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Using simulations of helically driven turbulence, it is sitothat the ratio of kinetic to magnetic energy dissipaticales

with the magnetic Prandtl number in power law fashion wittegponent of approximately 0.6. Over six orders of mag-
nitude in the magnetic Prandtl number the magnetic fieldusdioto be sustained by large-scale dynamo action of alpha-
squared type. This work extends a similar finding for smalgnaic Prandtl numbers to the regime of large magnetic
Prandtl numbers. At large magnetic Prandtl numbers, masieoénergy is dissipated viscously, lowering thus the amoun
of magnetic energy dissipation, which means that simulatian be performed at magnetic Reynolds numbers that are
large compared to the usual limits imposed by a given reisolufhis is analogous to an earlier finding that at small
magnetic Prandtl numbers, most of the energy is dissipatastively, lowering the amount of kinetic energy dissiat

so simulations can then be performed at much larger fluid Bldgmumbers than otherwise. The decrease in magnetic
energy dissipation at large magnetic Prandtl numbers éaigied in the context of underluminous accretion foundmnmeso

quasars.

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction 2009). However, as will be discussed in more detail in this
paper, this empirical constraint on the resolution reatilyo
The magnetic fields in astrophysical bodies often haveagpplies if the ratio of magnetic and fluid Reynolds numbers
pronounced large-scale component that is associated wigrabout unity. This ratio is also referred to as the magnetic
large-scale dynamo action. Examples are the cyclic magrandtl number, Rf, and there is hardly any system where
netic fields in late-type stars such as the Sun and the mdlgis number is unity. In galaxies and galaxy clusters this
netic spirals in many galaxies, including even irregulanumber tends to be very large, while in stars and stellar ac-
galaxies; see Beck et al. (1996) for a review. In additiorgretion discs it is quite small. Also liquid metals used in
all observed magnetic fields also have a significant smal&boratory experiments have smal\RiTherefore, much of
scale component that may either be the result of turbulenhat has been learnt from numerical simulations at Rr1
motions distorting the large-scale field, or, alternagiyél has to be re-examined in cases of low and high values of
could be the result of what is known as small-scale dynanfti.
action (Cattaneo 1999).

Much of our knowledge about large-scale and small- The purpose of this paper is to focus on the relative
scale dynamos has come from numerical simulations; s@Portance of viscous and ohmic dissipation rates at dif-
Brandenburg & Subramanian (2005) for a review. It is cled@rent values of Ry. Often, viscous and ohmic dissipation
that, in order for simulations to approach an astrophylsical@'e only treated “numerically” by making sure the code is
interesting regime, one wants to make both the magnefi2ble. In such cases, viscosity and magnetic diffusivity a
diffusivity and the kinematic viscosity as small as possibl Usually not even stated explicitly in the equations, sugges
This means that the magnetic and fluid Reynolds numbdf$ that these terms are negligible anq not important. Th.|s
should be as large as possible for a given numerical red®-0f course not the case, as can be illustrated by consid-
lution, N'3. The relevant criterion for sufficient numerical€fing the case of quasars that belong to the most luminous
resolution is that the kinetic and magnetic energy spectpRiects in the sky. The discovery of the first quasar, 3C 273,
should develop an exponentially decaying dissipative sui- Nicely explained by Rhodes (1978) in a popular maga-
range at a wavenumber that is at least a factor of 10 b@ne- Indeed, 3C 273, has abaut 10" times the luminos-
low the Nyquist frequencysx, = 7N/L. In practice, for %Y .of the Sun and is mdged the br|g_htest one in the sky.
example, with a simulation at a resolution ®f23 mesh This quasar would not shine at all if it was not for the ef-
points, one can hardly exceed values of the magnetic alggt of microphysical viscosity that leads to viscous dissi

fluid Reynolds number of about 500-700 (e.g. BrandenbuP@tiO”- But how important is viscous dissipation compared
with ohmic dissipation? In order to address this problem we

