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ABSTRACT

Aims. The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to
the regime with a magnetohydrodynamic (MHD) background.
Methods. A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By
employing an additional set of auxiliary equations, we obtain linear equations describing the response of the system to a set of pre-
scribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation
analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts-flow like geometry.
Results. Examples with purely magnetic as well as MHD backgrounds are studied where the previously used quasi-kinematic test-
field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the
same results as the imposed-field method, where the field-aligned component of the actual electromotive force from the simulation
is used. Furthermore, results for the turbulent diffusivity are given, which are inaccessible to the imposed-field method. For MHD
backgrounds, new mean-field effects are found that depend on the occurrence of cross-correlations between magnetic and velocity
fluctuations. In particular, there is a contribution to the mean Lorentz force that is linear in the mean field and hence reverses sign upon
a reversal of the mean field. For strong mean fields, α is found to be quenched proportional to the fourth power of the field strength,
regardless of the type of background studied.
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1. Introduction

Astrophysical bodies such as stars with outer convective en-
velopes, accretion discs, and galaxies tend to be magnetized. In
all those cases the magnetic field varies on a broad spectrum of
scales. On small scales the magnetic field might well be the re-
sult of scrambling an existing large-scale field by a small-scale
flow. However, at large magnetic Reynolds numbers, i.e. when
advection dominates over magnetic diffusion, another source
of small-scale fields is small-scale dynamo action (Kazantsev
1968). This process is now fairly well understood and confirmed
by numerous simulations (Cho & Vishniac 2000; Schekochihin
et al. 2002, 2004; Haugen et al. 2003, 2004); for a review see
Brandenburg & Subramanian (2005). Especially in the context
of magnetic fields of galaxies, the occurrence of small-scale dy-
namos may be important for providing a strong field on short
time scales (107 yr), which may then act as the seed for a large-
scale dynamo (Beck et al. 1994).

In contemporary galaxies the strength of magnetic fields
on small and large length scales is comparable (Beck et al.
1996), but in stars this is less clear. On the solar surface the
solar magnetic field shows significant energy in small scales.
(Solanki et al. 2006). The possibility of generating such mag-
netic fields locally in the upper layers of the convection zone
by a small-scale dynamo is sometimes referred to as surface
dynamo (Cattaneo 1999; Emonet & Cattaneo 2001; Vögler &
Schüssler 2007). On the other hand, simulations of stratified
convection with shear show that small-scale dynamo action is
a prevalent feature of the kinematic regime, but becomes less

important when the field is strong and saturated (Brandenburg
2005a; Käpylä et al. 2008).

An important question is then how the primary presence of
small-scale magnetic fields affects the generation of large-scale
fields if these are the result of a large-scale dynamo. Such a pro-
cess creates magnetic fields on scales large compared with those
of the energy-carrying eddies of the underlying, in general turbu-
lent flow via an instability (Parker 1979). A commonly used tool
for studying this type of dynamos is mean-field electrodynamics,
where correlations of small-scale magnetic and velocity fields
are expressed in terms of the mean magnetic field and the mean
velocity using corresponding turbulent transport coefficients or
their associated integral kernels (Moffatt 1978; Krause & Rädler
1980). The determination of these coefficients (e.g., α effect and
turbulent diffusivity) is the central task of mean-field dynamo
theory. This can be performed analytically, but usually only via
approximations which are hardly justified in realistic astrophys-
ical situations where the magnetic Reynolds numbers, ReM, are
large.

Obtaining turbulent transport coefficients from direct nu-
merical simulations (DNS) offers a more sustainable alternative
as it avoids the restricting approximations and uncertainties of
analytic approaches. Moreover, no assumptions concerning cor-
relation properties of the turbulence need to be made, because a
direct “measurement” of those properties is performed in a phys-
ically consistent situation emulated by the DNS. The simplest
way to accomplish such a measurement is to include an imposed
large-scale magnetic field in the DNS, whose influence on the
fluctuations of magnetic field and velocity is utilized in inferring
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a subset of the relevant transport coefficients. We refer to this
technique as the imposed-field method. As an important limita-
tion, it has to be required that the actual mean field in the main
run, which may differ from the initially imposed one, is uniform.
Otherwise the results will be corrupted (Käpylä et al. 2010).

A more universal tool is offered by the test-field method
(Schrinner et al. 2005, 2007), which allows the determination of
all wanted transport coefficients from a single DNS. For this pur-
pose the fluctuating velocity is taken from the DNS and inserted
into a properly tailored set of test equations. Their solutions, the
test solutions, represent fluctuating magnetic fields as responses
to the interaction of the fluctuating velocity with a set of suitably
chosen mean fields, the test fields. For distinction from the test
equations, which are in general also solved by direct numerical
simulation, we will refer to the original DNS as the main run.
This method has been successfully applied to homogeneous tur-
bulence with helicity (Sur et al. 2008; Brandenburg et al. 2008a),
with shear and no helicity (Brandenburg et al. 2008b), and with
both (Mitra et al. 2009).

A crucial requirement on any test-field method is the inde-
pendence of the resulting transport coefficients on the strength
and geometry of the test fields. This is immediately plausible
in the kinematic situation, i.e., if there is no back-reaction of
the mean magnetic field on the flow. Indeed, for given magnetic
boundary conditions and a given value of the magnetic diffusiv-
ity, the transport coefficients must not reflect anything else than
correlation properties of the velocity field which are completely
determined by the hydrodynamics alone. For this to be guaran-
teed the test equations have to be linear and the test solutions
have to be linear and homogeneous in the test fields.

Beyond the kinematic situation the same requirement still
holds, although the flow is now modified by a mean magnetic
field occurring in the main run. (Whether it is maintained by ex-
ternal sources or generated by a dynamo process does not matter
in this context.) Consequently, the transport coefficients are now
functionals of this mean field. It is no longer so obvious that un-
der these circumstances a test-field method with the aforemen-
tioned linearity and homogeneity properties can be established at
all. Nevertheless, it turned out that the method developed for the
kinematic situation gives consistent results even in the nonlinear
case without any modification (Brandenburg et al. 2008c). This
method, which we will refer to as “quasi-kinematic” is, how-
ever, restricted to situations in which the magnetic fluctuations
are solely a consequence of the mean magnetic field. (That is,
the primary or background turbulence is purely hydrodynamic.)

The power of the quasi-kinematic method was demonstrated
based on simulations of an α2 dynamo where the main run had
reached saturation with mean magnetic fields of the Beltrami
type (Brandenburg et al. 2008c). Magnetic and fluid Reynolds
numbers up to 600 were taken into account, so in some of the
high ReM runs there was certainly small-scale dynamo action,
that is, a primary magnetic turbulence b0 had to be expected.
Nevertheless, the quasi-kinematic method was found to work re-
liably even for strongly saturated dynamo fields. This was re-
vealed by verifying that the analytically solvable mean-field dy-
namo model employing the values of α and turbulent diffusivity
as derived from the saturated state of the main run indeed yielded
a vanishing growth rate. A coexisting small-scale dynamo had
very likely saturated at a low level and could thus not create a
marked error.

Indeed, the purpose of our work is to propose a general-
ized test-field method that allows for the presence of magnetic
fluctuations in the background turbulence. Moreover, its valid-
ity range should cover dynamically effective mean fields, that is,

situations in which velocity and magnetic field fluctuations are
significantly affected by the mean field.

