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SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND

Axel Brandenburg
1,2

, Kandaswamy Subramanian
3
, André Balogh
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ABSTRACT

We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses
mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar
wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus
et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field
time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption
that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study.
The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor,
while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a
sign change of magnetic helicity at wavenumber k ≈ 2 AU−1 (or frequency ν ≈ 2 μHz) at distances below 2.8 AU
and at k ≈ 30 AU−1 (or ν ≈ 25 μHz) at larger distances. At small scales the magnetic helicity is positive at northern
heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to
be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface.
Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated
separately over one hemisphere amounts to about 1045 Mx2 cycle−1 at large scales and to a three times lower value
at smaller scales.
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1. INTRODUCTION

Over the past 30 years, there has been considerable activity in
estimating magnetic and current helicities of the Sun’s magnetic
field both at the surface (Seehafer 1990; Pevtsov et al. 1995;
Bao et al. 1999; Pevtsov & Latushko 2000) as well as in the
solar wind (Matthaeus et al. 1982; Rust & Kumar 1994, 1996)
using a variety of spacecraft, in particular Voyager 2. The early
motivation of Seehafer (1990) was the connection with the α
effect in mean-field dynamo theory. Subsequent work confirmed
his early findings that the current helicity has a negative sign in
the northern hemisphere and a positive in the southern. This also
agreed with expectations according to which current helicity is
a proxy for kinetic helicity (Keinigs 1983), which is known to
be negative for cyclonic events in the northern hemisphere and
positive in the southern.

Later work in connection with dynamo theory in periodic
domains clarified that a correspondence between kinetic and
current helicities can only be expected to hold at and below the
scale of the energy-carrying eddies of the turbulence, because at
larger scales the signs of current and magnetic helicities should
reverse (Brandenburg 2001). This is connected with magnetic
helicity evolution and the fact that in α effect dynamos magnetic
helicity at large and small scales tends to have opposite signs
(Seehafer 1996; Ji 1999). If magnetic helicity fluxes and resistive
effects are weak or unimportant, e.g., in the kinematic regime of
a growing dynamo, the total magnetic helicity is constant or zero
if it was zero initially. The production of magnetic helicity at
the scale of the energy-carrying eddies is then accompanied by
the production of magnetic and current helicity of the opposite

sign at scales larger than the scale of the energy-carrying eddies.
There is a similar tendency also when the total magnetic helicity
is not conserved, e.g., on long timescales when resistive effects
become important or if magnetic helicity fluxes are present.
Thus, there are good theoretical reasons to expect that the
magnetic field in the Sun is bi-helical, i.e., of opposite sign at
small and large length scales (Blackman & Brandenburg 2003).

We emphasize that “small” refers here to the scale of the
energy-carrying eddies, which is also called the outer scale—in
contrast to the inner scale where kinetic and magnetic energies
get dissipated. In the Sun the outer scale can be as large as
50 Mm, which corresponds to the pressure scale height near the
bottom of the solar convection zone. On the other hand, “large”
refers to the scale of the mean field that characterizes the solar
cycle. The width of the toroidal flux belts, i.e., the width of the
wings of the butterflies in a solar butterfly diagram is about 20◦,
corresponding to about 200 Mm in the Sun. In any case, the scale
of the large-scale field is finite, i.e., such a field is still subject to
decay and possible regeneration by dynamo action, and should
thus not be confused with an “imposed” magnetic field. The
latter case is sometimes considered in numerical simulations,
where the departure from an imposed field corresponds to the
small-scale field whose helicity is not conserved on its own
(Stribling et al. 1995; Berger 1997; Brandenburg & Matthaeus
2004). Let us also mention at this point that the magnetic helicity
is quadratic in the magnetic field, so it is not expected to flip
sign from one cycle to the next, although it may of course vary
in strength.

The bi-helical nature of the magnetic field has been the
topic of related work by Yousef & Brandenburg (2003), who
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investigated the relaxation of an initially bi-helical field and
the mutual annihilation of the two signs of magnetic helicity.
It should be noted that a connection has also been discussed
between the current helicity observed in the Sun and that
obtained from mean-field dynamo models (Seehafer 1990;
Dikpati & Gilman 2001). Furthermore, Choudhuri et al. (2004)
find mostly negative current helicity in the north, except that
during short intervals at the beginning of each cycle the current
helicity in the north can be positive, while Zhang et al. (2006)
find a band of negative current helicity at mid-latitudes and
positive values at higher and lower latitudes. However, these
papers ignored the possibility that the magnetic field in each
hemisphere is expected to be bi-helical. The first observational
evidence for a reversed sign of magnetic helicity at large scales
came from an analysis of synoptic maps of the radial magnetic
field of the Sun (Brandenburg et al. 2003). They found a sign
reversal of magnetic helicity at the time of solar maximum with
positive values after that moment.

