
PHYSICAL REVIEW E 84, 016406 (2011)

Decay of helical and nonhelical magnetic knots
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We present calculations of the relaxation of magnetic field structures that have the shape of particular knots
and links. A set of helical magnetic flux configurations is considered, which we call n-foil knots of which
the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean
rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for
Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated
and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier
nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring.
For the n-foil knots the decay is described by power laws that range form t−2/3 to t−1/3, which can be as
slow as the t−1/3 behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical
configurations decay like t−1, which is somewhat slower than the previously obtained t−3/2 behavior in the decay
of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures
that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by
the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight
imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher
order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the
two more complicated nonhelical structures mentioned above.
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I. INTRODUCTION

Magnetic helicity is an important quantity in dynamo
theory [1,2], astrophysics [3,4] and plasma physics [5–8].
In the limit of high magnetic Reynolds numbers it is a
conserved quantity [9]. This conservation is responsible for
an inverse cascade which can be the cause for large-scale
magnetic fields as we observe them in astrophysical objects.
The small-scale component of magnetic helicity is responsible
for the quenching of dynamo action [10] and has to be shed
in order to obtain magnetic fields of equipartition strength and
sizes larger then the underlying turbulent eddies [11].

Helical magnetic fields are observed on the Sun’s surface
[12,13]. Such fields are also produced in tokamak experiments
for nuclear fusion to contain the plasma [14]. It could be
shown that the helical structures on the Sun’s surface are more
likely to erupt in coronal mass ejections [15], which could
imply that the Sun sheds magnetic helicity [16]. In [17] it was
shown that, for a force-free magnetic field configuration, there
exists an upper limit of the magnetic helicity below which the
system is in equilibrium. Exceeding this limit leads to coronal
mass ejections which drag magnetic helicity from the Sun.

Magnetic helicity is connected with the linking of magnetic
field lines. For two separate magnetic flux rings with magnetic
flux φ1 and φ2 it can be shown that magnetic helicity is equal
to twice the number of mutual linking n times the product of
the two fluxes [18]:

HM =
∫

V

A · BdV = 2nφ1φ2, (1)

where B is the magnetic flux density, expressed in terms of the
magnetic vector potential A via B = ∇ × A and the integral is
taken over the whole volume. As we emphasize in this paper,
however, that this formula does not apply to the case of a single
interlocked flux tube.

The presence of magnetic helicity constrains the decay of
magnetic energy [5,9] due to the the realizability condition [19]
which imposes a lower bound on the spectral magnetic energy
if magnetic helicity is finite; that is,

M(k) � k|H (k)|/(2μ0), (2)

where M(k) and H (k) are magnetic energy and helicity at
wave number k and μ0 is the vacuum permeability. These
spectra are normalized such that

∫
M(k)dk = 〈B2〉/(2μ0) and∫

H (k)dk = 〈A · B〉, where angular brackets denote volume
averages. Note that the energy at each scale is bound separately,
which constrains conversions from large to small scales and
vice versa. For most of our calculations we assume a periodic
domain with zero net flux. Otherwise, in the presence of a net
flux, magnetic helicity would not be conserved [20,21], but it
would be produced at a constant rate by the α effect [22].

The connection with the topology of the magnetic field
makes the magnetic helicity a particularly interesting quantity
for studying relaxation processes. One could imagine that
the topological structure imposes limits on how magnetic
field lines can evolve during magnetic relaxation. To test
this it has been studied whether the field topology alone can
have an effect on the decay process or if the presence of
magnetic helicity is needed [23]. The outcome was that, even
for topologically nontrivial configurations, the decay is only
effected by the magnetic helicity content. This was, however,
questioned [24] and a topological invariant was introduced
via field line mapping which adds another constraint even in
absence of magnetic helicity. Further evidence for the impor-
tance of extra constraints came from numerical simulations
of braided magnetic field with zero magnetic helicity [25]
where, at the end of a complex cascade-like process, the system
relaxed into an approximately force-free field state consisting
of two flux tubes of oppositely signed twist. Since the net
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FIG. 1. (Color online) Braid representation of the 4-foil knot.
The letters denote the starting position and the numbers denote the
crossings.

magnetic helicity is zero, the evolution of the field would not
be governed by Taylor relaxation [5] but by extra constraints.