With a view to this generalization we will first recall the
mathematical justification of the quasi-kinematic method and in-
dicate the reason for its limited applicability (Sect. 2). In Sect. 3
the foundation of the generalized method will be laid down in the
context of a set of simplified model equations. In Sect. 4 results
will be presented for various combinations of hydrodynamic and
magnetic backgrounds having Roberts-flow geometry. The as-
trophysical relevance of our results and their connection to a
paper by Courvoisier et al. (2010) who already pointed out the
limitation of the quasi-kinematic method will be discussed in
Sect. 5.

2. Justification of the quasi-kinematic test-field
method and its limitation

In the following we split any relevant physical quantity F into
mean and fluctuating parts, F and f . No specific averaging pro-
cedure will be adopted at this point; we merely assume the
Reynolds rules to be obeyed. Furthermore, we split the fluctu-
ations of magnetic field and velocity, b and u, into parts exist-
ing already in the absence of a mean magnetic field, b0 and u0
(together they form the background turbulence), and parts van-
ishing with B, denoted by bB and uB. We may split the mean
electromotive force E = u × b likewise and get

E = E0 + EB (1)

with

E0 = u0 × b0, EB = u0 × bB + uB × b0 + uB × bB. (2)

Note that we do not restrict bB and uB, and therefore also not EB,
to a certain order in B.

In the present section we assume that the background turbu-
lence is purely hydrodynamic, that is, b0 = 0 and hence b = bB.
This is possible if there is neither an external electromotive force
in the induction equation nor a small-scale dynamo. Thus, the
magnetic fluctuations b are entirely a consequence of the inter-
action of the velocity fluctuations u with the mean field B.

In a homogeneous medium, the induction equations for the
total, mean and fluctuating magnetic fields read

∂B
∂t
= η∇2 B + curl (U × B), (3)

∂B
∂t
= η∇2 B + curl (U × B + E), (4)

∂b
∂t
= η∇2b + curl (U × b + u × B + E′), (5)

with E′ = u × b − u × b. The solution of the linear Eq. (5) for
the fluctuations b, considered as a functional of u, U and B, is
linear and homogeneous in the latter and the same is true for

EB = E = u × bB = u × b. (6)

If the velocity is influenced by the mean field, that is, if u and
U depend on B, E considered as a functional of B, E{B}, is of
course nonlinear. However, E, again considered as a functional
of u, U and B, E{u,U, B}, is still linear in B.
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The major task of mean-field theory consists now just in
establishing the linear and homogeneous functional relating E
to B. Making the ansatz

E = αB − η∇B, (7)

with ∇B being the gradient tensor of the mean magnetic field,
this task coincides with determining the tensors α and η, which
are of course functionals of u and U. Because of linearity and
homogeneity we are entitled to employ for this purpose various
arbitrary vector fields BT (the test fields) in place of B in Eq. (5),
keeping the velocity of course fixed. Each specific assignment
of BT yields a corresponding bT and via that an ET and it es-
tablishes (up to) three linear equations for the wanted compo-
nents of α and η. Hence, choosing the number of test fields in
accordance with the number of the wanted tensor components,
and specifying the geometry of the test fields “sufficiently inde-
pendent” from each other, these components can be determined
uniquely. In doing so, the amplitude of the test fields clearly
drops out (Brandenburg et al. 2008b).

Is the result affected by the geometry of the test fields? An
ansatz like Eq. (7) is in general not exhaustive, but restricted in
its validity to a certain class of mean fields, here strictly speak-
ing to stationary fields which change at most linearly in space.
Consequently, the geometry of the test fields is without relevance
just as long as they are taken from the class for which the E
ansatz is valid, but not for other choices.

For many applications it will be useful to generalize the test-
field method such that all employed test fields are harmonic
functions of position, defined by one and the same wavevector
k. The turbulent transport coefficients can then be obtained as
functions of k and have to be identified with the Fourier trans-
forms of integral kernels which define the in general non-local
relationship between E and B (Brandenburg et al. 2008a). Quite
analogously, the in general also non-instantaneous relationship
between these quantities can be recovered by using harmonic
functions of time for the test fields. The coefficients, then de-
pending on the angular frequency ω, represent again Fourier
transforms of the corresponding integral kernels (Hubbard &
Brandenburg 2009).

If u and U are taken from a series of main runs with a dy-
namically effective mean field of, say, fixed geometry, but from
run to run differing strength B, α and η can be obtained as func-
tions of B. Thus, it is possible to determine the quenched dynamo
coefficients basically in the same way as in the kinematic case,
albeit at the cost of multiple numerical work.

Let us now relax the above assumption on the background
turbulence and admit additionally a primary magnetic turbulence
b0. For the sake of simplicity we will not deal here with E0, so
let us assume that it vanishes. In the representation Eq. (2) of EB
we now combine the first and last terms using u = u0 + uB and
obtain

EB = u × bB + uB × b0, (8)

differing from Eq. (6) by the additional contribution, uB × b0.
Even when modifying Eq. (5) appropriately to form an equation
for bB, the quasi-kinematic method necessarily fails here as it
only provides the term u × bB. Obviously, a valid scheme must
treat also uB in a test-field manner similar to bB. The equation
to be employed for uB has of course to rely upon the momentum
equation. Due to its intrinsic nonlinearity, however, a major chal-
lenge consists then in ensuring the linearity and homogeneity of
the test solutions in the test fields.

3. A model problem

3.1. Motivation

We commence our study with a model problem that is simpler
than the complete MHD setup, but nevertheless shares with it
the same mathematical complications. We drop the advection
and pressure terms and adopt for the diffusion operator simply
the Laplacian (and a homogeneous medium). Thus, there is no
constraint on the velocity from the continuity equation and an
equation of state. However, as in the full problem, we allow the
magnetic field to exert a Lorentz force on the fluid. We also al-
low for the presence of an imposed uniform magnetic field Bimp
to enable a determination of the α effect independently from the
test-field method by the imposed-field method.

The magnetic field is hence represented as B = Bimp + ∇ ×
A, where A is the vector potential of its non-uniform part. The
resulting modified momentum equation for the velocity U and
the (original) induction equation then read

∂U
∂t
= J × B + FK + ν∇2U, (9)

∂A
∂t
= U × B + FM + η∇2 A, (10)

where we have included the possibility of both kinetic and mag-
netic forcing terms, FK and FM, respectively. (In this paper we
use the terms “hydrodynamic forcing” and “kinetic forcing” syn-
onymously.) Furthermore, ν is the kinematic viscosity and η
the magnetic diffusivity. We have adopted a system of units in
which B has the dimension of velocity. Defining the current den-
sity as J = ∇ × B, it has then the unit of inverse time.

As will become clear, the major difficulty in defining a test-
field method for an MHD or purely magnetic background turbu-
lence is caused by bilinear (or quadratic) terms like J × B and
U × B. Hence, taking the advective term U · ∇U into account
would not offer any new aspect, but would blur the essence of
the derivation and the clear analogy in the treatment of the for-
mer two nonlinearities. The treatment of the advective term fol-
lows the same pattern, as is demonstrated in Appendix A. Given
that our technique is still in its infancy, and that many underly-
ing issues have not been adressed yet, it is a major advantage to
begin with the simpler set of equations. This helps significantly
in clarifying the approach and in eliminating sources of error in
the numerical implementation.

In three dimensions and for Bimp = FM = 0, but with kinetic
forcing via FK, the system (9), (10) is capable of reproducing
essential features of turbulent dynamos like initial exponential
growth and subsequent saturation; see, e.g., Brandenburg (2001)
or Haugen et al. (2004).

