advecto-resistive gauge or not.

1.00 : ' ]
- I I JXA* /ReyB* 1
i 1 t f ]
0.10F E
0.01 .
10 100

Rey

FIG. 8. (Color online) Re,, scaling of the rms value of J X A, normalized by
ReMBfmS, for the advecto-resistive and resistive gauges. The solid line rep-
resents constant scaling, i.e., 7J X A* =~ const, while the dashed line repre-
sents inverse square root scaling, i.e., nJ XA*OCRe,_M”z, for three runs with
Pry=1 in the saturated regime. The dotted/blue line shows that 7J%, prop-
erly normalized, is approximately constant.
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FIG. 9. (Color online) Power spectra of 4", h*, and the passive scalar ¢, both
in the kinematic regime (top) and the nonlinear saturated regime (bottom)
for Re=80 with Pry,=Sc=1. In the kinematic regime, the dash-dotted lines
have slopes +2 for A", +3/2 for h*, —3/2 for ¢ (top), and —5/3 for ¢ in the
saturated regime.

The spectra of A" in the saturated regime do not present
a clear inertial range, so we cannot draw strong conclusions
as to possible nondiffusive turbulent fluxes. However, 4" fol-
lows the same cascade as the passive scalar. Previous studies
in that gauge1 found that magnetic helicity fluxes were best
treated as diffusive, although the fits were imperfect. The
diffusive nature is clearly seen in the spectrum while the
imperfections of the diffusive fit can be seen in the genera-
tion of a peak at the driving scale. This evidence in support
of diffusive magnetic helicity fluxes gives us the confidence
to predict at what Re,, diffusive magnetic helicity fluxes will
play a dominant role in dynamo saturation, i.e., when the
diffusive fluxes have a greater effect on magnetic helicity
evolution than the resistive terms. This will be done in Sec.
V where we reanalyze simulation data from earlier work.**

V. REVISITING EARLIER WORK

Earlier work”>* on magnetic helicity fluxes in inhomo-

geneous open systems confirmed that the magnetic helicity
density of the small-scale field is gauge-invariant —even if
that of the large-scale field is not. The divergence of the
mean magnetic helicity flux of the small-scale field is then
also gauge-invariant, but its value is small compared with
resistive magnetic helicity dissipation. We return to this work
to estimate at what Re,, diffusive magnetic helicity fluxes
will begin to play a dominant role in dynamo saturation.
We emphasize that we are now discussing helicity prop-
erties of what we call the small-scale field. Such a field is

Phys. Plasmas 18, 012903 (2011)
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FIG. 10. (Color online) Scaling of &-B, j-b, and V-Ff vs Re,, for the data
of an earlier simulation (Ref. 34) of helically driven turbulence embedded in
a poorly conducting nonhelically driven turbulent halo. The symbols show
actual data obtained from simulations, the dashed lines are the extrapolation
to high Rey,.

defined by introducing an averaged magnetic field, B, indi-
cated by an overbar. Following earlier work®™* we restrict
ourselves here to planar (or horizontal) averaging. The small-

scale field is then given by b=B-B, and the mean magnetic
and current helicity densities of the fluctuating fields are then
Efzﬁ andj-_b, respectively, where VXa=b and j=V X b.
Turbulent diffusion and the « effect imply helicity transfer
between scales®®?’ through the mean electromotive force of

the fluctuating field, &=u X b, so that the evolution equation
for i_zf takes the form

Il o — _
3f=—2§~8—2m-b—V-Fﬂ (26)

Here, both ﬁf and V-F  are a gauge-dependent, but if there is
a steady state, and if Ef is constant, then ﬁf_zf/ dt=0, and since
both &-B andj~_b are gauge-invariant, V-F '+ must also be
gauge-invariant. Numerical values for &-B, j~_b, and V-F '
were given carlier’® for a particular simulation of a slab of
helically driven turbulence embedded in a poorly conducting
nonhelically driven turbulent halo. In Fig. 10 we show the

scaling of all three terms versus Re,,. Note that -&-B  is
balanced mainly by j-b. However, if the current trend, j-b

~Re;; and V-F fNRez_wl/ % were to continue, one might ex-
pect a cross-over at Rey, ~3 X 10, If so, the scaling of &-B

is expected to become shallower, following that of V.F e
Given that the largest Re;, accessible today is of order 10°,
we may conclude that an alleviation of quenching through
diffusive magnetic helicity fluxes will not be prominent in
simulations for the near future. Nevertheless, astrophysical
systems such as the Sun are orders of magnitude beyond the
estimated critical point of Rey, ~ 3 X 10*; and we expect their
dynamo dynamics to behave accordingly.
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VI. CONCLUSIONS

