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A high-order scheme for direct numerical simulations of turbulent combustion is dis-
cussed. Its implementation in the massively parallel and publicly available PENCIL CODE is val-
idated with the focus on hydrogen combustion. This is the first open source DNS code with
detailed chemistry available. An attempt has been made to present, for the first time, the
full set of evolution and auxiliary equations required for a complete description of single
phase non-isothermal fluid dynamics with detailed chemical reactions. Ignition delay
times (0D) and laminar flame velocities (1D) are calculated and compared with results
from the commercially available Chemkin code. The scheme is verified to be fifth order
in space. Upon doubling the resolution, a 32-fold increase in the accuracy of the flame front
is demonstrated. Finally, also turbulent and spherical flame front velocities are calculated
and the implementation of the non-reflecting so-called Navier–Stokes Characteristic
Boundary Condition is validated in all three directions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Modeling of turbulence is one of the largest research areas within flow mechanics. Turbulent combustion inherits all the
properties of non-reacting turbulent flow. The most important addition is linked to the highly nonlinear reaction processes,
and models for this are called combustion models. Two additional challenges in turbulent combustion are the very sharp
changes in density and differential diffusion of mass and heat.

For combustion processes it is crucial to be able to simulate the mixing of the combustible species correctly. Traditionally
this has been done by means of mixing models in Reynolds Averaged Navier–Stokes (RANS) codes by combining, e.g., the
k � � turbulence model and the eddy dissipation concept (or EDC) ‘‘mixing” model [23,20,22], or in Large Eddy Simulation
(LES) [27] where a sub-grid model is used both for the turbulence and for the scalar mixing. There are however major and
still unresolved problems related to modeling of what happens on the very smallest scales with these methods.

Several RANS codes with detailed chemistry are commercially available [6,12], and there are a huge number of these
codes found as in-house codes at different academic institutions and in many industrial departments around the world.
There are also freely available open source RANS codes with detailed chemistry [19]. The reason for the popularity of RANS
is its low demand on computational resources. Because of this RANS has, for decades, been the most used type of code for
industrial purposes.
. All rights reserved.
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Nevertheless, also LES has increased in popularity during the last years, and this has led, for example, to the inclusion of a
LES module in [12]. Most LES codes for combustion today are, however, in-house codes owned by different academic
institutions.

The most accurate way of simulating turbulent combustion is to use Direct Numerical Simulation (DNS) [27] instead of
RANS or LES. In DNS one resolves the full range of time and length scales of both the turbulence and the chemistry (using
accurate high-order numerical methods for computational efficiency). The problem with DNS is however that it is very re-
source demanding, both on CPU-hours and memory.

In this paper we present the implementation of a detailed chemistry module in a finite-difference code [1] for compress-
ible hydrodynamic flows. The code advances the equations in non-conservative form. The degree of conservation of mass,
momentum and energy can then be used to assess the accuracy of the solution. The code uses six-order centered finite-
differences. For turbulence calculation we normally use the RK3-2N scheme of [32] for the time advancement [5]. This
scheme is of Runge–Kutta type, third order, and it uses only two chunks of memory for each dependent variable. For hydro-
dynamic calculations, the lengths of the time step is calculated based on a number of constraints involving maximum values
of velocity, viscosity, and other quantities on the right-hand sides of the evolution equations. In some cases we use instead a
fifth-oder Runge–Kutta–Fehlberg scheme with an automatic adaptive time step, subject to the aforementioned hydrody-
namic constraints. However, in many cases we found it advantageous to use a fixed time step whose length is estimated
based on earlier trial runs with an automatically calculated time step.

On a typical processor, the cache memory between the CPU and the RAM is not big enough to hold full three-dimensional
data arrays. Therefore, the PENCIL CODE has been designed to evaluate first all the terms on the right-hand sides of the evolution
equations along a one-dimensional subset (pencil) before going to the next pencil. This implies that all derived quantities
exist only along pencils. Only in exceptional cases do we allocate full three-dimensional arrays to keep derived quantities
in memory. However, most of the time, multiple operations including the calculation of derivatives is performed without
using intermediate storage.