If Bimp � 0 or FM � 0 we are no longer dealing with a
dynamo problem in the strictest sense. A discussion of dynamo
processes is still meaningful if Bimp = 0 and the magnetic forc-
ing does not give rise to a mean electromotive force E0. A pos-
sibility to accomplish this is FK = 0 together with a magnetic
forcing resulting in a Beltrami field b0, but any choice provid-
ing an isotropic background turbulence (u0, b0) should be suited
likewise. Then, in spite of the presence of a magnetic forcing, the
mean-field induction equation is still autonomous allowing for
the solution B = 0. It depends on properties of the background
turbulence like chirality whether, e.g., the α effect renders this
solution unstable by enabling growing solutions.

If we, however, admit Bimp � 0, at least in the homogeneous
case the mean emf, αBimp, is without effect and B = Bimp is a so-
lution of the mean-field induction equation which cannot grow.
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Should a growing mean field nevertheless be observed, it can so
legitimately be attributed to an instability.

Thus, both scenarios for FM � 0 have the potential to ex-
hibit mean-field dynamos although the original induction equa-
tion is inhomogeneous and the dynamo must not be considered
as an instability of the completely non-magnetic state. Models
of this type may well have astrophysical relevance, because at
high magnetic Reynolds numbers small-scale dynamo action is
expected to be ubiquitous. Large-scale fields are still considered
to be a consequence of an instability, at least if there is no E0
or any other sort of “battery effect”. Magnetic forcing can be re-
garded as a modeling tool for providing a magnetic background
turbulence when, e.g., in a DNS the conditions for small-scale
dynamo action are not afforded.

Quite generally, magnetic forcing and an imposed field pro-
vide excellent means of studying the α effect, the inverse cascade
of magnetic helicity, and flow properties in the magnetically
dominated regime (see, e.g., Pouquet et al. 1976; Brandenburg
et al. 2002; Brandenburg & Käpylä 2007).

3.2. Purely magnetic background turbulence

Before taking on the most general situation of both magnetic and
velocity fluctuations in the background, it seems instructive to
look first at the case complementary to that discussed in Sect. 2.
That is, we assume, perhaps somewhat artificially, that the back-
ground velocity fluctuations vanish, i.e. u0 = 0, so that u = uB.
According to Eq. (2) we now find

E = EB = uB × b = u × b. (11)

The modified momentum equation for the velocity fluctuations
in a homogeneous medium reads (cf. Eq. (9))

∂u
∂t
= J × b + j × B + F ′ + ν∇2u, (12)

with F ′ = jB × b + j0 × bB − jB × b + j0 × bB. Here, a prime
denotes the departure from the mean value. As ( j0 × b0)′ needs
to vanish in order to guarantee u0 = 0, this could also be written
as F ′ = j × b − j × b. Unlike in the quasi-kinematic method
there is now no longer any way to base a test-field method upon
considering one of the fluctuating fields, here b, to be given (e.g.
taken from a main run) while interpreting the other, here u, and
consequently E as a linear and homogeneous functional of the
mean field. (This would work here, however, in the second order
correlation approximation, where F ′ is set to zero.)

3.3. General mean-field treatment

The mean-field equations for U and B = curl A + Bimp obtained
by averaging Eqs. (9) and (10) are

∂U
∂t
= ν∇2U + J × B + F , (13)

∂A
∂t
= η∇2 A + U × B + E, (14)

where we have assumed that the mean forcing terms vanish.
From now on we extend our considerations also to the relation
between the mean ponderomotive force F = j × b and the mean
field. In analogy to the mean electromotive force we write, to
start with,

FB = φB − ψ∇B. (15)

In the sense explained above for α and η the tensors φ and ψ
may depend on B. For a discussion of the completeness of the
ansatz (15), see Appendix B.

In the kinematic limit φ and ψ are expected to be non-
vanishing only if b0 � 0. An analysis in SOCA, however, would
also require u0 � 0 to get a non-vanishing result; see Appendix C.
Note that b0 � 0 allows FB to be linear in B, which would oth-
erwise be quadratic to leading order. Consequently, the back-
reaction of the mean field onto the flow is no longer independent
of its sign.

As FB is the divergence of the mean Maxwell tensor, it has
to vanish in the homogeneous case, i.e. for homogeneous turbu-
lence and a uniform mean field. Hence, for Eq. (15) to be valid in
physical space, φ has then to vanish. However, in Fourier space
we may retain relation (15) with limk→0 φ(k) = 0 (but not so
for ψ). On the other hand, in physical space a description of FB

employing the second derivatives of B is likely to be more ap-
propriate, i.e.

FB = φ
∗∇(∇B) − ψ∇B. (16)

According to the expression for φ(k), which is derived in
Appendix C for Roberts forcing, Eq. (16) specified to

FB = φ
∗ ∂ 2B
∂z2
− ψJ

would indeed be sufficient as long as there is sufficient scale sep-
aration between mean and fluctuating fields. In the following, we
continue referring to φ as introduced by Eq. (15).

The equations for the fluctuations are obtained by subtract-
ing Eqs. (13) from (9), and Eq. (14) from (10), what leads to

∂u
∂t
= J × b + j × B + F ′ + f K + ν∇2u, (17)

∂a
∂t
= U × b + u × B + E′ + f M + η∇2a, (18)

respectively, where F ′ = j× b− j × b and E′ = u× b−u × b are
terms that are quadratic in the correlations, while f K,M are just
the fluctuating parts of the forcing functions.

Our aim is now to derive a set of formally linear equations
whose solutions, considered as responses to a given mean field,
are linear and homogeneous in the latter. For this purpose we
make use of the split of all quantities into parts existing in the
absence of B and parts vanishing with B, as introduced in Sect.2.
We write u = u0 + uB, a = a0 + aB and j = j0 + jB, as well as
F ′ = F ′0 + F ′B and E′ = E′0 + E′B, and assume that the forcing is

independent of B. Equations (17) and (18) split consequently as
follows (see Appendix D for an illustration)

∂u0

∂t
= ν∇2u0 + F ′0 + f K, (19)

∂a0

∂t
= η∇2a0 + U × b0 + E′0 + f M, (20)

∂uB

∂t
= ν∇2uB + J × b + j × B + F ′

B
, (21)

∂aB

∂t
= η∇2 aB + U × bB + u × B + E′

B
. (22)

Because ofF ′0 = ( j0×b0)′ andE′0 = (u0×b0)′, Eqs. (19) and (20)
are completely closed. Furthermore, we have

F ′
B
= ( j0 × bB + jB × b0 + jB × bB)′, (23)

E′
B
= (u0 × bB + uB × b0 + uB × bB)′. (24)
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We can rewrite these expressions such that they become formally
linear in uB and bB, each in two different flavors:

F ′
B
= ( j × bB + jB × b0)′ = ( j0 × bB + jB × b)′, (25)

E′
B
= (u × bB + uB × b0)′ = (u0 × bB + uB × b)′. (26)

Now we have achieved our goal of deriving a system of formally
linear equations defining the parts of the fluctuations that can be
related to the mean field as response to its interaction with the
given fluctuating fields u, u0, b, and b0.

For the parts of the mean ponderomotive and electromotive
forces existing already with B = 0 we find

F 0 = j0 × b0 and E0 = u0 × b0 (27)

which could be finite due to a small-scale dynamo or magnetic
forcing. Although it is hard to imagine that isotropic forcing
alone is capable of enabling a non-vanishing F 0 or E0, an addi-
tional vector influencing the otherwise isotropic turbulence may
well act in this way. For example, using the second-order corre-
lation approximation (SOCA) it was found that in the presence
of a non-uniform mean flow U with mean vorticity W = curl U
we have, in ideal MHD (η = ν = 0),

E0 = −τU

3
u00 · j00 U +

τW

3
u00 · b00 W. (28)

Here the index “00” refers to the fluctuating background uninflu-
enced by both the magnetic field and the mean flow. Beyond this
specific result, too, one may expect that quite general some cross
correlation of the primary turbulences is crucial. (Yoshizawa
1990; Rädler & Brandenburg 2010).

