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ABSTRACT

Saturated small-scale dynamo solutions driven by isotropic non-helical turbulence are presented at low magnetic
Prandtl numbers PrM down to 0.01. For PrM < 0.1, most of the energy is dissipated via Joule heat and, in agreement
with earlier results for helical large-scale dynamos, kinetic energy dissipation is shown to diminish proportional
to Pr1/2

M down to values of 0.1. In agreement with earlier work, there is, in addition to a short Golitsyn k−11/3

spectrum near the resistive scale, also some evidence for a short k−1 spectrum on larger scales. The rms magnetic
field strength of the small-scale dynamo is found to depend only weakly on the value of PrM and decreases by about
a factor of two as PrM is decreased from 1 to 0.01. The possibility of dynamo action at PrM = 0.1 in the nonlinear
regime is argued to be a consequence of a suppression of the bottleneck seen in the kinetic energy spectrum in the
absence of a dynamo and, more generally, a suppression of kinetic energy near the dissipation wavenumber.
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1. INTRODUCTION

In astrophysical turbulence, dissipation of kinetic and mag-
netic energies tends to occur on length scales much shorter
than the scale of the energy-carrying eddies. Even though both
kinetic and magnetic dissipation scales are comparatively short,
the current indications are that it does matter which of the two
is the shorter one and by how much. Their ratio is the mag-
netic Prandtl number, PrM . For stars and liquid metals we have
PrM � 1, while for galaxies PrM � 1. An important example
where the value of PrM is believed to matter is the small-scale
dynamo that converts kinetic turbulent energy into magnetic
energy under isotropic conditions.

A dynamo is only possible when the energy conversion is
efficient and larger than the magnetic energy dissipation. This
is quantified by the magnetic Reynolds number, ReM , which is
a nondimensional measure of the inverse magnetic dissipation
rate. The critical value of ReM , above which dynamo action
occurs, is known to increase with decreasing values of PrM
(Rogachevskii & Kleeorin 1997; Boldyrev & Cattaneo 2004;
Haugen et al. 2004; Schekochihin et al. 2004, 2005, 2007;
Iskakov et al. 2007). In the following we define the magnetic
Reynolds number as ReM = urms/ηkf , where urms is the
rms velocity fluctuation of the turbulence, η is the magnetic
diffusivity, and kf is the wavenumber of the energy-carrying
eddies, i.e., the wavenumber where energy is injected into the
system. The critical value of ReM is then found to be around
35 for PrM = 1 and around 100 for PrM = 0.2, but note that
for Schekochihin et al. (2004, 2005, 2007) and Iskakov et al.
(2007) the values of ReM are defined such that they are about
1.5 times larger than those used here or in Haugen et al. (2004).
For PrM = 0.1, however, no small-scale dynamo action has yet
been found. This may easily be a limitation of not having been
able to increase the fluid Reynolds number, Re = ReM/PrM ,
beyond 2000, which limits ReM to 200 for PrM = 0.1 (Iskakov
et al. 2007; Schekochihin et al. 2007). Larger values of Re have
been possible by using hyperviscosity, giving access to larger
values of Re and smaller values of PrM for fixed ReM . In that
case, Iskakov et al. (2007) and Schekochihin et al. (2007) found

small-scale dynamo action for PrM = 0.05 and ReM = 150,
i.e., the dynamo is now easier to excite than for PrM = 0.1. The
reason for this is believed to be connected with the fact that the
properties of small-scale dynamos depend on the kinetic energy
spectrum at the resistive scale. For PrM = 1, this scale is the
viscous scale where the velocity field is smooth in the sense that
the velocity difference δu over a separation δ� scales linearly,
i.e., δu ∼ δ�. For PrM � 1, following the argument of Boldyrev
& Cattaneo (2004), the resistive scale falls in the inertial range
where the velocity field is rough and δu ∼ δ�ζ with ζ ≈ 0.4, so
the velocity field would not be differentiable, making dynamo
action inefficient. However, for PrM = 0.1, the kinetic energy
spectrum is even shallower than in the inertial range, so the local
value of ζ is even smaller and the velocity field rougher than in
the inertial range. This phenomenon is known as the bottleneck
effect (Falkovich 1994; Kaneda et al. 2003; Dobler et al. 2003).
This bottleneck effect is believed to be the reason why Rm,crit
reaches a maximum at PrM ≈ 0.1.