As far as we are aware, no open source high-order DNS code with detailed chemistry is currently available. The amount of
man-hours for implementing a fully parallelized DNS code with detailed chemistry is enormous. It is therefore now timely to
make such a code available in the public domain and to encourage further development by a wider range of scientists. Here
we describe the implementation of such a scheme in the PENCIL CODE, which is currently maintained under the google-code
subversion repository, http://pencil-code.googlecode.com/. The code is highly modular and comes with a large selection
of physics modules. It is portable to all commonly used architectures using Unix or Linux operating systems. The code is well
documented and independent of external libraries and any third party licenses. All parts of the code, including the current
chemistry implementation, is therefore explicitly open source code. In particular, there are no pre-compiled binary files.
Consequently there are no licenses required for running any part of the code. It is therefore straightforward to download
the full source code from the original subversion repository on google-code. The Message Passing Interface libraries are
needed when running on multiple processors, but all parts of the code can also run on a single processor without these li-
braries. The integrity of the code is monitored through the automatic execution of a selection of test cases on various plat-
forms at different sites. The detailed history of the code with about 14,000 revisions is accessible.

It should be emphasized that the use of high-order discretization is critical for optimizing the accuracy at a given reso-
lution. Doubling the resolution of a 3D explicit code require 16 times more CPU time, but this increases the accuracy by a
factor of 32. In fact, switching to a derivative module with a tenth order scheme is straightforward and not significantly more
expensive.
2. The equations

In this section we present the governing equations together with the required constituent relations such as the equation
of state and expressions for viscosity, diffusivity and conductivity.

2.1. Governing equations

The continuity equation is solved in the form
D lnq
Dt

¼ �$ � U; ð1Þ
where D=Dt ¼ @=@t þ U � $ is the advective derivative, q is the density, and U is the velocity. The momentum equation is
written in the form
DU
Dt
¼ 1

q
�$pþ Fvsð Þ þ f ; ð2Þ
where p is pressure, f is a volume force (e.g. gravity or a random forcing function),
Fvs ¼ $ � ð2qmSÞ ð3Þ

http://pencil-code.googlecode.com/
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is the viscous force, where Sij ¼ 1
2 ð@Ui=@xj þ @Uj=@xiÞ � 1

3 dijr � U is the trace-less rate of strain tensor. The equation for the
mass fractions of each species is
q
DYk

Dt
¼ �r � Jk þ _xk; ð4Þ
where Y is the mass fraction, J is the diffusive flux, _x is the reaction rate and subscript k refers to species number k. Finally,
the energy equation is
cp �
R
m

� �
D ln T

Dt
¼
X

k

DYk

Dt
R

mk
� hk

T

� �
� R

m
r � Uþ 2mS2

T
�r � q

qT
; ð5Þ
where T is the temperature, cp is the heat capacity at constant pressure, R is the universal gas constant, h is the enthalpy, m is
the molar mass, and q is the heat flux. The reason for solving for the temperature directly, instead of, e.g., the total energy, is
to avoid having to find the temperature from the total energy afterwards. In this work we use the ideal gas equation state
given by
p ¼ qRT
m

: ð6Þ
In the following we discuss the detailed expressions for viscosity, reaction rate, species diffusion, thermal conduction, en-
thalpy and heat capacity.