For the parts vanishing with B we have

FB = j × bB + jB × b0 = j0 × bB + jB × b, (29)

EB = u × bB + uB × b0 = u0 × bB + uB × b. (30)

We recall that for b0 = 0 (see Sect. 2), only the term u × bB ≡
EK

B
occurs in the mean electromotive force and for u0 = 0

(see Eq. (11)) only uB × b ≡ EM
B

. For interpretation purposes it
is therefore convenient to define correspondingly symmetrized
versions of (29) and (30),

FB = j × bB + jB × b − jB × bB = FK
B
+ FM

B
+ FR

B

EB = u × bB + uB × b − uB × bB = EK
B
+ EM

B
+ ER

B
,

with FR
B
= − jB × bB and ER

B
= −uB × bB being residual terms.

Of course this split is only meaningful with a non-vanishing
mean field in the main run. The corresponding transport coeffi-
cients might be split analogously. However, for an imposed field
in, say, the i direction this is restricted to the (i j) components of
the tensors.

3.4. Test-field method

In a next step we define the actual test equations starting from
Eqs. (21), (22), (25) and (26). As they are already arranged to
be formally linear when deliberately ignoring the relations be-
tween uB and u as well as between bB and b, respectively, we
have nothing more to do than to identify B with a test field BT

and (uB, bB) with the corresponding test solution (uT, bT). Due to

Table 1. The four versions of the generalized test-field method as gen-
erated by combining the different representations of F T′ and ET′ in
Eqs. (33) and (34).

j × bT + jT × b0 j0 × bT + jT × b

u × bT + uT × b0 ju bu
u0 × bT + uT × b jb bb

the ambiguity in Eqs. (25) and (26) four different versions are
obtained reading

∂uT

∂t
= JT × b + j × BT + F T′ + ν∇2uT, (31)

∂aT

∂t
= U × bT + u × BT + ET′ + η∇2 aT, (32)

with

F T′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( j × bT + jT × b0)′

or

( j0 × bT + jT × b)′,

(33)

ET′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(u × bT + uT × b0)′

or

(u0 × bT + uT × b)′.

(34)

Correspondingly we express the mean ponderomotive and elec-
tromotive forces by the test solutions as

F T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
j × bT + jT × b0

or

j0 × bT + jT × b,

(35)

ET =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u × bT + uT × b0

or

u0 × bT + uT × b,

(36)

and stipulate that the choice within Eqs. (35) and (36) is always
to correspond to the choice in Eqs. (33) and (34). As we will
make use of all four possible versions we label them in a unique
way by the names of the fluctuating fields of the main run that
enter the expressions for F T′ and ET′. Accordingly, we find by
inspection of Eqs. (33) and (34) for the labels the combinations
ju, jb, bu and bb; see Table 1.

Now we conclude that for given u, b, u0, b0 and U the test
solutions uT and bT are linear and homogeneous in the test fields
BT and that the same holds forF T and ET. Hence, the tensors α,
η, φ and ψ derived from these quantities will not depend on the
test fields, but exclusively reflect properties of the given fluctuat-
ing fields and the mean velocity. If these are affected by a mean
field in the main run the tensor components will show a depen-
dence on B. Thus, like in the quasi-kinematic method, quenching
behavior can be identified. We observe further that, when using
the mean field from the main run as one of the test fields, the
corresponding test solutions bT and uT will coincide with bB and
uB, respectively.
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Summing up, we may claim that the presented generalized
test-field method in either shape satisfies certain necessary con-
ditions for the correctness of its results. But can we be confi-
dent, that these are sufficient? An obvious complication lies in
the fact that, in contrast to the quasi-kinematic method yielding
the transport coefficients uniquely, we have now to deal with four
different versions which need not be equivalent. Indeed we will
demonstrate that the reformulation of the original problem into
Eqs. (31) and (32) with Eqs. (33) and (34) introduces spurious
instabilities in some applications. As we presently see no strict
mathematical argument for the identity of the outcomes of all
four versions, we resort to an empirical justification of our ap-
proach. This is what the rest of this paper mainly is devoted to.

Remarks: (i) Applying the second order correlation approxi-
mation (SOCA) to the system (31), (32), that is, neglecting F T′

and ET′, melts the four versions down to one and thus removes
any ambiguities.
(ii) In the kinematic limit B → 0 we have simultaneously
u → u0 and b → b0, so again only one version remains. The
method has then of course no longer any value for quenching
considerations, but it still might be useful to overcome the limi-
tations of SOCA.
(iii) For b0 = 0, Eq. (32) with the first version of Eq. (34), i.e.

ET′ = (u × bT )′, (37)

and correspondingly ET = u × bT , but (31) ignored, reverts to
the quasi-kinematic method. For comparison we will occasion-
ally apply this method even when b0 � 0 and label the quantities
calculated in this way with an upper index “QK”.

From now on we define mean fields by averaging over two
directions, here over all x and y, that is, all mean quantities de-
pend merely on z (if at all) and we obtain a 1D mean-field dy-
namo problem. As a consequence, Bz is constant and there are
only two non-vanishing components of∇B, namely Jx and Jy so
only the evolution of Bx and By has to be considered. Moreover,
Ez is without influence on the evolution of B. Hence, instead of
Eqs. (15) and (7) we can write

F i = φi jB j − ψi jJ j, Ei = αi jB j − ηi jJ j, (38)

where the original rank-three tensors ψ and η are degenerated to
rank-two ones.

Only the four components of either tensor with i, j = 1, 2
are of interest, thus altogether 16 components need to be deter-
mined. As one test field BT comprises two relevant components
and yields one F T and one ET, each again with two relevant
components, we need to consider solutions of (31) through (34)
for a set of four different test fields.

Selection of test fields: The simplest choice are uniform fields
in the x and y directions, but they are only suited to determine
the α tensor.

All four tensors can be extracted by use of test fields with
either the x or the y component proportional to either cos kzz or
sin kzz and the other vanishing (see, e.g., Brandenburg 2005b;
Brandenburg et al. 2008a, 2008b; Sur et al. 2008). That is, BT

is either Bpc
i = δip cos kzz or Bps

i = δip sin kzz, where the super-
script pq with p = 1, 2 and q = c, s labels the test field. The
wavenumber kz is bounded from below by 2π/Lz, where Lz is

the extent of the computational domain in the z direction. By
varying kz, the wanted tensor components can be determined as
functions of kz. They have then no longer to be interpreted in the
usual way, but as Fourier transforms of integral kernels instead
(cf. Brandenburg et al. 2008a). In other terms, as the harmonic
test fields do not belong to the class of mean fields for which
the ansatzes (7) and (15) are exhaustive (see Sect. 2) we must be
aware that the tensors calculated in this way are “polluted” by
contributions from terms with higher spatial derivatives of B.

For each pair of test fields (Bpc, Bps) we determine 2 × 4
unknowns by solving the linear systems

F pq

i = φi jB
pq
j − ψi jJ

pq
j , Epq

i = αi jB
pq
j − ηi jJ

pq
j , (39)

q = c,s. Note that there is no coupling between the systems for
p = 1 and p = 2. Both coefficient matrices in (39) are given by
the rotation matrix

R =
(

cos kzz − sin kzz
sin kzz cos kzz

)
(40)

(with the angle kzz) and the solutions are(
φi j
ψi jkz

)
= Rt

⎛⎜⎜⎜⎜⎜⎝F
jc

i

F js

i

⎞⎟⎟⎟⎟⎟⎠ ,
(
αi j
ηi jkz

)
= Rt

⎛⎜⎜⎜⎜⎜⎝E jc
i

E js
i

⎞⎟⎟⎟⎟⎟⎠ . (41)

Here the superscript “t” indicates transposition.