A serious shortcoming of some of the earlier work is that
the nonhelical field configurations considered so far were still
too simple. For example, in the triple ring of [23] it would have
been possible to rearrange freely one of the outer rings on top of
the other one without crossing any other field lines. The mag-
netic flux of these rings would annihilate to zero, making this
configuration trivially nonhelical. Therefore, we construct in
the present paper more complex nonhelical magnetic field con-
figurations and study the decay of the magnetic field in a similar
fashion as in our earlier work. Candidates for suitable field
configurations are the IUCAA logo1 (which is a single nonheli-
cally interlocked flux rope that will be referred to below as the
IUCAA knot) and the Borromean rings for which HM = 0. The
IUCAA knot is commonly named 818 in knot theory. Further-
more, we test if Eq. (1) is applicable for configurations where
there are no separated flux tubes while magnetic helicity is
finite. Therefore we investigate setups where the magnetic field
has the shape of a particular knot which we call n-foil knot.

II. MODEL

A. Representation of n-foil knots

In topology a knot or link can be described via the braid
notation [26], where the crossings are plotted sequentially,
which results in a diagram that resembles a braid. Some
convenient starting points have to be chosen from where the
lines are drawn in the direction according to the sense of the
knot (Figs. 1 and 2).

For each crossing either a capital or small letter is assigned
depending on whether it is a positive or negative crossing.

For the trefoil knot the braid representation is simply AAA.
For each new foil a new starting point is needed; at the same
time the number of crossings for each line increases by one.
This means that, for the 4-foil knot, the braid representation is
ABABABAB, for the 5-foil ABCABCABCABCABC, etc.

We construct an initial magnetic field configuration in the
form of an n-foil knot with nf foils or leaves. First, we
construct its spine or backbone as a parametrized curve in
three-dimensional space. In analogy to [27] we apply the
convenient parametrization

x(s) =

⎛
⎜⎝

(C + sin snf) sin[s(nf − 1)]

(C + sin snf) cos[s(nf − 1)]

D cos snf

⎞
⎟⎠ , (3)

1The Inter-University Centre for Astronomy and Astrophysics in
Pune, India.

FIG. 2. (Color online) xy projection of the 4-foil knot. The
numbers denote the crossings while the colors (line styles) separate
different parts of the curve. The letters denote the different starting
positions for the braid representation in Fig. 1. The arrow shows the
sense of the knot.

where (C − 1) is some minimum distance from the origin, D

is a stretch factor in the z direction and s is the curve parameter
(see Fig. 3).

The strength of the magnetic field across the tube’s cross
section is constant and equal to B0. In the following we shall
use B0 as the unit of the magnetic field. Since we do not
want the knot to touch itself we set C = 1.6 and D = 2. The
full three-dimensional magnetic field is constructed radially
around this curve (Fig. 4), where the thickness of the cross
section is set to 0.48.

B. The IUCAA knot

A prominent example of a single nonhelically interlocked
flux rope is the IUCAA knot. For the IUCAA knot we apply

FIG. 3. (Color online) Projection of the 5-foil on the xy plane.
The lines show the meaning of the distance C, which has to be larger
than 1 to make sense.
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FIG. 4. (Color online) Isosurface of the initial magnetic field
energy for the 4-foil configuration.

a very similar parametrization as for the n-foil knots. We have
to consider the faster variation in z direction, which yields

x(s) =

⎛
⎜⎝

(C + sin 4s) sin 3s

(C + sin 4s) cos 3s

D cos (8s − ϕ)

⎞
⎟⎠ , (4)

where C and D have the same meaning as for the n-foil
knots and ϕ is a phase shift of the z variation. The full three-
dimensional magnetic field is constructed radially around this
curve (Fig. 5), where the thickness of the cross section is set
to 0.48.