In view of the fact that the time averaged magnetic he-
licity of the fluctuating fields is gauge-invariant in systems
with sufficient scale separation, the gauge-freedom can be
exploited to gain insights using gauges that are particularly
revealing. Here we have examined an interesting gauge: the
advecto-resistive gauge. As the advecto-resistive gauge is in-
herently numerically unstable, we had to implement a possi-
bly universal technique to run numerical simulations in such
unstable gauges by running in a stable gauge while also solv-
ing a further equation for the gauge transformation.

The advecto-resistive gauge has allowed us to examine
both the consequences of finite resistivity for magnetic he-
licity density as well as the possibilities of turbulent trans-
port. The magnetic helicity flux, and in particular the contri-
bution from #nJXA* (properly normalized) reaches a
constant value as 7— 0. This behavior is similar to the be-
havior of energy dissipation in turbulence, known as the law
of finite energy dissipation.38 This is interesting as the source
term for the volume integrated magnetic helicity H does in
fact tend to zero as 7 does. In this sense, the high Re,,
behavior of magnetic helicity is richer than previously antici-
pated. Indeed, the generation of spatial magnetic helicity
fluctuations ex nihilo in nonadvecto-resistive gauges is inter-
esting, with potentially testable implications. We expect that
the magnetic helicity fluxes resulting from terms of the form
nJ X A* can be modeled as turbulent Fickian diffusion-type
fluxes down the gradient of mean magnetic helicity. How-
ever, it is clear that fluxes from turbulent diffusion provide
only a poor escape from catastrophic a quenching, partly
because they cannot distinguish between large- and small-
scale fields. Furthermore, in simulations with such turbulent
diffusion fluxes, their contribution is still much smaller than
the local resistive magnetic helicity dissipation.zo’34 How-
ever, the latter decreases faster (~Re;41) with magnetic Rey-
nolds number than the former (~Re]w”2), So one may esti-
mate that only for magnetic Reynolds numbers of around 10*
one has a chance to see the effects of turbulent diffusion. If
true, however, such fluxes would definitely be important for
the magnetic Reynolds numbers relevant to stars and
galaxies—even though such values cannot be reached with
present day computer power.

ACKNOWLEDGMENTS

National Supercomputer Centre in Linkoping and the
Center for Parallel Computers at the Royal Institute of Tech-
nology in Sweden. This work was supported in part by the
Swedish Research Council (Grant No. 621-2007-4064), and
the European Research Council under the AstroDyn Re-
search Project 227952.

APPENDIX A: DERIVATION OF EQ. (5)

We begin by expressing U X B in terms of A

Phys. Plasmas 18, 012903 (2011)

i
The last term can be subsumed into an advective derivative
term for A. Using furthermore UA;;=(UA)),,-U;A;, we
can write Eq. (2) as

DAY
Tzl =-U; A} +(U-AY) ;- nJ;. (A2)
We now insert Eq. (3) for AW=49-VA", so
DAY DAY
i A 1 W:a w
Dt - Dt __U/,iA;+Uj,iA,j +(UA ),i_ 77.]1
(A3)
and note that
DAY DA W
- T = - i( + Uj,l'A,j. . (A4)
The last term cancels and we are left with
DA? . W:a W
Dt +Uj,iAj+77‘Ii:Vi +UA N (AS)

so we recover the evolution equation for the advective gauge
provided Eq. (5) is obeyed.

APPENDIX B: DERIVATION OF EQ. (15)

We present here the derivation of the transformation
from the resistive gauge to the advecto-resistive gauge, pro-
ceeding analogously to the derivation presented in Appendix
A. However, instead of Eq. (A2) we now have

r

Ai r r r
Y UjAL+(U-A") + nV2A].

(B1)

Inserting Eq. (13) for A"=A* -V A" we obtain an Equation
similar to Eq. (A3)

DA" DA
Dt Dt
_ ar riar r 2 par 2 A riar
=- UJ’IA; + Uj’iA’jd + (UA ),i+ 7]V Ai - 7]V A,i
(B2)
which leads to
DA?I . 5 ar
72‘ + UJ~J~A;i - pV°A?
=V[.( i +U-A - VZAr:ar) B3
Dt 7 (B3)

so we recover the evolution equation for the advecto-
resistive gauge provided Eq. (15) is obeyed.
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