* Corresponding author: brandenb@nordita.org need to understand the effects of both viscosity and mag-
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52 A. Brandenburg: Dissipation in dynamos at low and high mégrirandtl numbers

netic diffusivity in a turbulent system where the magnetitn particular, only in simulations beyorid243 meshpoints
field is self-sustained by dynamo action. In this paper wihe spectra are shallower than®/3. This is referred to as
review briefly some recent work on dynamos in the regimtle bottleneck effect and is believed to be a physical effect
of small Pg; and turn then to the investigation of largePr (Falkovich 1994; Dobler et al. 2003; Frisch et al. 2008). One
reason, however, why it is not usually seen in wind tunnel or
atmospheric boundary layer turbulence is the fact that one
measures in these cases only one-dimensional spectra. In
. . order to obtain three-dimensional spectra, one has tordiffe
In the last 6 years the issue of low magnetic Prandtl num- .. )
) entiate those data, i.e. (Dobler et al. 2003)
bers, Py; = v/n, has become a frequently discussed topic
in the dynamo community. This is the regime where th&sp = —dEip/dInk. 1)
magnetic diffusivityy is large compared with the kinematicAccepting thus the physical reality of the bottleneck effec
viscosity v. Already over a decade ago, Rogachevskii 8 becomes plausible that the critical magnetic Reynolds
Kleeorin (1997) noticed that for small-scale dynamos theumber for the onset of small-scale dynamo action reaches
critical value of the magnetic Reynolds numberaRdor a maximum around Rr = 0.1, and that it decreases some-
the onset of dynamo action should rise from a value aroun¢hat for smaller values of Br. This is indeed what the sim-
35 at Pg; = 1 to values around 400 for small values ofulations of Iskakov et al. (2007) suggest.
Pry. Here, R&r = urms/nks is defined with respect to the et us now switch to large-scale dynamos. Their exci-
wavenumbet; of the energy-carrying eddies and the rmsation conditions are characterized by the dynamo number
velocity, u,m,s. However, the result of Rogachevskii & Klee-which, for helical turbulence and in the absence of shear, is
orin was not widely recognized at the time. In 2004, simyust
lation began to address this point systematically. Simula-
tions of Schekochihin et al. (2004) and Haugen et al. (2004}, =
provided clear indications that R& rises, and the results
of Schekochihin et al. (2005) might have even suggest
that the critical value of Rg for small-scale dynamo action
might have become infinite for r~ 0.1. . L = . )
Meanwhile, Boldyrev & Cattaneo (2004) provided afUslVity, 7 = 37u?. Hereu = U —U is the fluctuating ve-
attractive framework for understanding this behavior.egiv '0¢ily. i-€. the difference betweenf?g actual veloditand
that the energy spectrum of the small-scale dynamo pedR€ Mean velocity/, 7 ~ (ummske) ™" is the turnover time,
at the resistive scale, which is the smallest possible stale? = ¥ * u IS the fluctuating vorticitye; = w-u/ksu?
which the motions can still overcome resistive damping, orle & measure for the relative helicity, and= 1 + 3/Rey;
must ask what are the properties of the flow at this scale. Is a correction factor of order unity for sufficiently large

In the original scenario of Kazantsev (1968), the Sma”{alues (.Jf Re:. It turns out that in all cases the spectra O.f
magnetic energy are at the largest scale approximately in-

scale dynamo works through a velocity field that is random,ependent of Re for Pry between 1 and0—?. This was

but essentially laminar and of large scale. In a simulatio . .
this can be rgalized by choosingga large magnetic Pran own in Brangenburg (2009) and will here be extended to
< Pry <10°.

number, so the magnetic Reynolds number is much larg ) o , )
At larger wavenumbers there is a striking difference in

than the fluid Reynolds number. However, subsequent stud- . .
magnetic energy spectra betweefy Pt 1 and< 1 in

ies show that small-scale dynamo action can also occur L

Pry of order unity. Both for Py — 1 and for Py > 1 that the resistive cutoff wavenumber moves toward smaller

one finds that the spectral magnetic energy increases Wyﬁlues. At the same time, the kll’le'tIC energy spectrum be-

wavenumber proportional #5/2 comes progressively steeper, leaving less kinetic energy t
' dissipate. This has two important consequences. First,of al

