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ABSTRACT

We present the first numerical demonstration of the negative effective magnetic pressure instability in direct
numerical simulations of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime
of large plasma beta. By the action of this instability, initially uniform horizontal magnetic field forms flux
concentrations whose scale is large compared to the turbulent scale. We further show that the magnetic energy of
these large-scale structures is only weakly dependent on the magnetic Reynolds number. Our results support earlier
mean-field calculations and analytic work that identified this instability. Applications to the formation of active
regions in the Sun are discussed.
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1. INTRODUCTION

The solar convection zone is highly turbulent and mixing is
expected to be efficient. Nevertheless, the Sun displays coherent
structures encompassing many turbulent eddy scales. A well-
known example is the large-scale magnetic field of the Sun that
is antisymmetric about the equator and shows the 22 year solar
cycle (Stenflo & Vogel 1986). Another prominent example in the
Sun is the emergence of active regions. It is generally believed
that active regions are the result of some non-axisymmetric
instability of ∼100 kG magnetic fields in the tachocline (Gilman
& Dikpati 2000; Cally et al. 2003; Parfrey & Menou 2007).
However, the existence of such strong fields remains debatable
(Brandenburg 2005).

A powerful tool for understanding the emergence of such
large-scale structures from a turbulent background is the mean-
field dynamo theory (Moffatt 1978; Parker 1979; Krause &
Rädler 1980). With the advent of powerful computers and
numerical simulation tools, it has become possible to con-
front many of the mean-field predictions with simulations
(Brandenburg & Subramanian 2005). Here we consider the
idea that statistically steady, stratified, hydromagnetic turbu-
lence with an initially uniform magnetic field is unstable to the
negative effective magnetic pressure instability (NEMPI). This
instability is caused by the suppression of turbulent hydromag-
netic pressure (the isotropic part of combined Reynolds and
Maxwell stresses) by the mean magnetic field (Kleeorin et al.
1990; Rogachevskii & Kleeorin 2007). At large Reynolds num-
bers and for sub-equipartition magnetic fields, the negative tur-
bulent contribution can become so large that the effective mean
magnetic pressure (the sum of turbulent and non-turbulent con-
tributions) appears negative. In a stratified medium, this results
in the excitation of NEMPI that causes formation of large-scale
inhomogeneous magnetic structures. NEMPI is similar to the
large-scale dynamo instability, except that it only redistributes
the total magnetic flux, creating large-scale concentrated mag-
netic flux regions at the expense of turbulent kinetic energy.

Historically, the magnetic suppression of the Reynolds
stress was first found by Rädler (1974) and Rüdiger (1974).
Later, Rüdiger et al. (1986) considered the Maxwell stress

and found the mean effective magnetic tension to be sup-
pressed by mean fields. However, these calculations were
based on the quasi-linear theory which is only valid at
low fluid and magnetic Reynolds numbers. Kleeorin et al.
(1990, 1996) considered the combined Reynolds and Maxwell
stresses at large Reynolds numbers and found a sign rever-
sal of the effective mean magnetic pressure. This result is
based on the τ approximation and has been corroborated us-
ing the renormalization procedure (Kleeorin & Rogachevskii
1994).

The magnetic suppression of the combined Reynolds and
Maxwell stresses is quantified in terms of new turbulent mean-
field coefficients that relate the components of the sum of
Reynolds and Maxwell stresses to the mean magnetic field.
These coefficients depend on the magnetic field and have now
been determined in direct numerical simulations (DNS) for a
broad range of different cases, including unstratified forced
turbulence (Brandenburg et al. 2010), isothermally stratified
forced turbulence (Brandenburg et al. 2011, hereafter BKKR),
and turbulent convection (Käpylä et al. 2011). These simulations
have clearly demonstrated that the mean effective magnetic
pressure is negative for magnetic field strengths below about
half the equipartition field strength. However, these DNS studies
had not found the actual instability.

With a quantitative parameterization in place, it became
possible to build mean-field models of stratified turbulence
which clearly demonstrate exponential growth and saturation
of NEMPI. In view of applications to the formation of active
regions in the Sun, such simulations were originally done for
an adiabatically stratified layer (Brandenburg et al. 2010). In
addition, mean-field studies showed the existence of NEMPI
even for isothermal stably stratified layers (Kemel et al. 2011).
This last result turned out to be important because it paved the
way for this Letter where we demonstrate NEMPI through DNS.
Once we establish the physical reality of this effect, it would
be important to apply it to realistic solar models which include
proper boundary conditions, realistic stratification, convective
flux, and radiation transport. However, at this stage it is essential
to isolate NEMPI as a physical effect under conditions that are
as simple as possible.
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Figure 1. ΔBy/Beq0 in the x–z plane for ReM = 6 and B0/Beq0 = 0.05, showing a descending “potato sack” structure. Time is in units of τto (lower right).