The usage of hyperviscosity does exaggerate the bottleneck,
which still exists even for the regular viscosity operator. It would
therefore be useful to verify small-scale dynamo action for small
values of PrM using the regular viscosity operator. This will
be done in the present paper. In addition, we shall consider
here the nonlinear regime, which has the advantage that at
small values of PrM , much of the kinetic energy is diverted
to magnetic energy before it is dissipated viscously. This allows
one to increase the fluid Reynolds number beyond the maximal
value that would normally be possible at a given resolution. This
has been demonstrated in the context of helicity-driven large-
scale dynamos (Brandenburg 2009), whose onset conditions
are essentially independent of the value of PrM (Brandenburg
2001, 2009; Mininni 2007). This is not the case for the small-
scale dynamos considered here, where the flow is statistically
isotropic and non-helical.

Our strategy for reaching low values of PrM is the same as that
of Brandenburg (2009). We start with a simulation of a saturated
small-scale dynamo at PrM = 1 and then increase the value
of Re while keeping the value of ReM in the range 150–160,
provided the dynamo is still excited. As in Brandenburg (2009),
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Figure 1. Visualizations of Bz and Uz for PrM = 0.01 (left), PrM = 0.02 (middle), and PrM = 0.05 (right). All runs are for ReM ≈ 160 using 5123 mesh points.

(A color version of this figure is available in the online journal.)

only a small fraction of the energy is dissipated viscously, which
allows us then to increase Re further. We are here particularly
interested in the dependence of the saturation field strength on
PrM and the dissipation rate.

2. THE MODEL

Our model is similar to that presented in Brandenburg
(2001, 2009) and Haugen et al. (2003, 2004), where we solve
the hydromagnetic equations for velocity U , density ρ, and
magnetic vector potential A, in the presence of an externally
imposed non-helical forcing function f , for an isothermal gas
with constant sound speed cs, i.e.,

∂U
∂t

= −U ·∇U − c2
s ∇ ln ρ + f + ( J × B +∇ ·2ρνS)/ρ, (1)

∂ ln ρ

∂t
= −U · ∇ ln ρ − ∇ · U, (2)

∂ A
∂t

= U × B − ημ0 J . (3)

Here, Sij = 1
2 (Ui,j + Uj,i) − 1

3δij∇ · U is the traceless rate
of strain tensor, ν is the kinematic viscosity, B = ∇ × A is
the magnetic field, J = ∇ × B/μ0 is the current density, and
μ0 is the vacuum permeability. We consider a triply periodic
domain of size L3, so the smallest wavenumber in the domain is
k1 = 2π/L. The forcing function consists of plane waves with
wavevectors k whose lengths lie in the range 1 � |k|/k1 � 2
with an average of kf ≈ 1.5 k1. The amplitude of f is such that
the Mach number is urms/cs ≈ 0.1, so compressive effects are
negligible (Dobler et al. 2003).

Unless a simulation has been restarted from a previous one at
another value of PrM , we start with a weak Gaussian distributed
field in all three components of A, zero initial velocity, and
uniform initial density, ρ = ρ0 = constant, so the volume-
averaged density remains constant, i.e., 〈ρ〉 = ρ0.

In our simulations we vary the fluid Reynolds number and
the magnetic Prandtl number,

Re = urms/νkf , PrM = ν/η, (4)

such that ReM = urms/ηkf is in the range 150–160. We also
present a few results for ReM around 220. We monitor the
resulting kinetic and magnetic energy dissipation rates per unit
volume,

εK = 〈2νρS2〉, εM = 〈ημ0 J2〉, (5)

whose sum, εT = εK + εM , is the total dissipation rate. We use
the fully compressible Pencil Code1 for all our calculations.
We recall that, for the periodic boundary conditions under
consideration, 〈2S2〉 = 〈W 2〉 + 4

3 〈(∇ · U)2〉, highlighting thus
the analogy between vorticity W = ∇ × U and J in the
incompressible and weakly compressible cases.