2.2. Viscosity

The viscosity m is the viscosity of the mixture given by [30]
m ¼
XNs

k¼1

XkmkPNs
j¼1XjUkj

; ð7Þ
where Ns is the number of species, mk is the single component viscosity, Xk = Ykm/mk is the mole fraction of species k, and
Ukj ¼
1ffiffiffi
8
p 1þmk

mj

� ��1=2

1þ mk

mj

� �1=2 mj

mk

� �1=4
( )2

: ð8Þ
The single component viscosity is given as [8]
mk ¼
5

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkBTmk

p
pr2

kX
ð2;2Þ�
k

; ð9Þ
where rk is the Lennard–Jones collision diameter, kB is the Boltzmann constant, and Xð2;2Þ�k is the collision integral that is
given by [25]
Xð2;2Þ�k ¼ Xð2;2Þ�L�J;k þ
0:2d�k

T�k
; ð10Þ
where Xð2;2Þ�L�J;k is the Lennard–Jones collision integral and
d�k ¼
l2

k

2�kr3
k

; T�k ¼
kBT
�k

ð11Þ
are the reduced dipole moment and temperature, respectively. In the above equations, �k is the Lennard–Jones potential well
depth and lk is the dipole moment.

The values of �k, lk and rk must be given as input [24], while the Lennard–Jones collision integral is represented by
Xð2;2Þ�L�J;k ¼
X7

i¼0

að2Þi ðln T�kÞ
i

" #�1

; ð12Þ
where the coefficients að2Þi are found from Table 1.

2.3. Reaction rate

The reaction rate of species k is given by
_xk ¼ mk

XNr

s¼1

ðm00ks � m0ksÞ
qk

mk

� �PNs
i¼1
ðm0

ki
Þ

kþs
YNs

j¼1

X
m0

js

j �
qk

mk

� �PNs
i¼1
ðm00

ki
Þ

k�s
YNs

j¼1

X
m00

js

j

24 35; ð13Þ



Table 1
The ai coefficients are used in Eqs. (12) and (20) and are taken from the paper of [10].

i að1Þi að2Þi

0 6.96945701 � 10�1 6.33225679 � 10�1

1 3.39628861 � 10�1 3.14473541 � 10�1

2 1.32575555 � 10�2 1.78229325 � 10�2

3 �3.41509659 � 10�2 �3.99489493 � 10�2

4 7.71359429 � 10�3 8.98483088 � 10�3

5 6.16106168 � 10�4 7.00167217 � 10�4

6 �3.27101257 � 10�4 �3.82733808 � 10�4

7 2.51567029 � 10�5 2.97208112 � 10�5
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where Nr is the number of chemical reactions, mk is the molar mass of species k, pk is the partial pressure of species k, nk = qk/
mk is the molar concentration of species k, and qk is the density of species k. Furthermore, m0ks and m00ks are the stoichiometric
coefficients of species k of reaction s on the reactant and product side, respectively. The rates of reaction s are given by the
Arrhenius expression
ks ¼ BnTan expð�Ean=RTÞ; ð14Þ
where Bn is the pre-exponential factor, an is the temperature exponent, and Ean is the activation energy and they are all
empirical coefficients that are given by the kinetic mechanism. For hydrogen-air combustion, an example of a kinetic mech-
anism is found in [17].

2.4. Species diffusion

The diffusion flux is Jk = qYkVk. Following [31], the diffusion velocity, Vk, is found by solving
$Xp ¼
XNs

k¼1

XpXk

Dpk
Vk � Vp
� �

þ Yp � Xp
� �$p

p
þ q

p

XNs

k¼1

YpYkðfp � fkÞ; ð15Þ
where the Soret effect is neglected. The first term on the right-hand side corresponds to ordinary diffusion, the second term
is the so-called baro-diffusion, while the last term is due to unequal body-forces per unit mass among the species. Unfortu-
nately the CPU cost of solving Eq. (15) numerically scales as N2

s for each grid point and time step, and simplifications are
therefore required in order to be able to run reasonably sized simulations.