3.5. Forcing functions, computational domain, and boundary
conditions

For testing purposes, a common and convenient choice is the
Roberts flow forcing function,

f = σkfΨ ẑ + ∇ × (Ψ ẑ) with Ψ = cos kxx cos kyy, (42)

and the effective forcing wavenumber kf = (k2
x + k2

y)1/2. With the
chosen averaging the Roberts forcing is isotropic in the xy plane.
Furthermore,σ is a parameter controlling the helicity of the forc-
ing: with σ = 0 it is non-helical while for σ = 1 it reaches
maximum helicity. If not declared otherwise, we will employ
maximally helical Roberts forcing. We choose here kx = ky = k1
where k1 is the smallest wavenumber that fits into the x and y ex-
tent of the computational domain (see below).

The Roberts forcing function will be employed for kinetic as
well as magnetic forcing, so we write f K,M = NK,M f , where the
NK,M are amplitudes having the units of acceleration and veloc-
ity squared, respectively. Note that for σ = 1, Eq. (42) yields
a Beltrami field, i.e., it has the property curl f = kf f . Provided
Bimp = 0, the kinetic and magnetic forcings act completely un-
influenced from each other because a b0 with Beltrami property
exerts no Lorentz force and u0 ∝ b0. Thus, a flow and a mag-
netic field are created that have exact Roberts geometry. This is
not the case for σ � 1, because then the Beltrami property is not
obeyed.

The computational domain is a cuboid with quadratic base
Lx = Ly = 2π while its z extent remains adjustable and depends
on the smallest wavenumber in the z direction, kz, to be consid-
ered. However, as the Roberts forcing function is not z depen-
dent, the runs from which only α is extracted were carried out
in 2D with kz = 0. In all cases we assume periodic boundary
conditions in all directions.

The results presented below were obtained using revision
r13439 of the Pencil Code1, which is a modular high-order
code (sixth order in space and third-order in time) for solving a
large range of different partial differential equations.

1 http://pencil-code.googlecode.com
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3.6. Control parameters and non-dimensionalization

In cases with an imposed magnetic field, we set Bimp = (B0, 0, 0).
Along with B0, the forcing amplitudes NK,M are the most rele-
vant control parameters. The only remaining one is the magnetic
Prandtl number, PrM = ν/η. If not otherwise specified it is set to
unity, i.e. ν = η.

It is convenient to measure length in units of the inverse min-
imal wavenumber k1, time in units of 1/ηk2

1, velocity in units of
ηk1, just as the magnetic field. The forcing amplitudes NK,M are
given in units of η2k3

1 and η2k2
1, respectively. Results will also be

presented in dimensionless form: αi j and ψi j in units of ηk1, ηi j

in units of η, and φi j in units of ηk2
1, if not declared otherwise.

Dimensionless quantities are denoted by a tilde throughout.
The intensities of the actual and background turbulences

are readily measured by the magnetic Reynolds and Lundquist
numbers,

ReM = urms/ηkf , Lu = brms/ηkf , (43)

where urms and brms are the rms values of fluctuating velocity and
magnetic field, respectively.

4. Results

An important criterion for the correctness of the generalized test-
field methods is the agreement of their results with those of the
imposed-field method which is, of course, only applicable if the
actual mean field in the main run is uniform. In most cases we
checked for this criterion, the being restricted to kz = 0 in the
test fields. On the other hand, in many cases with vanishing B,
but kz � 0 we were still able to perform validation by comparing
with analytical results.

Due to the properties of the Roberts forcing we have F 0 =

E0 = 0 throughout. For this reason, and because in the main runs
no other mean fields than the uniform occurred, the mean flow
U is vanishing too.

4.1. Limit of vanishing mean magnetic field

In this section we assume that the mean field is absent or weak
enough so as not to affect the fluctuating fields markedly, that is,
u ≈ u0, b ≈ b0. In particular, it can then not render the transport
coefficients anisotropic. Therefore, we denote by α and ηt simply
the average of the first two diagonal components of α and η, i.e.
α = (α11 + α22)/2 and ηt = (η11 + η22)/2, respectively. If not
specified otherwise we set B̃imp = 10−3 or zero.

4.1.1. Purely hydrodynamic forcing

In order to make contact with known results, we consider first
the case of the hydrodynamically driven Roberts flow. In two
dimensions, no small-scale dynamo is possible, hence b0 = 0
and u0rms = NK/νk2

f . In three dimensions, however, this solution
could be unstable, allowing in particular for a b0 � 0, but we
have not yet employed sufficiently large ReM for that to occur.
For ReM 
 1, α is given by (Brandenburg et al. 2008a)

α/α0K = ReM/[1 + (kz/kf)
2], α0K = −urms/2, (44)

where kz is the wavenumber of the harmonic test fields. The mi-
nus sign in α0K accounts for the fact that the Roberts flow has
for σ > 0 positive helicity, which results in a negative α.

Making use of the quasi-kinematic method, as well as of all
four versions of the generalized method, we calculated α for

Fig. 1. α/α0K vs. ReM for purely kinetic Roberts forcing with kz = 0
(2D case) from the quasi-kinematic and all versions of the generalized
method (solid line with squares). Note the full agreement with Eq. (44)
(dotted line) for ReM 
 1. Diamonds: results of the generalized meth-
ods with F T′ and ET′ in Eqs. (31) and (32) neglected, again coinciding
with Eq. (44).

NM = 0, kz = 0 (2D case) and values of ÑK ranging from 0.01
to 100 with a ratio of 10, where ũrms grows then from 0.005
to 50. Figure 1 shows α/α0 versus ReM (solid line). Here the
data points for all methods are indistinguishable and agree also
with those of the imposed-field method.

Agreement with the SOCA result Eq. (44) (dotted line) ex-
ists for ReM 
 1. For ReM > 1, SOCA is not applicable, be-
cause dropping the ET′ term in (32) is then no longer justified.
The SOCA values are nevertheless numerically reproducible by
the test-field methods when ignoring the F T′ and ET′ terms in
Eqs. (31) and (32); see the diamond-shaped data points in Fig. 1.

Corrections to the result (44) with the ET′ term retained
were computed analytically by Rädler et al. (2002a,b). The cor-
responding values are again well reproduced by all flavors of
the generalized test-field method as well as by the imposed-field
method.

In the first line of Table 2, we repeat the α result for ÑK = 1
and added that for test fields with the wavenumber kz = 1, from
where we also come to know the turbulent diffusivity ηt. Note
the difference between the values for kz = 1 and kz = 0, which
is roughly given by a factor 3/2 for kz = 1 and kf =

√
2; see

Eq. (44). Additionally, the results of the quasi-kinematic method
for kz = 1, αQK and ηQK

t , are shown. As expected, they coincide
completely with α and ηt.

4.1.2. Purely magnetic forcing

Next we consider the case of purely magnetic Roberts forcing,
i.e. NK = 0. Due to the Beltrami property of f M, b0 ∝ f M is also
a Beltrami field, so j0 × b0 = 0 and therefore u0 = 0 is a solution
of Eqs. (19) and (20). A bifurcation leading to solutions with
u0 � 0 cannot generally be ruled out, but was never observed.
Thus we have for the rms value of the magnetic vector potential
a0rms = NM/ηk2

f , hence b0rms = NM/ηkf . The appropriate param-
eter for expressing the strength of the fluctuating magnetic fields
is now the Lundquist number and the corresponding analytic re-
sult for Lu
 1 reads

α/α0M = (Lu/PrM)/[1 + (kz/kf)
2], α0M = 3brms/4 (45)

(for the derivation see Appendix E). It turns out that the sign of
α coincides now with that of the helicity of the forcing function.
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Fig. 2. α/α0M vs. Lu for purely magnetic Roberts forcing with kz = 0
(2D case) from all versions of the generalized method (solid line with
squares). Note the full agreement with Eq. (45) (dotted line) for Lu 

1. Diamonds: results of the generalized methods with F T′ and ET′ in
Eqs. (31) and (32) neglected, again coinciding with Eq. (45).