A qualitatively new feature emerges wherMHs small.. the fractional kinetic energy dissipation decreases wéth d
In that case the wavenumber corresponding to the resistive . 5
proportional to PM (Brandenburg 2009). On

scale decreases and lies in the inertial range of the turti€asing P

lence. This property is crucial because in the inertial eanéhe other hand, the decreasecpfimplies that the demand
the velocity field is “rough”, i.e. over a spatial intervat or numerical resolution becomes less stringent. This, in
the velocity differencéu = u(z + dx) — u(x) scales like turn, means that one can increase the value of Re beyond the
Su ~ 62¢ where¢ < 1. Thus, the finite difference quotient”orma"y established empirical limits. An important goél o
of the velocity,du/dz, diverges with decreasingz, pro- the present paper is the demonstration that the same is also
videdsz is still bigger than the viscous cutoff scale. AccordU€ in the opposite limit of Ry > 1.
ing to Boldyrev & Cattaneo (2004), the critical magnetic
Reynolds number increases with increasing roughness. 3 The modd

In all situations that have been simulated, the wavenum-
ber range of the spectra has been too limited so that th@ur model is similar to that presented in Brandenburg
are affected by cutoff effects both at large and small scal§2001, 2009), where we solve the hydromagnetic equations

2 Small magnetic Prandtl number dynamos

ke
— X Efl—. 2
Ntk Yk @

re,k1 = 27/ L is the minimal wavenumber in the domain
of size L and we have inserted standard approximations for
thea effect,a = %T—w —u, and the turbulent magnetic dif-

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-j ournal .org



Astron. Nachr. / AN (2011) 53

Tablel Summary of import input and output parameters for th:
runs reported in this paper.

Pr,=10 _

Prv Re Rex €K EM kx km Res.

102 4400 4 0.01 099 426 8 5123
1072 2325 23 0.04 096 344 255123
107! 1175 118 0.13 0.87 286 81512
10° 455 455 0.39 0.61 179 201512°

10 20 200 0.76 024 24 99 256°
102 9 850 090 0.10 14 263 256°
10% 0 425 0.99 001 3 129 256° foto
10° 1 1175 0.99 0.01 5 234 256°

0.00

—0.05

for velocity U, logarithmic densityn p, and magnetic vec-
tor potentialA for an isothermal gas in the presence of a
externally imposed helical forcing functigfy

-0.10

U
88_t =-U-VU-2VInp+f+(J x B+V-2pvS) p, (3) Uy/o,
8(};'O:—U-Vln,z)—V-U, (4) '
A 0.00
8—:U><B—uo77J. (5)
8t —-0.05
Here,B = V x A is the magnetic field] = V x B/ug -

is the current densityy, is the vacuum permeability, is
the isothermal speed of sound, &g = %(Ui,j +Uj;) —
1 . .

§_5UV ’ U is the _traf:eless r‘_"lte of §tragn tensor. We Coqfig.l (online colour at: www.an-journal.org) Visualization of
sider a triply periodic domain of sizé”, so the small- 17 "andB, on the periphery of the computational domain forPr

est wavenumber in the domain is = 27/L. The forc- ranging from 10 to 1000 at a resolution2if6® mesh points.
ing function consists of eigenfunctions of the curl operato

with positive eigenvalues and is therefore fully helicattwi

f-V x f=kf? where3.5 < k/k; < 4.5is the chosen 4 Results

wavenumber interval of the forcing function, whose average

value is referred to a& ~ 4 k,. The amplitude off is such In Table 1 we summarize the parameters of runs with Pr
that the Mach number ig,,s/cs ~ 0.1, so compressive ef- betweenl0~3 and103. The runs withl0—2 < Pry < 1 are
fects are negligible (Dobler et al. 2003). As in Brandenburghose presented already in Brandenburg (2009) using
(2009), we choose as initial conditions a Beltrami field ofnesh points, while those witt) < Pry < 1000 are new
low amplitude. The initial velocity is zero and the initialones and have been performed us?3§® mesh points. In
density is uniform withp = py = const, so the volume- all cases, either Re or Rewere close to the maximum pos-

averaged density remains constant, ig),= po. sible limit at a given resolution. Indeed, forPr= 10~3 we