There is yet another reason for studying magnetic helicity
in the Sun. Magnetic helicity is a topological invariant that is
equal to half the number of constructive flux rope crossings
times the square of the magnetic flux in these ropes (Moffatt
1969). Magnetic helicity is therefore a measure of the degree
of tangledness. It might then be possible to assess the degree
of tangledness by counting the net crossings of filaments in Hα
images of the Sun (Chae 2000), although this technique leaves
some ambiguity regarding the sign of the magnetic helicity.
Other ways of measuring magnetic helicity and their fluxes are
by tracking the motions at the solar surface (Kusano et al. 2002;
Démoulin & Berger 2003), which led to the estimate that the to-
tal flux of magnetic helicity in each hemisphere, integrated over
a full 11 year cycle, is of the order of 1046 Mx2 cycle−1 (Berger
& Ruzmaikin 2000). This number agrees also with theoretical
expectations of an upper limit of this value (Brandenburg &
Sandin 2004; Brandenburg 2009). However, there is no indica-
tion as to a possible scale dependence of the magnetic helicity.
The only evidence for this is just the qualitative appearance of a
systematic tilt of bipolar regions. This tilt corresponds to writhe
helicity, which is a quantity that depends only on the topology of
the axis of a flux tube structure. Independent of the time during
the 11 year cycle, it should have a positive sign in the northern
hemisphere and a negative sign in the southern hemisphere, i.e.,
just the opposite of what is observed in the magnetic field line
twist at smaller scales.

The hope is now that measurements of the solar wind might
help teach us something about the scale dependence of the
contribution to the magnetic field that is related to the α effect.
In order for the α effect to work efficiently and to escape
what is known as catastrophic α quenching, negative magnetic
helicity associated with small-scale magnetic fields must be shed
(Blackman & Field 2000; Kleeorin et al. 2000); see Brandenburg
& Subramanian (2005) for a review. This might be accomplished
by coronal mass ejections (Blackman & Brandenburg 2003).
Coronal mass ejection events are manifold, and they are almost
all associated with magnetic helicity (Démoulin et al. 2002), but
concern only the corona and not the solar wind. The large-scale
magnetic field in the solar wind is characterized by the Parker
spiral (Parker 1958). The helicity associated with the Parker
spiral is known to be negative in the northern hemisphere and
positive in the southern (Bieber et al. 1987a)—independent of
the time during the 11 year cycle. Therefore, even though we
would normally associate the Parker spiral with the large-scale
field, its helicity is of opposite sign to the helicity of the large-

scale field generated in the dynamo interior or that expected
from the tilt of the flux tubes near the solar surface. On the other
hand, the sign of the helicity associated with the small-scale field
that needs to be shed does agree with that of the Parker spiral,
although it would seem to be of the wrong scale. Nevertheless,
not much is known about the relationship between magnetic
helicity fluxes and magnetic helicity itself. For example, it is
possible that turbulence in the region outside the dynamo would
continue to diffuse the magnetic field, although it would no
longer amplify it by an α effect. This effect would tend to
reverse the production of bi-helical magnetic fields and would
pump positive magnetic helicity into smaller scales, leaving
behind negative magnetic helicity at larger scales. This could be
interpreted as a forward turbulent cascade, but it is probably
only possible in an expanding flow, so as to not cause a
conflict with the realizability condition that enforces the inverse
transfer in a confined helical flow. This phenomenon was seen
in mean-field calculations with a turbulent exterior (see Figure 7
of Brandenburg et al. 2009) and also in direct numerical
simulations of dynamos in spherical geometry with a nearly
force-free exterior (see Figure 4 of Warnecke et al. 2011a).