Table 2. Kinematic results for α̃ and η̃t for purely hydrodynamic (ÑM =
0), purely magnetic (ÑK = 0), and hydromagnetic Roberts forcing.

ÑK ÑM α̃(kz = 0) α̃ α̃QK η̃t η̃QK
t

1 0 −0.0857 −0.0569 −0.0569 0.0399 0.0399
0 1 0.2499 0.1684 0.0000 0.1188 0.0000

3.364 0 −0.7330 −0.4734 −0.4734 0.3087 0.3087
0 1.942 0.8219 0.5664 0.0000 0.3983 0.0000

3.364 1.942 −0.0081 0.0664 −0.4734 0.6604 0.3086

3.364 0 −1.0002 −0.6668 −0.6666 0.4715 0.47141

0 1.942 1.0000 0.6666 0.0000 0.4714 0.00001

3.364 1.942 −4 × 10−6 2 × 10−5 −0.6666 0.9428 0.47141

Notes. (1) With SOCA. Test-field wavenumber kz = 1, except in the third
column where kz = 0. These results agree with those of the imposed-
field method. α̃QK and η̃QK

t refer to the quasi-kinematic method.

Again, we consider first the two-dimensional case with kz = 0;
see Fig. 2. In analogy to purely hydrodynamic forcing we find
for Lu
 1 agreement between all versions of the generalized
test-field method (solid line with squares) with Equation (45)
(dotted line). For higher values, their SOCA versions (see
Sect. 4.1.1) accomplish the same; see diamond data points. Note
that for the last data point with Lu = 7 it was necessary to lower
the strength of the imposed field to Bimp/ηk1 = 10−4, because
otherwise the solution of the main run becomes unstable and
changes to a new pattern.

The second line of Table 2 repeats the result for ÑM = 1,
again amended by those for kz = 1 and the results of the quasi-
kinematic method, which is obviously unable to produce correct
answers. This is because the mean electromotive force is now
given by uB × b0, which is only taken into account in the gener-
alized method. Note further that ηt is positive both for hydrody-
namic and magnetic forcings.

4.1.3. Hydromagnetic forcing

As already pointed out in Sect. 3.5, in the absence of a mean
field, for simultaneous kinetic and magnetic Roberts forcing

Fig. 3. α versus ReM = Lu for hydromagnetic Roberts forcing with
kz = 0 (2D case). Along with the total value the constituents αk, αm

and αmk as well as αk + αm are shown. Note the sign change in α at
ReM ≈ 5.4. Inset: αmk in comparison to the result of a fourth order
analytical calculation (solid line).

with σ = 1 there is a solution of Eqs. (19) and (20) consist-
ing just of the solutions u0 and b0 of the system when forced
purely hydrodynamically and magnetically, respectively. Again,
a bifurcation leading to another type of solution cannot be ruled
out, but was not observed.

In contrast to what one might suppose, however, the decou-
pling of u0 and b0 lets the value of α for hydromagnetic forcing
in general not be simply additive in the values for purely hy-
drodynamic and purely magnetic forcings. We denote these by
αk =α(b0 = 0) and αm =α(u0 = 0), respectively. Beyond SOCA2,
the terms (uB × b0)′ and ( j0 × bB + jB × b0)′ in Eqs. (21) and (22)
provide couplings between uB and bB and give rise to an addi-
tional “magnetokinetic” part of α, defined as αmk = α−αk −αm.
Note that we use here lower case subscripts k, m, mk to distin-
guish this split of the α values from that introduced at the end of
Sect. 3.3, which applies only to the nonlinear case. In contrast,
the occurrence of αmk is a purely kinematic effect. While αk and
αm are, to leading order (and hence in SOCA), quadratic in the
respective background fluctuations, the magnetokinetic term is
of leading fourth order and is representable in schematic form as

αmk ∝ u2
0 b2

0.
Lines 5 and 8 of Table 2 show cases with hydromag-

netic forcing and amplitudes adjusted such that we would have
α̃k = α̃m = 1 if SOCA were valid. In either case the preceding
two lines present the corresponding purely forced cases. Lines 6
to 8 refer to the SOCA versions of the generalized methods. It
can be clearly seen that the results are additive only in the latter
case. The value of αmk as inferred from lines 3 to 5, is −0.1 re-
sulting in a considerable reduction of α in comparison with the
additive value. This is owing to the strong forcing amplitudes,
leaving the applicability range of SOCA far behind.

Figure 3 shows αmk for equally strong velocity and magnetic
fluctuations as a function of ReM = Lu together with αk, αm,
αk + αm and the resulting total value α. Note the significant dif-
ference between the naive extrapolation of SOCA, αm + αk, and
the true α. In its inset the figure shows the numerical values of
αmk in comparison to the result of a fourth order calculation
αmk = − (

√
2/64)u2

rmsb
2
rms (for the derivation see Appendix F).

2 Note that in the stationary case in addition to ReM 
 1 now in gen-
eral b2

rms 
 (ν/lc)urms has to be required for SOCA to be applicable.
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Fig. 4. α(kz), ηt(kz), and φ(kz) for hydromagnetic Roberts forcing with σ = 1 (left three panels), likewise ψ(kz), but for σ = 0.5 (rightmost panel).
Solid lines: SOCA results, cf. Appendix C. Curve labels refer to ReM = Lu or (ReM,Lu).

Clearly, the validity range of this expression extends beyond
ReM = Lu = 1 and hence further than the one of SOCA. It re-
mains to be studied whether the magnetokinetic contribution has
a significant effect also in the more general case when u0 ∦ b0.
If so, considering α to be the sum of a kinetic and a magnetic
part, as often done in quenching considerations, may turn out to
be too simplistic.

Likewise one may wonder whether closure approaches to the
determination of transport coefficients supposed to be superior to
SOCA can be successful at all as long as they do not take fourth
order correlations into account properly.

For the tensors φ and ψ, which turn out to show up with si-
multaneous hydromagnetic and magnetic forcing only (in ad-
dition, φ requires z-dependent mean fields) we have of course
again isotropy, φ11 = φ22 ≡ φ, ψ11 = ψ22 ≡ ψ.

As a peculiarity of the Roberts flow, ψ vanishes in the range
of validity of SOCA if the helicity is maximum (σ = 1 in (42)).
For this case the first three panels of Fig. 4 show the numeri-
cally determined dependences α(kz), ηt(kz) and φ(kz) with differ-
ent values of u0rms = b0rms (data points, dotted lines). The last
panel shows ψ(kz) for σ = 0.5 and the same forcing amplitudes
as before. As explained above, u0 and b0 can now no longer be
forced independently from each other. Hence, both fields cannot
show exactly the geometry defined by (42) and u0rms and b0rms
diverge increasingly with increasing forcing.