C. Borromean rings

The Borromean rings are constructed with three ellipses
whose surface normals point in the direction of the unit vectors
(Fig. 6).

The major and minor axes are set to 2.5 and 1, respectively,
and the thickness of the cross section is set to 0.6. If any
one of the three rings were removed, the remaining 2 rings
would no longer be interlocked. This means that there is no
mutual linking and hence no magnetic helicity. One should,
however, not consider this configuration as topologically
trivial, since the rings cannot be separated, which is reflected
in a nonvanishing third-order topological invariant [28].

D. Numerical setup

We solve the resistive magnetohydrodynamical (MHD)
equations for an isothermal compressible gas, where the gas
pressure is given by p = ρc2

S , with the density ρ and isothermal

FIG. 5. (Color online) Isosurface of the initial magnetic field
energy for the IUCAA knot seen from the top (left panel) and slightly
from the side (right panel).

FIG. 6. (Color online) Isosurface of the initial magnetic field
energy for the Borromean rings configuration.

sound speed cS . Instead of solving for the magnetic field B
we solve for its vector potential A and choose the resistive
gauge, since it is numerically well behaved [29]. The equations
we solve are

∂ A
∂t

= U × B + η∇2 A, (5)

DU
Dt

= −c2
S∇ ln ρ + J × B/ρ + Fvisc, (6)

D ln ρ

Dt
= −∇ · U, (7)

where U is the velocity field, η is the magnetic diffusivity,
J = ∇ × B/μ0 is the current density, Fvisc = ρ−1∇ · 2νρS is
the viscous force with the traceless rate of strain tensor S with
components Sij = 1

2 (ui,j + uj,i) − 1
3δij∇ · U , ν is the kine-

matic viscosity, and D/Dt = ∂/∂t + U · ∇ is the advective
time derivative. We perform simulations in a box of size (2π )3

with fully periodic boundary conditions for all quantities.
To test how boundary effects play a role we also perform
simulations with perfect conductor boundary conditions (i.e.,
the component of the magnetic field perpendicular to the
surface vanishes). In both choices of boundary conditions,
magnetic helicity is gauge invariant and is a conserved quantity
in ideal MHD (i.e., η = 0). As a convenient parameter we
use the Lundquist number Lu = UAL/η, where UA is the
Alfvén velocity and L is a typical length scale of the system.
The value of the viscosity is characterized by the magnetic
Prandtl number PrM = ν/η. However, in all cases discussed
below we use PrM = 1. To facilitate comparison of different
setups it is convenient to normalize time by the resistive time
tres = r2π/η, where r is the radius of the cross section of the
flux tube.

We solve Eqs. (5)–(7) with the PENCIL CODE [30,31],
which employs sixth-order finite differences in space and a
third-order time stepping scheme. As in our earlier work [23],
we use 2563 meshpoints for all our calculations. We recall
that we use explicit viscosity and magnetic diffusivity. Their
values are dominant over numerical contributions associated
with discretization errors of the scheme.2

2The discretization error of the temporal scheme scheme implies
a small diffusive contribution proportional to ∇4, but even at the
Nyquist frequency this is subdominant.
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III. RESULTS

A. Helicity of n-foil knots

We test equation (1) for the n-foil knots in order to see how
the number of foils nf relates to the number of mutual linking
n for the separated flux tubes. From our simulations we know
the magnetic helicity HM and the magnetic flux φ through the
tube. Solving (1) for n will lead to an apparent self-linking
number which we call napp. It turns out that napp is much larger
then nf and increases faster (Fig. 7).

We note that (1) does not apply to this setup of flux tubes
and propose therefore a different formula for the magnetic
helicity:

HM = (nf − 2)nfφ
2/2. (8)

In Fig. 7 we plot the apparent linking number together with a
fit which uses Eq. (8).