To probe quantitatively the possible scale dependence of the
magnetic field, perhaps the best type of analysis is that used in
the early measurements aboard Voyager 2. Making use of the
Taylor hypothesis, Matthaeus et al. (1982) were able to associate
frequencies with wavevectors. Making the further assumption
of homogeneity, they were able to translate the simultaneous
measurement of the two field components perpendicular to
the direction of the wind into information not only about
the magnetic energy spectrum, but, in particular, about the
magnetic helicity spectrum. The background for application
of this technique to the computation of other helicities was
explored further in Matthaeus et al. (1986b).

A possible complication with many of the early results is that
the trajectories of Voyager and other spacecraft were close to
the ecliptic, across which the magnetic helicity is expected to
change sign. However, there are no published spectra that appear
to involve data sets that crossed the heliospheric current sheet.
Nevertheless, the magnetic helicity as found by Matthaeus &
Goldstein (1982) randomly changed sign at all scales, although
Goldstein et al. (1991) did find short intervals during which
the magnetic helicity had a constant sign at scales close to
that of the proton gyroradius. Furthermore, Smith & Bieber
(1993) found that at frequencies below 10 μHz the magnetic
helicity tends to have a predominant sign: negative in the north
and positive in the south, while at higher frequencies there
are strong fluctuations of the sign. However, we shall argue
below that, by averaging over broad wavenumber bins, it is
still possible to extract meaningful information from the data
even at high frequencies. The technique applied by Matthaeus
et al. (1982) appears very suitable for the purpose of assessing
scale dependence of magnetic helicity. The purpose of the
present work is therefore to apply this technique to more recent
measurements of Ulysses that flew in a nearly polar orbit that
covered both hemispheres.

2. DATA ANALYSIS

We use 60 s time averages from the Vector Helium Magne-
tometer on board Ulysses. The original time resolution is up to
2 vectors s−1 and the sensitivity is about 10 pT; see Balogh et al.
(1992) for a detailed description. The available data comprise
measurements of all three components of the magnetic field B
and velocity u in the locally Cartesian heliospheric coordinate
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system (R, T ,N ), where R is the distance from the Sun, T points
in the transverse direction parallel to the solar equatorial plane
and is positive in the direction of solar rotation, and N̂ = R̂ × T̂
is the third direction pointing toward heliographic north. This
corresponds to a right-handed coordinate system. Note that the
R–T plane is inclined to the heliographic equatorial plane by an
angle equal to the heliographic latitude λ of the spacecraft.

We have analyzed 27 data sets comprising a time span of
about one month each and covering different epochs between
1993 and 1996. During 1993/1994, Ulysses was at 39◦–80◦
southern latitudes and distances between 4.3 AU and 1.7 AU,
while during 1995/1996 it was at 43◦–79◦ northern latitudes
and distances between 1.5 AU and 3.5 AU. For each data set,
we determined the average radial wind speed uR, which ranges
between 720 and 790 km s−1. Note that the local wind speed
points almost exactly in the direction away from the Sun.
Using Taylor’s hypothesis, we translate time t into the negative
radial coordinate, R = R0 − uRt , where R0 is the slowly
changing distance of the spacecraft. Next, we compute the
Fourier transform of each of the field components,

B̃i(kR) =
∫

eikRRBi(R) dR, i = R, T ,N, (1)

and are thus able to compute the spectral correlation matrix,

M1D
ij (kR) = B̃i(kR)B̃∗

j (kR), (2)

where the asterisk denotes complex conjugation. The super-
script 1D emphasizes an important difference with the three-
dimensional correlation tensor M3D

ij (k). Before discussing this
in more detail we note that, in practice, M1D

ij (kR) is obtained
from measurements along the R direction. In that case, one com-
putes the one-dimensional magnetic energy and helicity spectra
simply as μ0E

1D
M (kR) = |B̂|2 and H 1D

M (kR) = 4 Im(B̂T B̂�
N )/kR .

These are the equations used by Matthaeus et al. (1982), and we
shall use them for most of this paper as well.

It is well known that no assumption about isotropy is
made in obtaining the one-dimensional magnetic energy and
helicity spectra. However, we should emphasize that, even if the
turbulence were isotropic, the one-dimensional spectra obtained
through direct measurements are not equivalent to the three-
dimensional ones (Tennekes & Lumley 1972). The differences
can become important in regions where the spectra deviate from
pure power-law scaling (Dobler et al. 2003). The purpose of the
rest of this section is to extend the well-known formula for the
conversion between one- and three-dimensional energy spectra
to the case of helicity spectra. To highlight the analogy between
the two, we ignore here the consideration of longitudinal and
transverse energy spectra and make the assumption of isotropy.
This assumption does seem at odds with results obtained in the
ecliptic (see, e.g., Narita et al. 2010; Sahraoui et al. 2010),
but is consistent with an analysis of Ulysses data reported
by Smith (2003). Even though there is near isotropy of the
variances (shown also below), there is no spectral isotropy, so
the correlation length perpendicular to B is shorter than along B.
However, by making the assumption of isotropy, we shall be able
to assess the differences between three- and one-dimensional
spectra. It will turn out that these differences are rather small.