In the mixture averaged approximation the diffusion velocity is expressed as [16]
Vk ¼ �
Dkdk

Xk
; dk ¼ $Xk þ ðXk � YkÞ

1
p

$p; ð16Þ
where the body force term has been neglected, Dk is the diffusion coefficient for species k
Dk ¼
1� YkPNs
j–kXj=Djk

; ð17Þ
and Dkj is the binary diffusion coefficient that is given by [16]
Dkj ¼
3

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk3

BT3=mjk

q
Ppr2

jkX
ð1;1Þ�
jk

; ð18Þ
where rjk = (rj + rk)/2 is the reduced collision diameter, mjk is the reduced molecular mass for the (j,k) species pair
mjk ¼
mjmk

mj þmk
; ð19Þ
X(1,1)* is the collision integral that is given by [10]
Xð1;1Þ�jk ¼ Xð1;1Þ�L�J þ
0:19d�jk

T�jk
; Xð1;1Þ�L�J ¼

X7

i¼0

að1Þi ðln T�Þi
" #�1

; ð20Þ
where the coefficients að1Þi are also found from Table 1. The reduced dipole moment and the reduced temperature are given
by
d�jk ¼
1
2
l�2jk and T�jk ¼

kBT
�jk

; ð21Þ
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respectively, where l�2jk ¼ l�j l�k is the nondimensional 2-species dipole moment, �jk ¼
ffiffiffiffiffiffiffiffi
�j�k
p

is the 2-species Lennard–Jones

potential, and l�k ¼ lk=
ffiffiffiffiffiffiffiffiffiffi
�kr3

k

q
is the nondimensional dipole moment.

2.5. Thermal conduction

The heat flux is given by
q ¼
X

k

hkJk � k$T; ð22Þ
where k is the thermal conductivity, which is found from the thermal conductivities of the individual species as
k ¼ 1
2

XNs

k¼1

Xkkk þ
1PNs

k¼1Xk=kk

 !
: ð23Þ
Here, the individual species conductivities are composed of transitional, rotational and vibrational contributions and are
given by [29]
kk ¼
mk

mk
ðftrans:Cv ;trans: þ frot:Cv;rot: þ fvib:Cv;vib:Þ: ð24Þ
2.6. Enthalpy and heat capacity

The enthalpy of the ideal gas mixture can be expressed in terms of isobaric specific heat cp and temperature as
hi ¼ h0
i þ

Z T

T0

cp;idT; h ¼
XNs

i¼1

Yihi; ð25Þ
where h0
i is the enthalpy of formation of species i at temperature T0.

To calculate the heat capacity cp we use a Taylor expansion,
cp ¼
R
m

X5

i¼1

aiT
i�1; ð26Þ
where ai are coefficients found in [15].

3. Scaling in the Pencil Code

3.1. General remarks

For direct numerical simulations (DNS) it is crucial to have high accuracy. This is due to the fact that we are interested in
resolving the smallest scales, and consequently we can not allow for these scales to be lost due to low accuracy. Furthermore,
for many situations it is important to know the actual Reynolds number of the simulation. The Reynolds number is defined
as:
Re ¼ ul
m
; ð27Þ
where u and l are characteristic velocity and length scale, respectively, and m is the viscosity. High accuracy is obtained by the
use of high-order discretization. In the PENCIL CODE, sixth-order discretization is normally used [4]. However, for the density a
fifth order upwinding scheme is used.

3.2. One-step reaction model, R ? P

In order to verify that the code recovers correct scaling, we use simplified chemistry and compare against known results.
Following Doom et al. [9], we consider a one-step laminar premixed flame model. The irreversible reaction can be presented
as R ? P, where R is the reactant and P is a product. Using the approach of Ferziger and Echekki [11], we neglect viscous
damping effects in the energy equation, and take q, k, Cp and the x-component of the velocity to be constant. Then the system
of equations takes the form
@Yp

@t
þ Ux

@Yp

@x
¼ 1

Le
@2/
@x2 þ _X; ð28Þ

@ ln T
@t
þ Ux

@ ln T
@x

¼ �qU2
x Cpbðb� 1Þ

k
ðT1 � T0Þ

T
þ k

qCpT
@2T
@x2 ; ð29Þ
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where the reaction rate is defined as:
Fig. 1.
Right pa
indicate
_X ¼ qU2
x Cpk