(A color version of this figure is available in the online journal.)

2. THE MODEL

We consider a domain of size Lx × Ly × Lz in Cartesian
coordinates (x, y, z), with periodic boundary conditions in the x
and y directions and stress-free perfectly conducting boundaries
at top and bottom (z = ±Lz/2). The volume-averaged density is
therefore constant in time and equal to its initial value, ρ0 = 〈ρ〉.
We solve the equations for velocity U , magnetic vector potential
A, and density ρ,

ρ
DU
Dt

= J × B − c2
s ∇ρ + ∇ · (2νρS) + ρ( f + g), (1)

∂ A
∂t

= U × B + η∇2 A, (2)

∂ρ

∂t
= −∇ · ρU, (3)

where ν is kinematic viscosity, η is magnetic diffusivity,
B = B0 + ∇ × A is the magnetic field, B0 = (0, B0, 0) is the
imposed uniform field, J = ∇× B/μ0 is the current density, μ0
is the vacuum permeability, Sij = 1

2 (Ui,j + Uj,i) − 1
3δij∇ · U is

the traceless rate of strain tensor, and commas denote partial
differentiation. The forcing function f consists of random,
white-in-time, plane non-polarized waves with an average
wavenumber kf = 15 k1, where k1 = 2π/Lz is the lowest
wavenumber in the domain. The forcing strength is such that
the turbulent rms velocity is approximately independent of z
with urms = 〈u2〉1/2 ≈ 0.1 cs. The gravitational acceleration
g = (0, 0,−g) is chosen such that k1Hρ = 1, which leads to a
density contrast between the bottom and top of exp(2π ) ≈ 535.
Here, Hρ = c2

s /g is the density scale height.
Our simulations are characterized by the fluid Reynolds

number Re ≡ urms/νkf , the magnetic Prandtl number PrM =
ν/η, and the magnetic Reynolds number ReM ≡ Re PrM .
Following earlier work (Brandenburg et al. 2011), we choose
PrM = 0.5 and ReM in the range 0.7–74. The magnetic field
is expressed in units of the local equipartition field strength
near the top, Beq = √

μ0ρ urms, while B0 is specified in
units of the averaged value, Beq0 = √

μ0ρ0 urms. We monitor
ΔBy = By − B0, where By is an average over y and a certain
time interval Δt . Time is expressed in eddy turnover times,
τto = (urmskf )−1. Occasionally, we also consider the turbulent-
diffusive timescale, τtd = (ηt0k

2
1)−1, where ηt0 = urms/3kf is

the estimated turbulent magnetic diffusivity. Another diagnostic
quantity is the rms magnetic field in the k = k1 Fourier mode,
B1, which is here taken as an average over 2 � k1z � 3, and is
close to the top at k1z = π . (Note that B1 does not include the
imposed field B0 at k = 0.)

Figure 2. Dependence of B1/Beq (averaged over 2 � k1z � 3) on ReM for
B0/Beq0 = 0.05.

The simulations are performed with the Pencil Code,4

which uses sixth-order explicit finite differences in space and
a third-order accurate time stepping method. We use numerical
resolutions of 1283 and 2563 mesh points when Lx = Ly = Lz,
and 1024 × 1282 when Lx = 8Ly = 8Lz. To capture mean-
field effects on the slower turbulent-diffusive timescale, which
is τtd/τto = 3k2

f /k2
1 times slower than the dynamical timescale,

we perform simulations for several thousand turnover times.

3. RESULTS

The NEMPI phenomenon is already quite pronounced at
intermediate values of ReM � 3; see Figure 1, where we show By

averaged over y and Δt ≈ 80τto (denoted by By) at selected times
during the first 2000 turnover times. The ReM dependence of
B1/Beq is shown in Figure 2. For ReM > 3, the ReM dependence
is relatively weak, which suggests that NEMPI is a genuine high
Reynolds number effect.

The results for the case of ReM = 6 show strong similarities
to earlier mean-field simulations. During the first 500 turnover
times, flux concentrations form first near the surface, but at later
times the location of the peak magnetic field moves gradually
downward. This phenomenon is a direct consequence of the
negative effective magnetic pressure, making such structures
heavier than their surroundings. Their shape resembles that of a
falling “potato sack” and has been seen in numerous mean-field
calculations during the nonlinear stage of NEMPI (Brandenburg
et al. 2010; Käpylä et al. 2011). Using the technique described
in BKKR, we have found that for ReM � 1.1 the effective
magnetic pressure has a negative minimum.