In three-dimensional isotropic helical turbulence, we have

M3D
ij (k) = (δij − k̂i k̂j )

2μ0E
3D
M (k)

8πk2
− εijk

ikkH
3D
M (k)

8πk2
, (3)

where k̂ = k/k is the unit vector of k. Note that these spectra
obey the realizability condition,

2μ0E
3D
M (k) � k

∣∣H 3D
M (k)

∣∣, (4)

where the factor 2 in front of EM(k) is just a consequence of
the factor 1/2 in the definition of energy. The two spectra are
normalized such that

∫
δijM

3D
ij (k) d3k =

∫ ∞

0
μ0E

3D
M (k) dk = 〈B2〉/2, (5)

∫
εij l

ikl

k2
M3D

ij (k) d3k =
∫ ∞

0
H 3D

M (k) dk = 〈A · B〉, (6)

where B = ∇ × A is the magnetic field expressed in terms
of the magnetic vector potential A, which obeys the Coulomb
gauge, ∇ · A = 0, and angular brackets denote averaging over
the data spanned by each data set.

Let us now relate M3D
ij (k) to M1D

ij (kR). Suppose M3D
ij (k) were

known, then, to improve the statistics, one can obtain M1D
ij (kR)

from M3D
ij (k) by averaging over the other two wavevector

components, i.e.,

M1D
ij (kR) =

∫
M3D

ij (kR, kT , kN ) dkT dkN . (7)

We define one-dimensional energy and helicity spectra via

δijM
1D
ij (kR) = μ0E

1D
M (kR), (8)

2εijR(ikR)−1M1D
ij (kR) = H 1D

M (kR), (9)

and note that they are related to the three-dimensional energy
and helicity spectra via an integral transformation

E1D
M (kR) =

∫ ∞

kR

E3D
M (k) d ln k, (10)

H 1D
M (kR) =

∫ ∞

kR

H 3D
M (k) d ln k. (11)

This transformation is well known for the energy spectrum (cf.
Tennekes & Lumley 1972; Dobler et al. 2003), but has been
generalized here to the case with helicity; see the Appendix for
details of the derivation. In the following, we present results
first for E1D

M and H 1D
M and compute then the three-dimensional

spectra via differentiation, i.e.,

E3D
M (k) = −dE1D

M (k)/d ln k, (12)

H 3D
M (k) = −dH1D

M (k)/d ln k. (13)

Note, however, that differentiation amplifies the error in the
already rather noisy data. Therefore, we perform differentiation
based on data that have been averaged into rather broad
wavenumber bins. We use a second-order midpoint formula
with respect to ln k bins. This yields data at k values that lie
between those for the one-dimensional spectra. In the following,
where we present mostly one-dimensional spectra, we omit
the superscript 1D, but retain the superscript 3D for all three-
dimensional spectra.
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Figure 1. Magnetic energy density and magnetic luminosity as a function of
distance. Note that the decay of magnetic energy is slightly faster than ∝ R−2

and that the magnetic “luminosity” varies in the range (4–8) × 1017 W.

3. RESULTS

For the 27 data sets analyzed, the distance of the spacecraft
to the Sun varies from ∼1.5 AU to ∼4.5 AU. This needs to
be taken into account when combining different data sets. In
Figure 1, we show that the integrated magnetic energy in the
three field components is approximately equal in the parameter
range covered by the 27 data sets. This is compatible with earlier
results of Matthaeus et al. (1986a) using data from Voyager 2.
Furthermore, all three contributions fall off slightly faster with
distance than ∝ R−2. One would expect a perfect R−2 scaling if
the Poynting flux stayed constant, which one might expect for
a magnetically dominated wind. This suggests that magnetic
energy is dissipated into heat, which has been discussed in
detail in recent years (Goldstein et al. 1995; Tu & Marsch 2003;
Freeman 1998; Smith et al. 2001; Sahraoui et al. 2009, 2010). An
estimate for the corresponding magnetic “luminosity,” assuming
approximate isotropy over the solid angle, i.e.,