3. RESULTS

3.1. Small-scale Magnetic and Velocity Features at Low PrM

In Figure 1 we present visualizations of Bz and Uz on the
periphery of the domain for three runs with PrM ranging from
0.01 to 0.05. Even though the value of ReM is the same in
all three runs, the magnetic field seems to have smaller scale
structures in the low-PrM case. The appearance of smaller scale
structures is particularly clear in the visualization of the velocity
field for PrM = 0.01.

In Table 1 we summarize some essential properties of the
simulations for a sequence of simulations with different values
of PrM between 0.01 and 1, but similar values of ReM of around
150–160. The rms field strength relative to the equipartition
value, Beq = urms

√
ρ0μ0, is about 0.3 for 0.05 � PrM � 0.2,

while for the runs with PrM = 0.02 and 0.01 it is about 0.15 and
0.12, respectively. This is still a remarkably weak dependence
that was not expected based on the earlier results of Iskakov et al.
(2007) and Schekochihin et al. (2007) for the onset conditions of
the small-scale dynamo. As PrM is decreased from 1 to 0.01, εK
decreases and εM increases. However, the runs for ReM = 160
are rather close to the onset of dynamo action. This becomes
clear when comparing with two other runs for ReM = 220,
using PrM = 0.1 and 0.02; see Table 2. For PrM = 0.1,

1 http://www.pencil-code.googlecode.com
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Table 1
Summary of Runs for Different Values of PrM and ReM ≈ 150–160

PrM ReM Brms/Beq Cε εK/εT εM/εT kK kM Δt/τ Res.

0.01 163 0.12 ± 0.02 0.34 ± 0.03 0.49 ± 0.13 0.68 ± 0.06 656 28 397 5123

0.02 163 0.15 ± 0.04 0.44 ± 0.03 0.60 ± 0.24 0.64 ± 0.10 425 29 394 5123

0.05 157 0.28 ± 0.03 0.65 ± 0.04 0.31 ± 0.08 0.77 ± 0.05 217 31 201 5123

0.10 158 0.28 ± 0.04 0.65 ± 0.01 0.39 ± 0.07 0.72 ± 0.04 132 31 261 2563

0.20 152 0.32 ± 0.04 0.73 ± 0.10 0.50 ± 0.13 0.67 ± 0.05 85 30 147 2563

0.50 150 0.39 ± 0.05 0.88 ± 0.03 0.59 ± 0.09 0.63 ± 0.04 45 30 98 2563

1.00 146 0.39 ± 0.03 0.92 ± 0.03 0.85 ± 0.11 0.54 ± 0.03 28 29 228 2563

Table 2
Comparison of Runs for ReM ≈ 220 and Two Values of PrM

PrM Brms/Beq Cε εK/εT εM/εT

0.02 0.34 ± 0.02 0.70 ± 0.04 0.08 ± 0.01 0.92 ± 0.01
0.10 0.32 ± 0.03 0.66 ± 0.08 0.24 ± 0.03 0.81 ± 0.02

Figure 2. Compensated kinetic and magnetic energy spectra for runs with
PrM = 0.05, PrM = 0.02, and PrM = 0.01 for ReM ≈ 150 as well as one
run with PrM = 0.02 and ReM ≈ 220. The resolution is in all cases 5123

mesh points. The two short straight lines give, for comparison, the slopes 2/3
(corresponding to a k−1 spectrum for k < 20k1) and −2 (corresponding to a
k−11/3 spectrum for k > 20k1).

Brms/Beq ≈ 0.32 and the ratio εK/εT has dropped from 0.39
to 0.24, while for PrM = 0.02, Brms/Beq ≈ 0.34 and the ratio
εK/εT has dropped from 0.6 to 0.08. Thus, we see that for values
of ReM that are not too close to the onset of dynamo action, the
PrM dependence of Brms/Beq is negligible and εK continues to
drop.

The magnetic dissipation wavenumber, kM = (εM/η3)1/4, is
about 30 for all runs with ReM ≈ 150–160, while the kinetic
dissipation wavenumber, kK = (εK/ν3)1/4, increases gradually
with decreasing values of PrM (or increasing values of Re).