4 http://pencil-code.googlecode.com
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Figure 3. ΔBy/Beq0 in the x–z plane for ReM = 36 and B0/Beq0 = 0.02, 0.05, 0.09, and 0.18.

(A color version of this figure is available in the online journal.)

Figure 4. Bifurcation diagram showing B1/Beq vs. B0/Beq0 (and vs. B0/Beq
on the upper abscissa) for ReM = 36.

As expected from theory and mean-field calculations, NEMPI
is only excited in a certain range of field strengths. In par-
ticular, only for B0/Beq0 between 0.02 and 0.2 do we see
large-scale magnetic structures. This is shown in Figure 3,
where we see By, again averaged over y and a time interval
Δt ≈ 800τto, in which the field is statistically steady. The clear-
est flux structure formations are seen for B0/Beq0 ≈ 0.05.
However, even for this case the magnetic field concentra-
tions are barely visible in a single snapshot. This has been
one of the reasons why NEMPI has not been noticed before
in DNS. An additional handicap was that earlier simulations
of BKKR used a smaller scale separation ratio of only 5,
even though it is still sufficient for determining the govern-
ing mean-field coefficients and allows one to reach larger values
of ReM .

In Figure 4 we plot B1/Beq as a function of B0/Beq0, showing
a peak at B0/Beq0 ≈ 0.05. We recall that Beq applies here
to the location 2 � k1z � 3 where B1 has been evaluated,
and there we have Beq/Beq0 ≈ 0.3. The fact that large-
scale flux concentrations develop only for a certain range of
imposed field strengths supports our interpretation that they
are caused by NEMPI and not, for example, by some yet
unknown dynamo mechanism. In all these cases, B − B0
grows rapidly and reaches a saturation field strength that is
independent of B0, provided ReM � 35. This suggests that
this field is produced by small-scale dynamo action and not
just by field line tangling. Another piece of evidence of the
physical reality of NEMPI is shown in Figure 5, where we
see that B1 does indeed increase exponentially for the first
2000 turnover times, corresponding to about 3τtd. The growth
rate is ≈0.4ηt0k

2
1, which is much less than τ−1

to , but entirely
compatible with mean-field calculations (BKKR; Käpylä et al.
2011).

Figure 5. Slow exponential growth of the mean magnetic field in 2 � k1z � 3
for B0/Beq0 = 0.05, corresponding to B0/Beq = 0.16, for ReM = 36 (solid
line). The growth rate is ≈0.4ηt0k

2
1 (dotted line). Note that the total rms field,

Brms/Beq (dotted line) saturates much faster, as indicated by the upper abscissa.

Finally, to investigate the effects of the domain aspect ratio on
the instability, we perform a calculation with B0/Beq0 = 0.05,
ReM = 36, and change Lx to 16π/k1. We find that the
most unstable mode has a wavelength approximately equal to
Lz ≈ 6Hρ . This result is also in agreement with mean-field
models (e.g., Figure 14 of Käpylä et al. 2011). The large-scale
flux concentrations have an amplitude of only ≈0.1Beq and
are therefore not seen in single snapshots. However, the field
reaches peak strengths comparable to Beq. Furthermore, as for
any linear instability, the flux concentrations form a repetitive
pattern and are in that sense similar to flux concentrations seen
in the mean-field calculations of Kitchatinov & Mazur (2000)
that were based on the magnetic suppression of the convective
heat flux.

4. CONCLUSIONS AND DISCUSSION

The present simulations have, for the first time, demonstrated
conclusively that NEMPI can operate in hydromagnetic tur-
bulence under proper conditions, namely, strong stratification,
sufficient scale separation (here kf /k1 = 15), and a mean field in
an optimal range (here ≈0.15Beq; see Figure 4). This instability
has so far only been seen in mean-field simulations. By contrast,
the present simulations are completely free of any mean-field
consideration.