�1bðb� 1Þð1� YpÞ if T > Tc

0 otherwise;

(
ð30Þ
where b = (T1 � T0)/(T1 � Tc), while T0 and T1 are the temperature of the unburned and burned gas, respectively, Tc is the
critical temperature, Yp is a mass fraction of the product, Le = k/(qD Cp) is the Lewis number, D is the mass diffusion coeffi-
cient. Taking Le = 1, one obtains the following analytical solution
eT ¼ 1� b�1 expðx=dÞ if x < 0;
1� b�1 exp½ð1� bÞx=d� otherwise;

(
ð31Þ
where ~T ¼ ðT � T0Þ=ðT1 � T0Þ and d = k/(qU Cp) is a characteristic thickness.
In the left hand plot of Fig. 1 we compare the numerical results with the analytical solution for T0 = 300 K, T1 = 2000 K,

Tc = 440 K, b = 1.09, Cp = 108 erg g�1 K�1, k = 104 erg cm�1 K�1 s�1, D = 2 cm2 s�1, q = 5 � 10�4 g cm�3 and Ux = 100 cm s�1. It
can be seen that there is good agreement between the numerical and analytical results. To show the high-order spatial accu-
racy provided by the Pencil Code, we obtain the set of solutions for 33, 65, 129, 257, 513 and 1025 grid points, and compare
them pairwise (‘‘33” with ‘‘65”, ‘‘65” with ‘‘129” and so on). In every pair we compare only the points which are collocated,
that is, we do the comparison for all the grid points of the coarser grid against half of the grid points of the finer grid. The
time step is controlled by the chemistry and is here fixed at dt = 10�8 s. The size of the domain is 3 cm. The maximum abso-
lute value of the difference between the corresponding solutions in common points is taken as the error. In the right-hand
panel of Fig. 1 the error as a function of dx is shown by the symbols. One can see that sixth-order accuracy is obtained (see
solid line).
3.3. One-dimensional premixed flame with the Li mechanism

In this section we study a one-dimensional problem with detailed chemistry. We consider hydrogen-air combustion using
the Li mechanism [17]. The fresh hydrogen-air mixture enters the domain under stoichiometric conditions
(YH2 ¼ 2:4%; YO2 ¼ 23% and YN2 ¼ 74:6%) at a temperature of Tu = 298 K and a pressure of p = 1 atm. To avoid reflection
of acoustic waves at the boundaries non-reflecting boundary conditions are required. Here the Navier–Stokes Characteristic
Boundary Conditions (NSCBC) [26,18] have been used.

To check the spatial accuracy in the case of the Li mechanism, we perform numerical experiment as described in Section
3.2 for 65, 129, 257, 513, 1025 and 2049 grid points. The time step is fixed at dt = 10�10 s. The error as a function of dx is
presented in Fig. 2, where one can see that the fifth order spatial accuracy is achieved. The reason we get only fifth order,
and not sixth-order, is that we are using upwinding for the density, which has the effect of decreasing the order of the dis-
cretization to fifth order [5].
One-step laminar premixed flame model. Left panel: temperature as a function of x obtained numerically (solid curve) and analytically (asterisks).
nel: error of the calculation as a function of the mesh spacing dx is shown by asterisks, and the expected dependence of error (proportional to dx6) is
d by the solid line.
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4. Validation of the chemistry implementation

In this section the chemistry module will be verified quantitatively by comparison with the commercially available sim-
ulation tool [7].