Equation (8) can be motivated via the number of crossings.
The flux tube is projected onto the xy plane such that the
number of crossings is minimal. The linking number can be
determined by adding all positive crossings and subtracting all
negative crossings according to Fig. 8.

The linking number is then simply given as [32]

nlinking = (n+ − n−)/2, (9)

FIG. 7. (Color online) The apparent self-linking number for
n-foil knots with respect to nf (upper panel). The fit is obtained
by equating (1) and (8). The length of a n-foil knot is plotted with
respect to nf (lower panel), which can be fit almost perfectly by a
linear function.

++ − −

FIG. 8. (Color online) Schematic representation illustrating the
sign of a crossing. Each crossing has a handedness which can be either
positive or negative. The sum of the crossings gives the number of
linking and eventually the magnetic helicity content via equation (8).

where n+ and n− correspond to positive and negative cross-
ings, respectively. If we set nlinking = napp then we easily see
the validation of (8). Each new foil creates a new ring of
crossings and adds up one crossing in each ring (see Fig. 9),
which explains the quadratic increase.

B. Magnetic energy decay for n-foil knots

Next, we plot in Fig. 10 the magnetic energy decay for
n-foil knots with nf = 3 up to nf = 7 for periodic boundary
conditions. It turns out that, at later times, the decay slows
down as nf increases. The decay of the magnetic energy obeys
an approximate t−2/3 law for nf = 3 and a t−1/3 law for nf = 7.
The rather slow decay is surprising in view of earlier results
that, for turbulent magnetic fields, the magnetic energy decays
like t−1 in the absence of magnetic helicity and like t−1/2

with magnetic helicity [33]. Whether or not the decay seen in
Fig. 10 really does follow a power law with such an exponent
remains therefore open.

The different power laws for a given number of foils nf are
unexpected because the setups differ only in their magnetic
helicity and magnetic energy content and not in the qualitative
nature of the knot. Indeed, one might have speculated that the
faster t−2/3 decay applies to the case with larger nf , because
this structure is more complex and involves sharper gradients.
On the other hand, a larger value of nf increases the total
helicity, making the resulting knot more strongly packed. This
can be verified by noting that the magnetic helicity increases
quadratically with nf while the magnetic energy increases
only linearly. This is because the energy is proportional to
the length of the tube which, in turn, is proportional to nf

FIG. 9. (Color online) The isosurface for the 4-foil knot field
configuration. The sign of the crossing is always negative. The rings
show the different areas where crossings occur.
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FIG. 10. (Color online) Time dependence of the normalized
magnetic energy for a given number of foils with periodic boundary
conditions. The power law for the energy decay varies between −2/3
for nf = 3 [solid (blue) line] and −1/3 for nf = 7 [solid (black)].

(Fig. 7). Therefore we expect that, for the higher nf cases, the
realizability condition should play a more significant role at
early times. This can be seen in Fig. 11, where we plot the
ratio 2M(k)/[k|H (k)|] for nf = 3 to nf = 7 for k = 2. Since
the magnetic helicity relative to the magnetic energy is higher
for larger values of nf , it plays a more significant role for high
nf . This would explain a different onset of the power law decay,
although it would not explain a change in the exponent. Indeed
the decay of HM shows approximately the same behavior for
all nf (Fig. 12). We must therefore expect that the different
decay laws are described only approximately by power laws.

For periodic boundary conditions it is possible that the
flux tube reconnects over the domain boundaries which could
lead to additional magnetic field destruction. To exclude
such complications we compare simulations with perfectly
conducting or closed boundaries with periodic boundary

FIG. 11. (Color online) Time dependence of the quotient from
the realizability condition (2) for k = 2. It is clear that, for larger nf ,
the energy approaches its minimum faster.

FIG. 12. (Color online) Time dependence of the normalized
magnetic helicity for a given number of foils with periodic boundary
conditions.

conditions (Fig. 13). Since there is no difference in the two
cases we can exclude the significance of boundary effects for
the magnetic energy decay.