LM =
∮

(B2/2μ0) u · dS = 4πR2〈B2/2μ0〉 uR, (14)

also falls off from 2.8 × 1018 W at 1.5 AU to 1.2 × 1018 W at
4.5 AU. The magnetic luminosity based on the perpendicular
field components shows a weaker decline from 1.6 to 0.8 ×
1018 W. This might be a consequence of the Parker spiral for
which one expects a BT /BR ∝ R scaling (Bieber et al. 1987a;
Webb et al. 2010). The present data suggest that this is however a
weak effect. Our proxy for the magnetic luminosity corresponds
to (2–4) × 10−9L�, where L� is the bolometric luminosity of
the Sun. Thus, because of the approximate R−2 dependence we
scale the spectra EM(k) and HM(k) to a reference distance of
1 AU before averaging over different data sets.

Next, we focus on the magnetic energy and helicity spectra.
We begin by presenting results where we combine data from

Figure 2. Magnetic energy and helicity spectra, 2μ0EM(k) and k|HM(k)|, re-
spectively, for two separate distance intervals (first and third panels). Further-
more, both spectra are scaled by 4πR2 before averaging within each distance
interval above and below 2.8 AU, respectively. The relative magnetic helicity,
kHM(k)/2μ0EM(k), is plotted separately (second and fourth panels) together
with its cumulative average starting from the low wavenumber end. The zero
line is shown dashed.

(A color version of this figure is available in the online journal.)

both hemispheres. As we will verify later, the magnetic helicity
has opposite signs in the northern and southern hemispheres, so
we multiply the helicity measured in the south by −1. Another
possibility would be to divide by sin λ, but at least for the
Parker spiral one does expect a much sharper sign change
near the equator than what is expected from a sin λ profile
(Bieber et al. 1987a). Furthermore, we distinguish between data
sets where the distance to the Sun is either inside or outside
2.8 AU. In Figure 2, we plot, separately for two separate distance
intervals, 2μ0EM(k) and k|HM(k)|, rescaled by 4πR2, as well
as the relative magnetic helicity, kHM(k)/2μ0EM(k). We also
show a cumulative average of this ratio, starting from the low
wavenumber end. This shows quite clearly that the magnetic
helicity in the north is negative at small wavenumbers (large
length scales) and that it becomes positive at large wavenumbers
(small length scales). The cumulative nature of the average
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Figure 3. Magnetic energy and helicity spectra, 2μ0EM(k) and kHM(k),
respectively, for two separate distance intervals. Furthermore, both spectra are
scaled by 4πR2 before averaging within each distance interval above and below
2.8 AU, respectively. Filled and open symbols denote negative and positive
values of HM(k), respectively.

(A color version of this figure is available in the online journal.)

slightly overemphasizes the negative contributions, delaying
thus the position where the sign changes. The negative magnetic
helicity at large scales agrees with that belonging to the Parker
spiral, while the positive magnetic helicity at small scales could
be the result of turbulent diffusion leading to a reverse transfer
of magnetic helicity from large to small scales, as explained in
the introduction.

In the remainder of this paper we use logarithmically spaced
wavenumber bins. This way we can reduce the data to a small
number of bins and thereby minimize the statistical noise in a
more meaningful way. This is shown in Figure 3. In each bin,
we average the actual values (not the logarithms) of spectral
energy and magnetic helicity, both weighted with a k factor. We
use rather broad bins, for example the first wavenumber bin at
k = 1.5 AU−1 has a width of Δk = 1.2 AU−1, and the second
bin at k = 5.8 AU−1 has Δk = 4.8 AU−1. Given a maximum
length of one month for each of the 27 data sets, we have in
principle a spectral resolution of ΔΩ = 0.2d−1, corresponding
to Δk = 0.5 AU−1. We use data that were already averaged
over 60 s time intervals. This corresponds to a spatial resolution
of 50 Mm and hence a Nyquist wavenumber of 104 AU−1. At
distances below 2.8 AU, the magnetic helicity is negative only in
the smallest wavenumber bin (k ≈ 1 AU−1), while at distances
beyond 2.8 AU the first three wavenumber bins (k < 30 AU−1)
show negative helicity.