As demonstrated in Appendix C, φ(kz) ∝ k2
z /(k

2
z + k2

f ),
α(kz), ηt(kz), ψ(kz) ∝ 1/(k2

z +k2
f ) in the SOCA limit. For compari-

son these functions are depicted by solid lines. Note the clear de-
viations from SOCA for ReM = Lu = 5, particularly in α. Note
also that the expression for ψ was derived under the assumption
that the background has the geometry (42). It is therefore not ap-
plicable in a strict sense. The clear disagreement with the values
of ψ from the test-field method for high values of ReM and Lu
are hence not only due to violating the SOCA validity constraint.

4.2. Dependence on the mean magnetic field

We now admit dynamically effective mean fields and hence have
to deal with anisotropic fluctuating fields u and b which result
in anisotropic tensors α, η, φ and ψ. For the chosen forcing, B is

the only reason for anisotropy in the xy plane, so α has to have
the form

αi j = α1δi j + α2B̂iB̂ j, i, j = 1, 2,

with B̂ being the unit vector in the direction of B (here the x di-
rection). We obtain then α11 = α1 + α2 and α22 = α1. Of course,
the tensors η, φ and ψ are built analogously. Clearly, irrespec-
tive of whether the forcing is pure or mixed, the effects of Bimp
prevent u and b from having Roberts geometry.

In general, we leave in this section safe mathematical
grounds and enter empirical work. Only for vanishing magnetic
background, b0 = 0, one version of the generalized method
does coincide with the quasi-kinematic one (see Sect. 3.4,
Remark (iii)) and will therefore guarantee correct results.

4.2.1. Purely hydrodynamic forcing

In this case we have EB = u × bB = EK
B

and all flavors of the gen-
eralized method have to yield results which coincide with those
of the quasi-kinematic method. This is valid to very high accu-
racy for the ju and bu versions and somewhat less perfectly so for
the bb and jb versions. We emphasize that the presence of Bimp,
being solely responsible for the occurrence of magnetic fluctua-
tions, does not result in a failure of the quasi-kinematic method
as one might conclude from the model used by Courvoisier et al.
(2010).

Figure 5 presents the constituents of α as functions of the
imposed field in the 2D case. We may conclude from the data
that α2 is negative and approximately equal to αM

11. For values of
Bimp/ηk1 > 5, its modulus approaches α22 = α1 and thus gives
rise to the strong quenching of the effective α = α11. Indeed,
α(Bimp) can be described by a power law with an exponent −4
for large Bimp. This is at odds with analytic results predicting ei-
ther α ∝ B−2 (Field et al. 1999; Rogachevskii & Kleeorin 2000)
or ∝B−3 (Moffatt 1972; Rüdiger 1974). By comparing with com-
putations in which the non-SOCA term was neglected, we have
checked that our discrepancy with these predictions is not a con-
sequence of SOCA applied therein. Sur et al. (2007) suggested
that the B−2 and B−3 dependence is likely to be valid for time-
dependent and steady flows, respectively. It should be noted,
however, that their numerical values for the steady ABC flow
do actually exhibit the B−4 power law; cf. their Fig. 2. They
also found that an αM, defined similarly to our α11, increases
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Fig. 5. α11 (solid line, filled circles) and α22 (dashed line, open triangles)
as functions of the imposed field strength Bimp, compared with −αM

11
(dotted line, small dots) and α22 − α11 = −α2 (dotted line, open circles)
for purely kinetic Roberts forcing with ÑK = 1. αM

11 ≈ α2 throughout.
Note that α0K < 0 and that the α symbols in the legend refer to quantities
that are normalized by α0KReM0 and hence sign-inverted.

quadratically with B for weak fields and declines quadratically
for strong fields. This is in agreement with our present results.

4.2.2. Purely magnetic forcing

Here, the mean electromotive force is simply E = EM
B
= uB × b.

This is true as long as significant velocities in the main run oc-
cur only due to the presence of the mean field, that is, as long
as u0 = 0 (see above). While B is weak, E is approximately
uB × b0. However, one could speculate that, if the imposed field
reaches appreciable levels, i.e., if u is sufficiently strong, E can
with good accuracy be approximated by EK

B
= u × bB. Since the

quasi-kinematic method takes just this term into account, it could
then produce useful results.

In Fig. 6 we show the rms values of the resulting velocity
and magnetic fields as functions of the imposed field strength
for ÑM = 1, corresponding to Lu = 1/2 if Bimp = 0. The data
points can be fitted by expressions of the form

brms

b0rms
=

1

1 + B2
imp/B2∗

,
urms

b0rms
=

Bimp/B∗
1 + B2

imp/B2∗
, (46)

where B∗/ηk1 ≈ 1.8 ÑM. Note, that indeed the velocity fluctua-
tions become dominant over the magnetic ones for Bimp/ηk1 > 2.

The resulting finding, as shown in Fig. 7, is completely anal-
ogous to the one of Sect. 4.2.1, but now we see −αK

11 ≈ −α2 ap-
proachingα22 = α1 with increasing Bimp. Hence, the idea that the
quasi-kinematic method could give reasonable results for strong
mean fields has not proven true as αK

11 is not approachingα11, de-
spite the domination of urms over brms. Instead, the values from
the quasi-kinematic method have the wrong sign and deviate in
their moduli by several orders of magnitude.

In Table 3 we compare, for different values of Bimp, the val-
ues of α11 and α22, obtained using the generalized test-field
method, with those of αK

11 and those from the quasi-kinematic
method, αQK

11 and αQK
22 , where the entire dynamics of uB has been

ignored. Note again, that the results of all four versions of the
generalized test-field method agree with each other.

Fig. 6. Root-mean-square values urms (open circles) and brms (filled cir-
cles) as functions of the imposed field strength Bimp for purely magnetic
Roberts forcing, ÑM = 1. Solid and dashed lines represent the fits given
by Eq. (46).

Fig. 7. α11 (solid line, filled circles) and α22 (dashed line, open triangles)
as functions of the imposed field strength Bimp, compared with −αK

11
(dotted line, small dots) and α22 − α11 = −α2 (dotted line, open circles)
for purely magnetic Roberts forcing with ÑM = 1. Note that αK

11 ≈ α2

throughout.

Table 3. Dependence of α̃11 and α̃22 from the generalized method on
B̃imp for ÑK = 0 and ÑM = 1 together with the kinetic contribution α̃K

11

and the results from the quasi-kinematic method (α̃QK
11 and α̃QK

22 ).

B̃imp 10−2 1 101 102

α̃11 2.499 × 10−1 1.376 × 10−1 2.000 × 10−4 2.131 × 10−8

α̃22 2.499 × 10−1 1.747 × 10−1 6.161 × 10−3 6.390 × 10−5

α̃K
11 −8.391 × 10−6 −4.540 × 10−2 −6.666 × 10−3 −7.067 × 10−5

α̃QK
11 −7.858 × 10−6 −4.350 × 10−2 −6.657 × 10−3 −7.067 × 10−5

α̃QK
22 −2.247 × 10−7 −1.152 × 10−3 −4.740 × 10−7 −5.326 × 10−13

4.2.3. Hydromagnetic forcing

In analogy to Figs. 5 and 7 we show in Fig. 8 the constituents of
α versus Bimp. Note that we have used here α0KReM0+α0MLu0 >
0 for normalizing α. This is the kinematic value of α11 = α22 for
kz = 0 and small u0rms, b0rms; see Eqs. (44), (45) and Sect. 4.1.3.

It can be observed that αM
11 at first dominates over −αK

11, but
at Bimp/ηk1 ≈ 2 their relation reverses. Remarkably, the ratio of
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Fig. 8. α11 (solid line, filled circles) as function of the imposed field
strength Bimp, compared with −αK

11 (dotted line, small dots), αM
11 (dash-

dotted line, open circles) and αR
11 (dotted line, open squares) for hydro-

magnetic Roberts forcing with ÑM = ÑK = 1. Inset: α22 (dashed line,
open triangles) compared to α11.