3.2. Spectral Properties and Energy Dissipation

We consider here kinetic and magnetic energy spectra, EK(k)
and EM(k), respectively. They are normalized in the usual way
such that

∫
EK dk = 1

2ρ0〈U2〉 and
∫

EM dk = 1
2μ−1

0 〈B2〉.
In Figure 2, these spectra are compensated with ε

−2/3
T k5/3.

For PrM = 0.02 and 0.01, the kinetic energy spectra show
a clear bottleneck effect, i.e., there is a weak uprise of the
compensated spectra toward the dissipative subrange (Falkovich
1994; Kaneda et al. 2003; Dobler et al. 2003). The compensated

Figure 3. Root-mean-square velocity, ratio of magnetic to kinetic energy, as
well as the ratio of magnetic to kinetic energy dissipation for the run with
PrM = 0.02 using 5123 mesh points. In the last two panels the dashed lines
denote normalization with respect to the instantaneous values of Beq and εK ,
respectively, while the solid lines refer to normalizations based on the time-
averaged values of Beq and εK .

magnetic energy spectra peak around k = 20k1. Toward
both larger and smaller values of k there is no clear power-
law behavior. The slopes of the k−11/3 spectrum of Golitsyn
(1960) and Moffatt (1961) and the scale-invariant k−1 spectrum
(Ruzmaikin & Shukurov 1982; Kleeorin & Rogachevskii 1994;
Kleeorin et al. 1996) are shown for comparison.

It turns out that for small values of PrM , dynamo action is
maintained for ReM ≈ 160, corresponding to Re ≈ 7800.
This value of Re is rather large for a resolution of 5123

mesh points and one must be concerned about insufficient
resolution. Similar circumstances were encountered previously
in connection with simulations of large-scale dynamos at low
values of PrM (Brandenburg 2009), and even at large values
of PrM (Brandenburg 2011). In the former case, much of the
energy dissipation occurs magnetically via Joule dissipation,
thus leaving very little energy in the rest of the kinetic energy
cascade. This allows us then to decrease ν further, while
still allowing the remaining kinetic energy to get dissipated.
However, kinetic and magnetic energies are quite intermittent
(uppermost panel of Figure 3) and there can be extended periods
over which the magnetic energy drops well below the kinetic
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Figure 4. Same as Figure 3, but for the run with PrM = 0.01.

energy. Nevertheless, the magnetic energy dissipation is still in
excess of the kinetic energy dissipation; see Figure 3.

For PrM = 0.01, the nominal value of Re is 16,000.
The kinetic energy spectrum now extends further to higher
wavenumbers, but it shows still a monotonic decrease down
to the Nyquist wavenumber at k = 256k1. As can be seen
from Table 1, the nominal dissipation wavenumber, kK , is now
well outside the range of resolved wavenumbers, so it is clear
that higher resolution would be needed to resolve the smallest
scales properly. However, as far as the dynamo is concerned,
most of the magnetic field generation occurs at wavenumbers
below 30k1, which is where the compensated magnetic energy
spectrum begins to show a clear decline into the dissipation
subrange. Until that wavenumber, significant amounts of kinetic
energy are being channeled into magnetic energy via the
dynamo, which lowers the kinetic energy dissipation and is
the main reason for being able to run such low-PrM cases.

The velocity field is relatively steady over the course of
the simulation, but the magnetic field and also the magnetic
energy dissipation vary significantly; see Figure 4. However,
although there can occasionally be a dramatic decline in the
magnetic field, it tends to recover subsequently, suggesting
that dynamo action is still possible at small values of PrM .
Obviously, in addition to longer run times, it is necessary to
perform simulations at higher resolution, which is not currently
feasible if one wants to cover sufficiently many turnover times.

We have already argued that the somewhat erratic behavior
of the dynamo at ReM = 160 is a consequence of being close
to the marginal value. The time evolution for the case with
ReM = 220 and PrM = 0.02 is shown in Figure 5. Both
Brms and εK are now much closer to being statistically steady.
Furthermore, the value of Brms/Beq is now ≈ 0.3 both for
PrM = 0.1 and for PrM = 0.02. This suggests that the saturation
level of the dynamo is now beginning to be independent of the
value of PrM .