An estimate for the error has been obtained by comparing with
the averages that result by taking only data from the northern or
the southern hemisphere into account. The larger one of the two
departures is taken as an estimate of the error. This results in a
relative uncertainty of our average values by a factor of 1–2.

As explained above, three-dimensional spectra of magnetic
energy and magnetic helicity can be obtained by differentiation
with respect to ln k. It turns out that, within expected error
margins, the three-dimensional spectra are surprisingly close to
the one-dimensional spectra. This is shown in Figure 4 where we

Figure 4. Comparison between 3D and 1D spectra of magnetic energy and
helicity. In both panels the 1D spectra are denoted by dotted lines, while the 3D
spectra of magnetic energy by dashed and the 3D spectra of magnetic helicity
are indicated by filled and open symbols for negative and positive contributions.

(A color version of this figure is available in the online journal.)

compare the types of spectra. In view of the fact that the three-
dimensional spectra do not seem to alter our conclusions, and
since differentiation increases the noise in the data, we restrict
ourselves in the following to the discussion of one-dimensional
spectra.

It is worthwhile noting the large separation between both
graphs in the ordinate. In other words, k|HM(k)| � 2μ0EM(k).
This indicates that the relative magnetic helicity is rather small,
which may not be too surprising considering the fact that
we have averaged a noisy magnetic helicity result over rather
broad wavenumber bins. Also, of course, there is no reason to
expect the relative magnetic helicity at the solar surface to be
particularly strong. Next, from the open and filled symbols we
can see the sign of HM(k), which turns out to be negative at
the largest scales (filled symbols) and positive at small scales
(open symbols). At a larger distance from the Sun, the break
point where the sign of the magnetic helicity changes grows
to larger wavenumbers, corresponding to smaller scales. This
is probably again related to the effect of turbulent diffusion
causing the reversed transfer of magnetic helicity from larger to
progressively smaller scales. It could also be a consequence
of the growing dominance of the large-scale field (having
negative helicity) with distance, so that it would appear as if
the magnetic helicity of the large-scale field imprints itself onto
the smaller scales. A similar effect has been seen in helical
dynamo simulations with an imposed magnetic field (see Figure
3 of Brandenburg & Matthaeus 2004), where for sufficiently
strong fields the sign of the magnetic helicity is equal to that
of the kinetic helicity at small scales. At the same time, the
relative magnetic helicity diminishes, which is indeed also seen
in Figure 3.

In view of dynamo theory and for comparison with earlier
work, it is of interest to compute magnetic helicity fluxes
separately for large and small length scales and integrate them
over half the solid angle and over the 11 year cycle, Tcyc, i.e.,
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Table 1
Results for 1

2L
±
HTcyc in Units of Mx2 cycle−1

Distance Large Scales Small Scales

R < 2.8 AU −0.9 × 1045 +0.3 × 1045

R > 2.8 AU −1.3 × 1045 +0.03 × 1045

Figure 5. Magnetic helicity (open symbols) and energy (filled symbols) vs.
latitude for data from wavenumber bin k = 1.2 AU−1 and distances R < 2.8 AU
(upper panel) and wavenumber bin k = 300 AU−1 and all distances (lower
panel). In the last panel the energy is downscaled by factor 10, because otherwise
those data points would lie outside the plot range. The solid lines represent fits
proportional to sin λ, while dash-dotted lines represent the zero value.

(A color version of this figure is available in the online journal.)

we compute

1
2L

±
HTcyc = 2πR2uRTcyc

∫
k

<
>kf

HM(k) dk, (15)

where the 1/2 factor takes the fact into account that one normally
gives magnetic helicity fluxes integrated separately for each
hemisphere (Berger & Ruzmaikin 2000). In Table 1, we give
the results for 1

2L
±
HTcyc separately for large (−) and small ( + )

scales and also for small and large distances. It turns out that
these values are typically around 1045 Mx2 cycle−1, which is
remarkably close to early estimates of Bieber & Rust (1995) of
2 × 1045 Mx2 cycle−1, and about 10 times below the expected
upper limit (Brandenburg 2009).

Next, we consider the latitudinal dependence by abandoning
the averaging over heliographic latitude and consider data from
two separate wavenumber bands around 1.2 and 300 AU−1.
The data are obviously very noisy now, especially at low
wavenumbers where the wavenumber bins involve fewer data
points; see Figure 5. Nevertheless, there is still some evidence
for the magnetic helicity having opposite signs in the two
hemispheres and, in addition, opposite sign at large (5 AU) and
small (0.02 AU ≈ 3000 Mm) length scales (= 2π/k).