In all cases the magnetic helicity can only decay on a
resistive time scale (Fig. 12). This means that, during faster
dynamical processes like magnetic reconnection, magnetic
helicity is approximately conserved. To show this we plot
the magnetic field lines for the trefoil knot at different
times (Fig. 14). Since magnetic helicity does not change
significantly, the self-linking is transformed into a twisting of
the flux tube which is topologically equivalent to linking. Such
a process has also been mentioned in connection with Fig. 1 of
Ref. [34], while the opposite process of the conversion of twist
into linkage has been seen in Ref. [35]. We can also see that the
reconnection process, which transforms the trefoil knot into a
twisted ring, does not aid the decay of magnetic helicity.

FIG. 13. (Color online) Time dependence of the normalized
magnetic energy for the trefoil and 4-foil knot with periodic and
perfect conductor (PC) boundary conditions. There is no significant
difference in the energy decay for the different boundary conditions.
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FIG. 14. (Color online) Magnetic field lines for the trefoil knot
at time t = 0 (upper panel) and t = 7.76 × 10−2tres (lower panel).
Both images were taken from the same viewing position to make
comparisons easier. The Lundquist number was chosen to be 1000.
The colors indicate the field strength.

C. Decay of the IUCAA knot

For the nonhelical triple-ring configuration of Ref. [23] it
was found that the topological structure gets destroyed after
only 10 Alfvén times. The destruction was attributed to the
absence of magnetic helicity whose conservation would pose
constraints on the relaxation process. Looking at the magnetic
field lines of the IUCAA knot at different times (Fig. 15), we
see that the field remains structured and that some helical
features emerge above and below the z = 0 plane. These
localized helical patches could then locally impose constraints
on the magnetic field decay.

The asymmetry of the IUCAA knot in the z direction leads
to different signs of magnetic helicity above and below the
z = 0 plane. This is shown in Figs. 16 and 17 where we plot
the magnetic helicity for the upper and lower parts for two
different values of ϕ; see Eq. (4). In the plot, we refer to the
upper and lower parts as north and south, respectively. These
plots show that there is a tendency of magnetic helicity of
opposite sign to emerge above and below the z = 0 plane.
Given that the magnetic helicity was initially zero, one may
speculate that higher order topological invariants could provide

FIG. 15. (Color online) Magnetic field lines for the IUCAA knot
at t = 0.108tres (upper panel) and at t = 0.216tres (lower panel) for
Lu = 1000 and ϕ = (4/3)π .

an appropriate tool to characterize the emergence of such a
“bihelical” structure from an initially nonhelical one.

Note that there is a net increase of magnetic helicity over
the full volume. Furthermore, the initial magnetic helicity is
not exactly zero either, but this is probably a consequence
of discretization errors associated with the initialization. The
subsequent increase of magnetic helicity can only occur on
the longer resistive time scales, since magnetic helicity is
conserved on dynamical time scales. Note, however, that the
increase of magnetic helicity is exaggerated because we divide
by the mean magnetic energy density which is decreasing with
time.

In Fig. 18 we plot the xy-averaged magnetic helicity as a
function of z and t . This shows that the asymmetry between
upper and lower parts increases with time, which we attribute
to the Lorentz forces through which the knot shrinks and
compresses its interior. This is followed by the ejection of
magnetic field.
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FIG. 16. (Color online) Normalized magnetic helicity in the
northern [green (dashed) line] and southern [red (dotted) line] domain
half together with the total magnetic helicity [blue (solid) line] for
the IUCAA knot with Lu = 2000 and ϕ = (4/3)π .

To clarify this we plot slices of the magnetic energy density
in the xz plane for different times (Fig. 19). The slices are set
in the center of the domain.

Due to the rose-like shape, our representation of the IUCAA
knot is not quite symmetric and turns out to be narrower in
the lower half (negative z) than in the upper half (positive z),
which is shown in Fig. 5 (right panel). When the knot contracts
due to the Lorentz force, it begins to touch the inner parts,
which creates motions in the positive z direction which, in turn,
drag the magnetic field away from the center (Fig. 19). The
pushing of material can, however, be decreased when the phase
ϕ is changed. For ϕ = (4/3 + 0.2)π there is no such upward
motion visible and the configuration stays nearly symmetric
(Fig. 20).