Earlier work on large-scale dynamos from helical isotropic
turbulence showed that the total magnetic energy dissipa-
tion is larger than in hydrodynamic turbulence. This is best

Figure 5. Similar to Figure 3, but for the run with ReM = 220, still using
PrM = 0.02.

Figure 6. PrM dependence of the dimensionless dissipation rate, Cε , and the
kinetic to magnetic energy dissipation ratio, εK/εM .

demonstrated by considering the conventionally defined dimen-
sionless dissipation parameter

Cε = εT

U 3/L
, (6)

where U is the one-dimensional rms velocity, which is related
to urms via U 2 = u2

rms/3, and L is the integral scale which is
related to kf via 3

4π/kf . In non-helical turbulence this value
is typically around 0.5 (see, e.g., Pearson et al. 2004), but in
helical turbulence with large-scale dynamo action this value is
around 1.4; see also Brandenburg (2011). In Figure 6 we use
time-averaged dissipation rates, which, for simplicity, are also
denoted by εK , εM , and εT . In the upper panel of Figure 6
we show that, in the present case of small-scale dynamo
action from non-helical isotropic turbulence, this value is now
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Figure 7. Evolution of magnetic and kinetic energies in the main run (solid lines)
and after rescaling the magnetic field by a factor of one-tenth (dotted lines).
During the first 100 turnover times, the resulting decay rate is 0.006urmskf .

closer to the hydrodynamic value and is slightly above 0.6 for
PrM = 0.02 and ReM = 220; see the upper panel of Figure 6.
In the lower panel of Figure 6 we see that the ratio εK/εM is
compatible with a Pr0.6

M dependence, as was found earlier for
helical hydromagnetic turbulence (Brandenburg 2009, 2011).
However, for ReM = 160, εK/εM levels off at a constant value
of ≈ 0.4, which is probably an artifact of ReM being too close
to the onset of dynamo action.

3.3. Possibility of Subcritical Dynamo Action

We recall that we have used here the strategy of generat-
ing low-PrM solutions by gradually decreasing ν, and hence
increasing the value of Re. As in the case of helical dynamos
(Brandenburg 2009), the fact that a turbulent self-consistently
generated magnetic field is present helps in reaching these low-
PrM solutions. However, the presence of the magnetic field
also modifies the kinetic energy spectrum and makes it de-
cline slightly more steeply than in the absence of a magnetic
field; see Figure 2. This suggests that the velocity field would
be less rough than in the corresponding case without magnetic
fields. Following the reasoning of Boldyrev & Cattaneo (2004),
this should make the dynamo more easily excited than in the
kinematic case with an infinitesimally weak magnetic field. In
other words, there is the possibility of a subcritical bifurcation
where the dynamo requires a significantly larger value of PrM to
bifurcate from the trivial B = 0 solution than the value needed
to sustain a saturated dynamo.

In order to check this hypothesis, we perform an experiment
where the simulation is continued after having downscaled the
magnetic field by a factor of 10. The result is shown in Figure 7,
where we compare the original simulation with the one restarted
with a 10 times lower field. One sees a gradual decline of the
magnetic field after a brief initial increase of the magnetic field.
This initial increase is a consequence of the reduced feedback
from the Lorentz force, allowing the velocity to increase slightly
above the previous value (see the upper dotted line in Figure 7).
During the next 100 turnover times, the decay rate is about
0.006urmskf , which is about four times smaller than the growth
rate of 0.025urmskf for a non-helical dynamo at PrM = 1 and
Re ≈ 150 (Haugen et al. 2004). However, the field still seems
to recover and shows in the end a behavior comparable to that

without rescaling. This may suggest that at this value of PrM the
dynamo may not be subcritical after all.

The possibility of subcritical dynamo action is well known
in the geodynamo context, where the flow is driven by thermal
or compositional convection (Roberts 1988), and for Keplerian
shear flows (Rincon et al. 2008). Also in the context of dynamos
from forced Taylor–Green flows the possibility of subcritical
dynamos is well known (Ponty et al. 2007). In the present
context, subcriticality is likely to be linked to the steeper kinetic
energy spectrum in the low-PrM regime. However, because
of extended transients, the results for PrM = 0.02 shown in
Figure 7 remain inconclusive. For PrM = 0.1, on the other
hand, Schekochihin et al. (2007) have not seen dynamo action
in the linear regime when ReM = 160.