We describe several test samples that have been selected to verify the following aspects of the code:

� Detailed chemistry implementation. This is a perfectly local problem. As the chemical reactions and variable mixture energy
equations are an entirely new implementation it is crucial to verify its implementation separately. The optimal test is
then to consider a zero-dimensional constant volume simulation as this ignores the momentum and continuity equations.
� Multiple species transport coefficients. Having verified the non-diffusive parts of the equations it is important to verify that

all the transport coefficients are found correctly. This is best done by running a laminar flame front simulation, which is
most easily done in one dimension.
� Applicability to a fully three-dimensional problem. Finally, it is useful to demonstrate applicability and scalability of the code

in the case of a fully three-dimensional problem.

The first two aspects will be considered in this section, while the last aspect will be dealt with in Section 5.

4.1. Zero-dimensional test: ignition delay

First a zero-dimensional ignition delay test for different chemical mechanisms is studied and compared with the results
obtained with Chemkin for the same setup. One assumes hydrogen-air combustion in a closed homogeneous reactor at con-
stant volume, and consider the 6-step and 8-step mechanisms of [28] together with the Li mechanism [17]. The initial values
are p = 1 atm for the pressure, / = 1 for the equivalence ratio, and T = 1200 K for the temperature. As the minimum time step
varies greatly with the progress of the combustion process the time step is here chosen automatically using the adaptive
Runge–Kutta–Fehlberg method. The results are presented in Fig. 3, where one can see good agreement with the Chemkin
results.

4.2. One-dimensional test: laminar flame speed

Next, we consider a one-dimensional flame front. The cold premixed gas enters at one end of the domain at given velocity.
Inside the domain there is a flame front where the fuel is consumed and the temperature increases to the mixture flame tem-
perature. The mechanism of [17] is used and the inlet values of temperature, pressure and mixture compositions are the
same as described in Section 3.3. The inlet velocity is adjusted such that the flame front becomes stationary inside the do-
main. The flame velocity is thus arranged to be equal to the inlet velocity.

We find that the flame front should be resolved by at least 10 grid points in order to ensure a well resolved flame. For a
thickness of the flame front of about 0.01 cm, and a domain of Dx = 0.1 cm, the optimal grid size is found to be 150 points.
The flame speed as a function of pressure is shown in Fig. 4 where the current results are found to compare well with those of
Chemkin.
Fig. 2. Accuracy of calculation as a function of dx for the Li mechanism. An error of calculations as a function of the mesh spacing dx is shown by asterisks,
and the solid line is the dependence of the error, which is proportional to dx5.



Fig. 3. Dependence of the gas temperature on time, computed with the 6-step mechanism (diamonds), the 8-step mechanism (asterisks), and the Li
mechanism (triangles). The numerical results are compared with Chemkin for the 6-step mechanism (three doted–dashed curve), for the 8-step mechanism
(doted–dashed curve), and for the Li mechanism (solid curve).
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5. Three-dimensional flame front simulations

5.1. Plane flame front

In this section we study a three-dimensional representation of the initially flat flame front. The settings of the problem is
similar to that in Section 4.2, i.e. initially the temperature, density and velocity change in the x direction, and are constant in
the y and z directions. We use periodic boundary conditions in the y and z directions, and in the x direction we use inlet and
outlet NSCBC boundary conditions on the left and right-hand sides, respectively, as was done in [18]. The pressure is
p = 1 bar, the initial gas temperature is T = 750 K, and the inlet velocity is 30 m s�1. The unburned gas mixture has an
equivalence ratio of / = 0.8. The size of the calculated domain is taken to be 0.5 � 0.25 � 0.25 cm3, and the grid size is
(128 � 64 � 64).

We study both laminar and turbulent regimes. In the laminar regime we check that the obtained flame speed is the same
as that in the one-dimensional problem. In the turbulent case we set the turbulent inlet flux as follows. First, we consider an
isothermal box with periodic boundary conditions. Initially the density and velocity fields in the box are taken to be constant.
We use a forcing function in Eq. (2) similar to that used in Brandenburg [3],
Fig. 4. Flame speed velocity as a function of pressure p. Chemkin results are shown by asterisks.
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f ðx; tÞ ¼ RefNfkðtÞ exp½ikðtÞ � x� þ iuðtÞg; ð32Þ
where k(t) is a time-dependent wavevector with kf = hjkji being its average value that is the chosen to be 1.5 times the min-
imal wavenumber that fits into the domain, and u(t) is a random phase. The prefactor N = f0cs(kf cs0/dt)1/2 is chosen on
dimensional grounds, cs0 is a reference sound speed, and f0 is a nondimensional factor that it chosen to regulate the strength
of the turbulence.