In Fig. 21 the decay behavior of the magnetic energy is
compared with previous work [23]. We note in passing that

FIG. 17. (Color online) Normalized magnetic helicity in the
northern [green (dashed) line] and southern [red (dotted) line] domain
half together with the total magnetic helicity [blue (solid) line] for
the IUCAA knot with Lu = 2000 and ϕ = (4/3 + 0.2)π .

FIG. 18. (Color online) xy-averaged magnetic helicity density
profile in z direction for the IUCAA knot with Lu = 2000 and
ϕ = (4/3)π . There is an apparent asymmetry in the distribution
amongst the hemispheres.

the power law of t−1 is expected for nonhelical turbulence
[33], but it is different from the helical (t−1/2) and nonhelical
(t−3/2) triple-ring configurations studied earlier. A possible
explanation is the conservation of magnetic structures for the
IUCAA knot, whereas the nonhelical triple-ring configuration
loses its structure.

D. Borromean rings

Previous calculations showed a significant difference in the
decay process of three interlocked flux rings in the helical and
nonhelical case [23]. In Fig. 21 we compare the magnetic en-
ergy decay found from previous calculations using triple-ring
configurations with the IUCAA knot and the Borromean rings.

The Borromean rings show a similar behavior as the
IUCAA knot where the magnetic energy decays like t−1.
Similarly to the IUCAA knot we expect some structure, which
is conserved during the relaxation process and causes the
relatively slow energy decay compared to other nonhelical
configurations. We plot the magnetic field lines at times t =
0.248tres and t = 0.276tres; see Figs. 22 and 23, respectively. At
t = 0.248tres there are two interlocked flux rings in the lower
left corner, while in the opposite half of the simulation domain
a clearly twisted flux ring becomes visible. The interlocked
rings reconnect at t = 0.276tres and merge into one flux tube
with a twist opposite to the other flux ring. The magnetic
helicity stays zero during the reconnection, but changes locally,
which then imposes a constraint on the magnetic energy decay
and could explain the power law that we see in Fig. 21. This
finding is similar to that of Ruzmaikin and Akhmetiev [28]
who propose that, after reconnection, the Borromean ring
configuration transforms first into a trefoil knot and three
8-form flux tubes and after subsequent reconnection into two
untwisted flux rings (so-called unknots) and six 8-form flux
tubes. We can partly reproduce this behavior, but instead of a
trefoil knot we obtain two interlocked flux rings and, instead of
the 8-form flux tubes, we obtain internal twist in the flux rings.
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FIG. 19. (Color online) Magnetic energy density in the xz plane
for y = 0 at t = 0 (upper panel) and t = 5.58 × 10−2tres (lower panel)
for the IUCAA knot with Lu = 2000 and ϕ = (4/3)π .

IV. CONCLUSIONS

In this paper we have analyzed for the first time the decay of
complex helical and nonhelical magnetic flux configurations.
A particularly remarkable one is the IUCAA knot for which
the linking number is zero, and nevertheless, some finite
magnetic helicity is gradually emerging from the system on a
resistive time scale. It turns out that both the IUCAA knot and
the Borromean rings develop regions of opposite magnetic
helicity above and below the midplane, so the net magnetic
helicity remains approximately zero. In that process, any slight
imbalance can then lead to the amplification of the ratio
of magnetic helicity to magnetic energy—even though the
magnetic field on the whole is decaying. This clearly illustrates
the potential of nonhelical configurations to exhibit nontrivial
behavior, and thus the need for studying the evolution of higher
order invariants that might capture such processes.