In our simulations we change the values of magnetic angere able to reach Re 4400 (for 5123 mesh points) while
fluid Reynolds numbers, for Pry = 103 we could go to Rg = 1200 (for 2563 mesh
RQ\/I = urms/nkf; Re= urms/ka; (6) pOIntS)'

such that the ratio Rg/Re = Pry has the desired value ~ We note that in all cases the total energy dissipation is
betweerl0~3 and103, and we monitor the resulting kinetic approximately the same. This is perhaps not so surprising,

same. However, the constancy of the energy dissipation rate
ex = (2v0p8%), em = (npod?), (7) 4 Iy CIosb

i , implies that the rate of energy injection must also be always
whose sumer = ex + e, Will be used to define the frac- o same and thus independent of;PThis means that the

tional dissipation ratesi = ex/er a”dfM = em/er- We oy properties of the eddies at the energy-carrying scale
use the fully compressiblesiciL Cope - for all our calcu- st pe essentially independent of Pr

lations. We recall that, for the periodic boundary condisio
under consideratior{25?) = (W?) + 3((V - U)?), high-
lighting thus the analogy betwed%¥ = V x U andJ in
the incompressible case.

In Fig. 1 we present visualizations of thecomponent
of velocity and magnetic field at the periphery of the com-
putational domain for the new results withyP& 10 and
in Fig. 2 we show spectra of kinetic and magnetic ener-
1 http://www.pencil-code.googlecode.com gies, E(k) and M (k), respectively, for all values of Rr
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i Pry,=0.001 . have pointed in any of the other two coordinate directions,
1.00k 1 (0, coskizx, sink;x) and(sinkyy, 0, cos k1y) would have
0.10k 1 been equally probably alternatives. We recall that all¢hes
0.01K "< 1 fields are indeed the eigenfunctions of@hdynamo prob-

1 10 100 lem (e.g., Brandenburg & Subramanian 2005), and they also

emerge as the dominant field in helically driven turbulence.

_ . Pr,=0.01 Itis clear that in a triply periodic domain such as that con-
1.00 \/\ = - - - _ sidered here, these fields require a resistive time to reach
o0 ~F N full saturation. For all further details we refer to Branden
0.01F il N burg (2001), where such a system was studied in full detail.

1 10 100

1.00k
0.10f
0.01E

Pr,=1

1.00k
0.10E
0.01f

100

1.00
0.10F
0.01F

100

1.00k >
0.10f ~ .
0.01E ~ k,1 ~

1.00f B
0.10F 7 ~ <

= ~N
001!’ b e Iku ~

k/k,

Fig.2 Compensated kinetic and magnetic energy spectra in t
saturated regime for Rr= 10~2 to 10°. The spectra are com-

pensated by ;> *k°/3, whereer is the sum of kinetic and mag-
netic energy dissipation rates. The ohmic dissipation warwer,

kn, = (em/n°)Y/4, is indicated by an arrow.

between10—3 and 103. In the velocity pattern one can
clearly make out the typical scale of the dominant eddie
whose wave length is about 1/4 of the size of the bo
The magnetic field also shows a turbulent component,

100

Next, we consider the spectra of kinetic and mag-
netic energies in Fig. 2 which are normalized such that
[E(k)dk = 3(pU?) and [ M (k) dk = $(B*/po). Itis
evident from the spectra that with increasing values gf,Pr
the viscous dissipation wavenumbet, = (ex/v3)/4,
moves to smaller and smaller values. Analogously to the
case of Py; < 1, this implies that most of the injected en-
ergy gets dissipated by the shorter of the two cascades —
leaving only a reduced amount of energy for the other cas-
cade. This means that the corresponding diffusion coeffi-
cient can be decreased further, without creating numerical
difficulties.