4. CONCLUSIONS

In the present paper we have extended the work of Iskakov
et al. (2007) and Schekochihin et al. (2007) to the nonlinear
regime of a saturated dynamo. However, while in the former
(linear) case the dynamo shows signs of a depression in the range
0.1 � PrM � 0.2, the nonlinear saturated dynamo is found
to operate almost unimpeded in the range 0.02 � PrM � 1.
Furthermore, unlike the work of Iskakov et al. (2007) and
Schekochihin et al. (2007), who used hyperviscosity, we have
here used regular viscosity with the usual Laplacian diffusion
operator. As in earlier work on helical large-scale dynamos
(Brandenburg 2009), it is possible to reach the regime of low PrM
by restarting the simulations from another one at a larger value
of PrM , which reduces the kinetic dissipation rate proportional
to the square root of PrM . Furthermore, in contrast to helical
large-scale dynamos, where dynamo onset is possible for values
of ReM of the order of unity and independently of the value of
PrM , we have here the situation where the critical value of ReM

may be larger than the value required to sustain the dynamo once
it has saturated. This means that the dynamo could be subcritical
and might possesses a finite amplitude instability at ReM below
and around 160.

We note that the approximate Pr1/2
M scaling of the kinetic to

magnetic energy dissipation ratio, εK/εM , is still not well under-
stood. In view of the definitions of εK and εM in Equation (5), it
is clear that this implies that

ν1/2〈ρW 2〉
η1/2〈μ0 J2〉 = constant (7)

This means that the usually expected scaling for hydrodynamic
turbulence, ν〈ρW 2〉 = constant, or the hydromagnetic scaling
η〈μ0 J2〉 = constant, which has been confirmed for PrM = 1
(see Figure 8 of Candelaresi et al. 2011), is clearly not generally
valid and needs to be reconsidered.

Our results for the magnetic energy spectra are consistent with
those of earlier direct numerical simulations by Schekochihin
et al. (2007) in that there is a short Golitsyn k−11/3 spectrum
near the resistive scale, as well as a short k−1 spectrum on larger
scales. Both properties have also been seen in liquid sodium
experiments (Odier et al. 1998; Bourgoin et al. 2002) as well as
in large eddy simulations (Ponty et al. 2004).

The astrophysical relevance of small-scale dynamo action is
hardly disputed. Even in situations where large-scale dynamo
action is possible, like in the Sun, small-scale magnetic fields
are seen ubiquitously even in the quiet photosphere where there
is no evidence of any effects from the large-scale field (Cattaneo
1999; Vögler & Schüssler 2007; Pietarila Graham et al. 2010; Jin
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et al. 2011). The present work now confirms that the small value
of the Sun’s magnetic Prandtl number may not be a problem
with this proposal. Although one may worry that most of the
simulations presented so far have overestimated the effects of
small-scale dynamo action by having chosen values of PrM of the
order of unity (Brandenburg 2005), it is remarkable that the field
strength decreases only slightly when we decrease PrM from 1 to
0.02, provided ReM is large enough (ReM � 150). Future work
will hopefully clarify further the relative importance of large-
scale and small-scale dynamo action in astrophysical bodies like
the Sun.

Another aspect that needs to be addressed in future simu-
lations concerns the magnetic Prandtl number effects on the
large-scale properties of the turbulence. This concerns in par-
ticular the turbulent diffusion of large-scale magnetic fields, as
can be measured by the quasi-kinematic test-field method, for
example (Brandenburg et al. 2008). Among other things, one
would like to confirm that the turbulent magnetic diffusivity is
not affected by the small-scale magnetic field, which is a stan-
dard result in mean-field theory (Gruzinov & Diamond 1994;
Rädler et al. 2003; Brandenburg & Subramanian 2005). In that
case, if ReM is close to the onset of small-scale dynamo action,
one would expect the turbulent diffusion to be independent of
the value of PrM . However, for large values of ReM , as we have
now seen, the effect of PrM on the small-scale dynamo is less
dramatic. Thus, even if the turbulent magnetic diffusivity was
affected by the small-scale field, the effect could only be weak.
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