The simulation is run until the turbulence is statistically stationary. This box of statistically stationary isotropic turbu-
lence is then used as the inlet condition for the simulation of the turbulent flame front. The values of a two-dimensional slice
from the box (perpendicular to the main stream) are used as the instantaneous inlet velocity, and the slice is changed as a
function of time to represent a real inlet.

For the test case shown here the turbulent intensity is 7 times larger than the laminar flame velocity SL = 10.2 m s�1. We
find that for the mean inlet velocity 3SL the flame is nearly stationary inside the domain. This indicates that the turbulent
flame velocity in this case is around 3SL. However, it is hard to determine the turbulent flame speed precisely, because it
is difficult to make the flame perfectly stationary inside the domain. This is partly because of the fact that between inlet
and outlet the turbulence is decaying. Far from the inlet the turbulence is weaker than close to the inlet, whereas the tur-
bulent flame speed increases with the turbulent intensity. As a result, the flame which is already far from the inlet tends to
move even further downstream and the flame brush becomes broader.

In Fig. 5 one can see that the H2 fuel (on the left hand side of the domain) is all consumed over the flame brush. The thick-
ness of the flame brush is of the order of half the box length (2.5 mm) and is slightly smaller than the integral scale of the
turbulence. The mass fraction of OH is shown in the right-hand figure. It is clearly seen that OH does not burn out after the
flame, but due to the very high temperatures downstream of the flame front the mass fraction of OH stays rather constant.
For HO2 the situation is however rather different and it exists only in the neighborhood of the reaction zone of the flame (see
the left hand figure of Fig. 6). This indicates that HO2 might be used as an indicator of the reaction zone. In the right-hand
figure the temperature is shown to increase from 750 K to 1984 K, but the maximum value will increase even more down-
stream of the box due to radical reconnection.

In addition, we find that the turbulence is damped behind the flame front, and the burnt gas stream looks much more
laminar there (not shown here). This happens because the values of temperature and hence also viscosity of the burnt
gas are much larger than those of the unburned mixture.

5.1.1. Timings
As DNS is very CPU intensive, it is crucial that the timings are as good as possible. The current setup has been tested on a

single processor with different chemistry and transport data, and the results are presented in Table 2. Run A, with the full Li
mechanism and mixture averaged transport coefficients, use the most resources, as expected. By simplifying the transport
data [21] (Run B), Eq. (17) is substituted by
Dk ¼ D0
Tn

q
; ð33Þ
and Eq. (23) is substituted by
k ¼ qcpj0Tn; ð34Þ
where n = 0.7 and D0 = j0 = 2.9 � 10�5 g/(s cm Kn) leading to a 28% reduction in CPU consumption. Lets now turn off reac-
tions, but still keeping all the 13 species (Run D), and an additional 53% reduction is achieved.
Fig. 5. Instantaneous mass fractions of H2 (left panel) and OH (right panel). Unburnt turbulent gas in injected on the left.



Fig. 6. As Fig. 5, but for the instantaneous mass fraction of HO2 (left panel) and temperature (right panel).

Table 2
Timings s in microseconds per time step, Nt, per grid point Ng.