It appears that it is not only the energy input at the small
wavenumber end of the relevant cascade that is decreased,
but that there is possibly a continuous removal of energy
along the cascade, making the spectral index slightly steep
than—>5/3. For example, for R = 10~ the spectral slope
of E(k) is about—2.2, while for Py = 10° the spectral
slope of M (k) is about—2.0.

It is quite extraordinary that in all these cases the na-
ture of the large-scale dynamo is virtually unchanged, even
though Px; is varied by 6 orders of magnitude. The rea-
son is that in all cases the dynamo numhkgs, exceeds
the critical value for dynamo actio;<"* = 1. Looking at
Eqg. (2), we see that', is dominated by the scale separa-
tion ratio, which is heréi/k; =~ 4. Furthermore, because
the turbulence is nearly fully helical, we have~ 1, and
since Regr > 1, we haver =~ 1. Thus, we have’, > 1 for
all runs. We recall also that the saturation amplitude of the
field is essential given by the square root of the scale sepa-
ration ratio (Brandenburg 2001), which is about 2 in units of
the equipartition field strength. This is in reasonable egre
'ﬁ‘?ent with the simulation results; see Fig. 2, where we show
the resulting spectra for all the runs.

Next, we plot in Fig. 3 the ratio of kinetic to mag-
netic energy dissipation rates. In agreement with Branden-
burg (2009), we find that the ratio is approximately pro-
portional to Pi/{z, although a better fit is now provided by
ex/en ~ 0.6 Pry;5. The reason for such a scaling is unclear.
However, from Eqg. (7) one can see that in the ratigey
there is an implicit proportionality with respect toyPrAs-

there is a much stronger large-scale component superpose

This is essentially the Beltrami field which is of the formex
B = (coskiz, sin ki z, 0), although its wavevector could ¢/ ~ 7 772

(© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig.3 Dependence of the ratio of the dissipation rates amn.Pr e 4L % o
Q o -: ..................................... %5 ....... =
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4 —1)/2 —1/4 ~1/6 I ]
Zms o P2 L P 9) 1ol . . . . . o
rms 0.001 0.010 0.100 1.000 10.000 100.000 1000.000

Pr,,

where we have assumed thatlies between 1/2 and 2/3,
which bracket the results seen here and in Brandenburg
(2009). These scalings are surprising in view of the usu-
ally expected individual scalings, namel, s oc v~ 1/2 B
and s o /2 (cf. Brandenburg & Subramanian 2005).  10F E
In order to illuminate the issue further, we ask whether & ]

not only the ratioek /ey scales with Py, but whetherek i a ¢

andey are individually proportional to Re and Rerespec- B “[’ EI’ EP

tively. In Fig. 4 we plotek versus Re (blue, solid symbols) 1E . . : . . N
andey; versus Rer (red, open symbols). The scatter is now 0.001 0010 0.100 1.000 10.000 100.000 1000.000
much larger than in Fig. 3, and it seems that the scaling ex- Pry

ponent might even be as largeras- 2/3. . . .
We mentioned earlier that the total dissipation rate, Fig.4 (online colour at: www.an-journal.ordlop: dependence

is nearly independent of Rt However, this is only true ©f ¢x on Re (blue, solid symbols) arg; on Reu (red, open sym-
o Wﬁ o Okpth S the di mﬁi nsional valueed It Sycu < bols). The sold line has the slope 2/3, while the dotted arsheld

. . L lines have slopes 0.6 and 0.5, respectivélyddle and bottom:
tomary to consider the normalized dissipation rate, scalings ofC..o andC.. versus Py
- (10)