The present data have all been taken from the time just after
solar maximum and before the next solar minimum. It would
therefore be interesting to compare this with measurements
taken at other times. There is in principle the possibility that the

Figure 6. Similar to Figure 5, but vs. time. Again, in the last panel the energy is
downscaled by factor 10, because otherwise those data points would lie outside
the plot range. The dash-dotted lines represent the zero value.

(A color version of this figure is available in the online journal.)

magnetic helicity could change and even reverse sign for brief
time intervals. To see whether already the present data suggest
a possible systematic temporal trend, we plot the spectral
magnetic helicity in the same two wavenumber bins (around 1.2
and 300 AU−1) versus time; see Figure 6. Given the high noise
level, it is not possible to conclude anything definite from the
plot. Only at large wavenumbers (shown here for k = 300 AU−1)
might there be a meaningful downward trend. Of course, one
can only be really sure about this when comparing data over a
much longer time span, in which case one might expect to see an
oscillatory variation as is also seen in Figures 3 and 4 of Berger
& Ruzmaikin (2000).

4. CONCLUSIONS

The present results have revealed for the first time evidence
that the magnetic helicity in the solar wind has opposite signs at
large and small length scales. However, the signs are actually the
other way around than what was naively predicted based on the
expected signs at the solar surface (Blackman & Brandenburg
2003), but they do agree with more recent simulations of
Brandenburg et al. (2009) and Warnecke et al. (2011a, 2011b)
that show a reversed sign some distance away from the dynamo
regime due to the effect of turbulent diffusion (without α effect)
that tends to forward-cascade magnetic helicity from large to
small scales.

Although the solar wind would carry some imprint of the
fields generated within the Sun, this field would be deformed
due to the fact that the material leaves the Sun with a net
angular momentum and is perhaps turbulent. The magnetic
helicity generation by turbulence may be understood using the
magnetic helicity conservation equation for the gauge invariant
small-scale helicity hf derived by Subramanian & Brandenburg
(2006). We have already used this argument in this paper
when we associated the effect of turbulent magnetic diffusion
with a forward turbulent cascade. Suppose that the wind is
turbulent on small scales, then the helicity generation on those
scales is governed by ∂hf/∂t = −2E · B + · · ·, where E is
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the mean turbulent electromotive force and the dots refer to
microscopic dissipation and possible flux terms. As in mean-
field dynamo theory (see, e.g., Brandenburg & Subramanian
2005), we approximate E ∼ αB − ηt J , where J = ∇ × B is
the mean current density, and α and ηt refer to a possible α effect
and turbulent diffusion associated with solar wind turbulence,
then ∂hf/∂t = −2αB2 +2ηt B · J . The dynamo generated large-
scale field B, which has positive helicity, will then lead through
the ηt term above to small-scale helical fields also with positive
hf . Moreover, because total helicity is conserved, the turbulent
diffusion will put a negative helicity hm on larger scales. Since
this hm was originally positive, this leads to a decrease of hm.
This process may be behind the apparent forward cascade of
helicity.

Now consider the large-scale field in the solar wind. Real-
istically, this field will also have reversals associated with the
poloidal field from the Sun reversing every 11 years. However,
a unique sense (sign) of its helicity can be imprinted because
the sense of rotation of the Sun is always the same, and, in
addition, the radial velocity is always outward. We know from
the work of Bieber et al. (1987a, 1987b) that this sense is to
give negative helicity in the north, opposite to what the dynamo
generated mean field had in the solar interior and at the sur-
face. Perhaps the differential rotation in the solar wind pumps
negative helicity to the north and positive to the south so as to
reverse the original sign of the mean-field helicity. One can then
explain our current observations as follows. First, the positive
helicity seen at larger k is that generated from the turbulent diffu-
sion spreading the helicity of the dynamo-generated mean field
to larger k and then advecting this outward. Second, the Parker
spiral eventually leads to a negative helicity on the largest scales
(Bieber et al. 1987a). In this picture, the helicity of the Parker
field would correspond to scales around 5 AU (corresponding
to k = 1.2 AU−1 at R < 2.8 AU; see Figure 3). This is also
in agreement with early work of Smith & Bieber (1993) who
found negative magnetic helicity in the north below frequencies
of about 10 μHz, corresponding to k < 20 AU−1 at a wind speed
of about 400 km s−1. However, this scenario needs to be much
better explored through simulations such as those of Warnecke
et al. (2011b).