The role of resistivity in producing magnetic helicity from
a nonhelical initial state has recently been emphasized [36],

FIG. 20. (Color online) Magnetic energy density in the xz plane
for y = 0 at t = 0 (upper panel) and t = 5.58 × 10−2tres (lower panel)
for the IUCAA knot with Lu = 2000 and ϕ = (4/3 + 0.2)π . The
magnetic field stays centered.

but it remained puzzling how a resistive decay can increase
the topological complexity of the field, as measured by the
magnetic helicity. Our results now shed some light on this.
Indeed, the initial field in our examples has topological
complexity that is not captured by the magnetic helicity as
a quadratic invariant. This is because of mutual cancellations
that can gradually undo themselves during the resistive decay
process, leading thus to finite magnetic helicity of opposite
sign in spatially separated locations. We recall in this context
that the magnetic helicity over the periodic domains considered
here is gauge invariant and should thus agree with any other
definition, including the absolute helicity defined in Ref. [36].

Contrary to our own work on a nonhelical interlocked
flux configuration [23], which was reducible to a single flux
ring after mutual annihilation of two rings, the configurations
studied here are nonreducible even when mutual annihilation
is taken into account.
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FIG. 21. (Color online) Magnetic energy versus time for the
different initial field configurations together with power laws which
serve as a guide. The decay speed of the IUCAA knot and Borromean
rings lies well in between the helical and nonhelical triple-ring
configuration.

For the helical n-foil knot, we have shown that the magnetic
helicity increases quadratically with n. Furthermore, their
decay exhibits different power laws of magnetic energy which
lie between t−2/3 for the 3-foil knot and t−1/3 for the 7-foil knot.
The latter case corresponds well with the previously discussed
case of three interlocked flux rings that are interlocked in a
helical fashion. The appearance of different power laws seems
surprising since we first expected a uniform power law in
all helical cases in the regime where the magnetic helicity
is so large that the realizability condition plays a role. This
makes us speculate whether there are other quantities that are
different for the various knots and constrain magnetic energy
decay. Such quantities would be higher order topological
invariants [28], which are so far only defined for spatially
separated flux tubes. In order to investigate their role they

FIG. 22. (Color online) Magnetic field lines at t = 0.248tres for
the Borromean rings configuration for Lu = 1000. In the lower-left
corner the interlocked flux rings are clearly visible which differs from
the proposed trefoil knot [28]. The flux ring in the opposite corner
has an internal twist which makes it helical. The colors denote the
strength of the field, where the scale goes from red over green to blue.

FIG. 23. (Color online) Magnetic field lines at t = 0.276tres for
the Borromean rings configuration for Lu = 1000. The two flux rings
in the corners both have an internal twist which makes them helical.
The twist is, however, of opposite sign which means that the whole
configuration does not contain magnetic helicity. The colors denote
the strength of the field, where the scale goes from red over green to
blue.

need to be generalized such that they can be computed for
any magnetic field configuration, similar to the integral for the
magnetic helicity.

The power law of t−1 in the decay of the magnetic energy
for the IUCAA knot and the Borromean rings is different from
the t−3/2 behavior found earlier for the nonhelical triple-ring
configuration. The observed decay rate can be attributed to the
creation of local helical structures that constrain the decay of
the local magnetic field. But we cannot exclude higher order
invariants [28] whose conservation would then constrain the
energy decay.

The Borromean rings showed clearly that local helical
structures can be generated without forcing the system. These
can then impose constraints on the field decay. We suggest that
spatial variations should be taken into account to reformulate
the realizability condition (2), which would increase the lower
bound for the magnetic energy. For astrophysical systems local
magnetic helicity variations have to be considered to give a
more precise description of both relaxation and reconnection
processes.

Both the IUCAA logo and the Borromean rings do not
stay stable during the simulation time and split up into two
separated helical magnetic structures. On the other hand we see
that the helical n-foil knots stay stable. A similar behavior was
seen in [37], where magnetic fields in bubbles inside galaxy
clusters were simulated. In the case of a helical initial magnetic
field the field decays into a confined structure, while for
sufficiently low initial magnetic helicity, separated structures
of opposite magnetic helicity seem more preferable.
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