The instability is argued to be a consequence of the
reduction of turbulent hydromagnetic pressure by a mean
magnetic field and can be understood as follows (Kleeorin
et al. 1996). The combined Reynolds and Maxwell stress is
ρuiuj − bibj /μ0 + δij b2/2μ0, where u and b are velocity
and magnetic fluctuations, respectively, and overbars indicate
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averaging. For isotropic turbulence, the turbulent hydromag-
netic pressure is then Pturb = 1

3 (ρu2 + b2/2μ0). On the other

hand, the total turbulent energy Eturb ≡ 1
2 (ρu2 +b2/μ0) is nearly

conserved because a uniform mean magnetic field does not per-
form any work; see Brandenburg et al. (2010) for a numerical
demonstration. The presence of an additional 1/2 factor in front
of the b2/μ0 term in the expression for Pturb, but not in that
for Eturb, implies that the generation of magnetic fluctuations
results in a reduction of Pturb, i.e., Pturb = 1

3 (2Eturb − b2/2μ0).
For anisotropic turbulence this negative contribution becomes
larger. This physical effect is independent of stratification, but
to obtain an instability one needs strong stratification.

We speculate that, in the solar context, NEMPI plays a role
in formation of active regions from mean fields generated by
the solar dynamo. Let us now ask whether this instability
alone can describe the formation of active regions at the solar
surface. Clearly, the flux concentrations we observe are not
strong enough to be noticeable without averaging, while the
active regions in the Sun are seen without averaging. This
suggests that there may be additional mechanisms at work. One
possibility is that of the magnetic suppression of the convective
heat flux that has been invoked to explain the formation of
sunspots (Kitchatinov & Mazur 2000). When the mean magnetic
field becomes larger than the equipartition field strength, i.e.,
when NEMPI does not work, and the characteristic spatial
scale of the magnetic field is smaller than the density height,
it is instead the Parker magnetic buoyancy instability (Parker
1966) that is excited. The presence of a vertical field might
also have a strong effect. Indeed simulations of convection
with an imposed vertical field have produced a segregation
into magnetized and unmagnetized regions (Tao et al. 1998;
Kitiashvili et al. 2010) with formation of flux concentrations
strong enough to be noticeable even without averaging. On the
other hand, NEMPI might become more powerful at stronger
stratification. Increased stratification clearly has an enhancing
effect on the growth rate (Kemel et al. 2011), but the effect on
the saturation level has not yet been quantified. Furthermore,
the interplay between NEMPI and the other effects also needs
to be investigated.

Our work has established a close link between what can be
expected from mean-field studies and what actually happens
in DNS. This correspondence is particularly important because
DNS cannot reach solar parameters in any conceivable future.
Hence, a deeper understanding of solar convection can only
emerge by studying mean-field models on the one hand and
to determine turbulent mean-field coefficients from simulations
on the other hand. This concerns not only the dependence of
the mean-field coefficients on parameters such as magnetic
Reynolds and Prandtl numbers and the scale separation ratio,
but also details of the source of turbulence. In particular, it
has already been shown that the negative effective magnetic
pressure effect is not unique to forced turbulence, but it also
occurs in turbulent convection Käpylä et al. (2011), and thus in
an unstably stratified layer. We emphasize that the present work
demonstrates the predictive power of mean-field theory at an
advanced level where the quasi-linear theory fails (Rüdiger et al.

2011) but the spectral τ approach (Rogachevskii & Kleeorin
2007) has proven useful.

More work using mean-field models is needed to elucidate
details of the mechanism of NEMPI. For example, naive
thinking suggests that the onset of NEMPI should occur at the
depth where the effective magnetic pressure is minimum, but
both mean-field models and DNS show that this is not the case.
At least at early times, NEMPI appears most pronounced at
the top of the domain, while the effective magnetic pressure is
most negative at the bottom. On the other hand, the instability
is a global one and local considerations such as these are not
always meaningful. Another question is what happens when the
imposed field is replaced by a dynamo-generated one. In that
case, the turbulence may be helical and new terms involving
current density can occur in the expression for the mean-field
stress. Again, such possibilities are best studied using first the
mean-field approach.

We acknowledge the NORDITA dynamo programs of 2009
and 2011 for providing a stimulating scientific atmosphere.
Computing resources provided by the Swedish National Al-
locations Committee at the Center for Parallel Computers at
the Royal Institute of Technology in Stockholm and the High
Performance Computing Center North in Umeå. This work was
supported in part by the European Research Council under the
AstroDyn Research Project No. 227952.

REFERENCES

Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A., Kemel, K., Kleeorin, N., & Rogachevskii, I. 2011, ApJ,

submitted (arXiv:1005.5700) (BKKR)
Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2010, Astron. Nachr., 331, 5
Brandenburg, A., & Subramanian, K. 2005, Phys. Rep., 417, 1
Cally, P. S., Dikpati, M., & Gilman, P. A. 2003, ApJ, 582, 1190
Gilman, P. A., & Dikpati, M. 2000, ApJ, 528, 552
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