Unfortunately, the relative magnetic helicity is rather weak.
Therefore, only through extensive averaging are we able to
extract any useful information. This low level of relative
magnetic helicity suggests that there is efficient mixing taking
place in the solar wind, but it could also mean that the magnetic
helicity is already rather low at the solar surface. Another
possible reason could be the proximity to the solar minimum in
1996.

Although magnetic helicity fluxes are expected to keep their
preferred sign over the solar cycle, some modulation is definitely
to be expected, as was already found by Smith & Bieber
(1993) using measurements spanning the years 1965–1988. The
data span analyzed in the present work is too short to make
any meaningful statements, but one can see that at least at
larger wavenumbers there seems to be a decline in magnetic
helicity as one progresses further toward solar minimum in
1996.

The present data can be used to extract quantitative estimates
for magnetic helicity fluxes. This quantity is normally quoted in
Maxwell squared per solar cycle. Assuming that the magnetic
helicity during 1993–1996 is representative of the rest of the so-
lar cycle, our analysis suggests values around 1045 Mx2 cycle−1,
which is comparable to the earlier work of Bieber et al. (1987b).

Although the results presented in this paper are physically ap-
pealing, there remains uncertainty about the assumptions made
in this work, most notably the Taylor hypothesis, which may
be problematic over large length scales, but it is expected to be
reasonably well satisfied for fluctuations in the inertial range
of the turbulent spectrum (see, e.g., Matthaeus & Goldstein
1982). The assumption of isotropy is only needed when comput-
ing three-dimensional spectra. Only the two components in the
plane perpendicular to the radial direction enter in our analysis
of magnetic helicity. The finite pitch angle of the Parker spi-
ral introduces anisotropy in that plane (Matthaeus et al. 1996).
This becomes important at progressively smaller length scales
(Wicks et al. 2011), even though the variance of the three com-
ponents remains similar (see Figure 1). Using spectra of the
different components of the magnetic field, Bieber et al. (1996)
were able to determine that ∼85% of the magnetic energy re-
sides in the perpendicular field fluctuations, while for Ulysses,
Smith (2003) found that this value is closer to 50%. In any case,
it would be useful to estimate magnetic helicity using synthetic
data from a numerical simulation. Such an exercise is likely
to provide useful insight into the reliability of the assumptions
made and the accuracy of the method.
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the Swedish Research Council Grant No. 621-2007-4064.

APPENDIX

DERIVATION OF EQUATIONS (10) AND (11)

We begin with Equation (7), but instead of performing the
integration over kT and kN we use cylindrical coordinates
(k⊥, φk) in Fourier space and assume axisymmetry, therefore
dkT dkN = 2πk⊥dk⊥. Thus, we have

M1D
ij (kR) =

∫ 2π

0

∫ ∞

0
M3D

ij (kR, k⊥, φk) k⊥dk⊥dφk

= 2π

∫ ∞

0
M3D

ij (kR, k⊥) k⊥dk⊥. (A1)

Next, we insert Equation (3), take the trace, use k2 = k2
R + k2

⊥,
and substitute k⊥dk⊥ = k dk valid for a fixed kR, to carry out
the integration over k in the allowed range from kR to ∞, and
obtain, using Equation (8),

δijM
1D
ij (kR) = 2π

∫ ∞

kR

2
2μ0E

3D
M (k)

8πk2
k dk

=
∫ ∞

kR

μ0E
3D
M (k)

k
dk =

∫ ∞

kR

μ0E
3D
M (k) d ln k,

(A2)

which corresponds to Equation (10). Likewise, multiplying
instead with −2εijRik−1

R , and using Equation (9), we arrive at

2εijR(ikR)−1M1D
ij (kR) = 2π

∫ ∞

kR

4
H 3D

M (k)

8πk2
k dk

=
∫ ∞

kR

H 3D
M (k)

k
dk =

∫ ∞

kR

H 3D
M (k) d ln k,

(A3)
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which corresponds to Equation (11). In particular, this yields
μ0E

1D
M (kR) = |B̂|2 and H 1D

M (kR) = 4 Im(B̂T B̂�
N )/kR , as stated

just below Equation (2).
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