Run Mechanism Number of species Transport s [ls/Nt/Ng]

A Li 13 Mix-aver. 71.3
B Li 13 Oran 51.7
C No 13 Mix-aver. 42.1
D No 13 Oran 24.3
E No 0 Const. 1.2
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For comparison, Run E is shown in order to see how much is gained by solving only the Navier–Stokes equation together
with the continuity equation, assuming an isothermal medium with transport coefficients and thermodynamics such that all
species can be neglected. It is seen that this is 20 times faster than Run D. This large difference is due to the fact that for Run E
only 4 equations are solved, in contrast to the 18 equations for run D. Furthermore, and even more importantly, the time
consuming process of determining the thermodynamics, such as enthalpy and heat capacity, together with the calculation
of the viscosity, is omitted.

5.2. Spherical flame front

A study of the spherical and cylindrical flames is important because these cases are useful for determining important
parameters in premixed combustion such as burning velocity, flame stretch rate, and flame curvature. There is a lot of
numerical and experimental research in this area [13]. The most important difficulty in the numerical approach is the large
computational demand. The typical mesh size has to be dx = 40 � 60 lm [14], i.e. for a cube of 3 cm3 one needs about 5003

grid points and ideally 512 processors.
For illustration purposes we consider a smaller cube (1 cm3), centered at the reference point with the hot spherical spot in

its center (see Fig. 7). The initial hydrogen-air mixture with YH2 ¼ 2:4%; YO2 ¼ 23% and YN2 ¼ 74:6% is under a pressure of
p = 1 bar. We use NSCBC boundary conditions, take a grid size of (80 � 80 � 80), and 25 processors on the Cray XT4/XT5. The
results are presented in Figs. 8 and 7. The 3D images of the hot spot at the different moments (at t = 0 s and t = 1.2 � 10�4 s)
are presented in Fig. 8. In Fig. 7 one sees that the gas is burned in the center and then the flame front is expanding symmet-
rically in all three directions.

This problem is also used as a good test for the fully three-dimensional NSCBC boundary conditions. We tested the
implemented NSCBC boundary condition both for laminar and turbulent regimes. In the laminar case we find that due
to the full NSCBC boundary conditions [18] the code runs well up to the moment when the flame front comes to the
domain boundaries. In the turbulent regime the problems appear near the corners and edges of the domain because of
the eddies at the boundaries. We avoid such a problem by using buffer (or sponge) zones (for details see [2]). We add
the term to the right-hand side of the momentum equation
DVj
i

Dt
¼ � � � � Vj

i � V ref;i

s
fðxiÞ; j ¼ 1; . . . ;Ni; ð35Þ
where j denotes the meshpoint and Ni is total number of grid points in the i direction, and dots indicate the presence of terms
that where already specified in Eq. (2), f(xi) is equal to zero everywhere except in the buffer zones where it is equal to unity.
The length of the buffer zone is 10 % of the domain, and we choose s = 5dt and Vref,i = 0.



Fig. 7. Temperature as a function of x coordinate in the mid-plane of the box at t = 0 s (dashed curve), t = 10�4 s (dotted-dashed curve) and t = 1.9 � 10�4 s
(solid curve).

Fig. 8. Three-dimensional representation of the hot spot at moment t = 0 s (left panel) and t = 1.2 � 10�4 s (right panel).
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6. Conclusions

In this paper we have presented a high-order public domain code for direct numerical simulation of compressible flows
with detailed chemical reactions. The PENCIL CODE provides sixth-order spatial accuracy in the simple one-step reaction case,
and fifth order accuracy in the case where upwinding for density advection is necessary. We have demonstrated that dou-
bling the resolution leads respectively to a 64-fold or a 32-fold increase in the precision of the resulting functional form. For
validation purposes we compare our results with the Chemkin tool for 0D and 1D test problems, and show that they are in
good agreement. Finally, we calculate the flame speed in 3D both in laminar and turbulent cases.

Some of the cases described in the text, including those with a turbulent inlet, are available among the many sample cases
that come with the code. For the benefit of the community, it is advantageous if prospective contributers to the code ask one
of the code owners listed on http://pencil-code.googlecode.com/ to obtain permission as a committer.
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