Ce=——+
‘ udp /L’
wherew: . — /+/3 is the one-dimensional rms velocit constant aw is decreased. In the case with dynamo action,
1D = Urms yhowever, a decrease i allows the dynamo to tap more

andL = 37 /4ks is conventionally used as the integral scaI% :
. > energy, so—-(U - (J x B)) andey increase at the expense
(Pearson et al. 2004). In the second and third panels of F'gogng.yThis i<s inc(iicated )lzy the hf/[a Jen is found tg) be

we compare_c with Ce, Which is based on the maximum roportionalto(v/n)™, soek decreases asdecreases. This

;’alt‘?h()ft”m |ndall thet runsthTh:a dlfferlence.|st(r:]aulsed by th%ecease is weak in the sense that 1/2...2/3 is less than
act thatums drops to rather low values in the largeyPr unity, but it is certainly no longer independent mfas it

regime. Part of this goes into magnetic energy, but it is NAlould be in the purely hydrodynamic case

enough to make up for this difference. . . . . .
J P In view of the application to quasars, i.e. accretion discs

It is important to realize that, on aver is just the . . . .
S Important fo realize that, on average, 1S Just e ;. active galactic nuclei, it is relevant to consider thecfra

same as the rate of work done against the Lorentz forCt|edn of energy that goes into the heating of electrons. In-

—(U - (J x B)). This becomes evident when COnSIderIn%eed, such discs are known to be underluminous, which led

the flow of energy in our system: to the standard paradigm of advection-dominated accretion
(U - f) — — (2pv8?) (11) (Narayan & Yi 1994; Abramowicz et al. 1995). Alterna-
—(U - (J x B)) — (nuoJ?). tively, this might be associated with the small value of the

Here,(pU - f) ~ e is the rate of energy injection into the Matio et/ er, for which we find

system by the forcing term. Normally, in the hydrodynamic,, M 1

case,(2pvS?), or (VW?) in the incompressible case, staye, ~ ¢ + ex - 1+ PR,

(12)
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Using standard accretion disc theory, Balbus & Henthat the effective values of Rrare less extreme, which
(2008) find that Ry; depends on the distande from the means that the would have been underestimated and that
black hole and is proportional tB~9/8. In particular, they n might be 2/3 or even larger.

find that Pg; exceeds unity within about 50 Schwarzschild  While earlier work focussed on the dependence\ef
radii. This would dramatically decreasg in the inner parts on P, (Blackman & Field 2008), no clear conclusion about
and might be sufficient to explain underluminous accretiotthe dissipation ratiex /ey Seems to have emerged. For ex-
However, this proposal hinges on several assumptions: éinple, ifex andey; were independent of viscosity and mag-
that the viscous heating heats the ions and not the electronetic diffusivity, the raticek /ey would have been constant.
(i) that the resistive dissipation energizes electroBela Instead, we find thatx decreases when Re decreases, and
than ions, (iii) that the discs are essentially collisimsland, likewise, ey; decreases when Redecreases. On the other
finally, (iv) that the magnetohydrodynamic approximati®n ihand, one must be cautious when applying results regarding
then still applicable. the dependence on R¢Re (= Pry) for large values of Re
and Rgy, because we may still not be in an asymptotic pa-
rameter regime. It is therefore important to extend thiskwor
to larger values of Re and Reand to go to larger numerical
éesolution.

5 Conclusions

The present work has shown that the ratio of kinetic to ma
netic energy dissipation follows one and the same relatioAcknowledgements. | thank the referee for making several use-
ship with Pg; both for small and large values. An impor-ful suggestions. The computations have been carried oubh®n t
tant additional condition obeyed by all our runs is, howeveNational Supercomputer Centre in Linkdping and the Cefuer
that the magnetic Reynolds number is large enough for dyarallel Computers at the Royal Institute of Technology weS
namo action to occur. This constitutes an important diffeflen. This work was supported in part by the Swedish Research
ence between our current results for large-scale dynanfg@Uncil, grant 621-2007-4064, and the European Researoh-Co
and those mentioned in the first section for small-scale d§! Under the AstroDyn Research Project 227952.
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