Fig. 9. Dependence of α11 and α22 on PrM for hydromagnetic Roberts
forcing with Lu/ReM = 1 and Bimp/νk1 = 1.

their moduli reaches, for high values of Bimp, just the inverse of
that for low values. The strong quenching of α11 is now a con-
sequence of αR

11 approaching−αK
11 −αM

11. In complete agreement
with the former two cases with pure forcings, −α11 is propor-
tional to B−4

imp for strong fields. However, we see a deviating be-
havior of α22(Bimp) as it is no longer following a power law.

Given that the α effect can be sensitive to the value of PrM,
we study α11 and α22 as functions of PrM, keeping Lu/ReM = 1
and Bimp/νk1 = 1 fixed. The result is shown in Fig. 9. In the in-
terval 0.3 ≤ PrM ≤ 2, the α coefficients exhibit a high sensitivity
with respect to PrM changing even their sign at PrM ≈ 0.7 and 2,
respectively. Note also the occurrence of minima.

4.3. Convergence

In most of the cases the four different versions of the general-
ized method (see Table 1) give quite similar results. For purely
hydrodynamic and purely magnetic forcing there is agreement
to all significant digits. This is not quite so perfect with hydro-
magnetic forcing, i.e. NK � 0, NM � 0. In general, however,
agreement is improved by increasing the numerical resolution.

Yet another complication arises when B0 � 0, because then
some of the versions are found to display exponentially growing

Fig. 10. Convergence of α11 from the ju and jb versions of the general-
ized method to the result of the imposed-field method and exponential
divergence of the versions bu and bb for ÑK = ÑM = 1, B̃imp = 1, kz = 0
and a resolution of either 322 (upper panel) or 642 mesh points (lower
panel). Note the improving agreement between the ju and jb versions:
the deviation is changing from ≈2.5% to ≈0.05%, that is, by a factor
≈26, as expected for a sixth order finite difference scheme.

test solutions; see Fig. 10. This may not be surprising, because
each version corresponds to a different linear inhomogeneous
system of equations, and there is no guarantee that each of them
has only stable solutions. The actual occurrence of instabilities
depends however on intricate properties of the fluctuating fields
from the main run, u and b. We suppose that, if one could re-
move the unstable eigenvalues of the homogeneous part of the
system (31)–(34) from its spectrum, the solution of the inhomo-
geneous system would indeed be the correct one.

5. Discussion

The main purpose of the developed method consists in hand-
ling situations in which hydrodynamic and magnetic fluctuations
coexist in the background. The quasi-kinematic method can only
afford those constituents of the mean-field coefficients that are
related solely to the hydrodynamic background u0, but the new
method is capable of delivering, in addition, those related to the
magnetic background b0. Moreover, it is able to detect mean-
field effects that depend on cross correlations of u0 and b0. We
have demonstrated this with the two fluctuations being forced
externally to have the same Roberts-like geometry. With respect
to αwe observe a “magneto-kinetic” part being, to leading order,
quadratic in the magnetic Reynolds and Lundquist numbers. It is
capable of reducing the total α significantly in comparison with
the sum of the α values resulting from purely hydrodynamic and
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purely magnetic backgrounds. In contrast, the tensors φ and ψ
which give rise to the occurrence of mean forces proportional to
∇(∇B) and ∇B are, to leading order, bilinear in ReM and Lu.

In nature, however, external electromotive forces imprinting
finite cross-correlations of u0 and b0 are rarely found. Therefore
the question regarding the astrophysical relevance of these ef-
fects has to be posed. Given the high values of ReM in prac-
tically all cosmic bodies, small-scale dynamos are supposed to
be ubiquitous and do indeed provide hydromagnetic background
turbulence. But is it realistic to expect non-vanishing cross-
correlations under these circumstances?

Let us consider a number of similar, yet not completely iden-
tical turbulence cells arranged in a more or less regular pattern.
As dynamo fields are solutions of the homogeneous induction
equation and the Lorentz force is quadratic in B, bilinear cross-
correlations, u0ib0 j, obtained by averaging over single cells can
be expected to change their sign randomly from cell to cell pro-
vided the cellular dynamos have evolved independently from
each other. Consequently, the average over many cells would
approach zero and the φ and ψ effects would not occur. In con-
trast, cross-correlations that are even functions of the compo-
nents of b0 and their derivatives, were not rendered zero due to
random polarity changes in the small-scale dynamo fields (e.g.
the magneto-kinetic α).

However, the assumption of independently acting cellular
dynamos can be put in question when the whole process begin-
ning with the onset of the turbulence-creating instability (e.g.
convection) is taken into account. During its early stages, i.e.
for small magnetic Reynolds numbers, the flow is at first un-
able to allow for any dynamo action, but with growing ampli-
tude a large-scale dynamo can be excited first to create a field
that is coherent over many turbulence cells. With further growth
of its amplitude the (hydrodynamic) turbulence eventually en-
ters a stage in which small-scale dynamo action becomes pos-
sible. The seed fields for these dynamos are now prevailingly
determined by the already existing mean field and due to its
spatial coherence the polarity of the small-scale field is not set-
tling independently from cell to cell, thus potentially allowing
for non-vanishing cross-correlations. Moreover, instead of em-
ploying the idea of a pre-existing large-scale dynamo one may
claim that, given the smallness of the turbulence cells compared
to the scale of the surroundings of the cosmic object, there is
always a large-scale field, e.g. the galactic one, that is coherent
across a large number of turbulence cells.

But even if one wants to abstain from employing the influ-
ence of a pre-existing mean field it has to be considered that
neighboring cells are never exactly equal. Thus, in the course
of the growing amplitude of the hydrodynamic background, in
some of them the small-scale dynamo will start working first,
hence setting the seed field for its immediate neighbors. It is
well conceivable that a certain sign of, say, the cross-correlation,
u0ib0 j, established in one of the early starting cells “cascades”
to more and more distant neighbors until this process is lim-
ited by the cascades originating from other early starting cells.
Consequently, we arrive at a situation similar to the one dis-
cussed before, yet with less extended regions of coinciding signs
of the correlation.

In summary, cross-correlations and the mean-field effects
connected to them cannot be ruled out a priori. Direct numer-
ical simulations of the scenarios discussed above should be per-
formed in order to clarify the significance of these effects. This
is equally valid for the effects due to cross-correlations resulting
in E0; see Eq. (28).

In a recent paper, Courvoisier et al. (2010) discuss the range
of applicability of the quasi-kinematic test-field method. Their
model consists of the equations of incompressible magneto-
hydrodynamics with purely hydrodynamic forcing. However, by
imposing an additional uniform magnetic field B together with
the forced fluctuating velocity a fluctuating magnetic field arises.
It must be stressed that, following the line of their argument,
these fluctuations have to be considered as part of the back-
ground (u0, b0), that is, they belong to those fluctuations that
occur in the absence of the mean field. This follows from the
fact that, when defining transport coefficients such as α, the field
B is not regarded as part of the mean field B, in contrast to our
treatment; see their Sect. 2b. For simplicity they consider only
the kinematic case and restrict the analysis to mean fields ∝eikzz

with kz → 0. In their main conclusion, drawn under these condi-
tions, they state that the quasi-kinematic test-field method, which
considers only the magnetic response to a mean magnetic field,
must fail for B � 0, that is b0 � 0. We fully agree in this re-
spect, but should point out that the quasi-kinematic method was
not claimed to be applicable in that case; see Brandenburg et al.
(2008c, Sect. 3) giving the caveat “As in almost all supercrit-
ical runs a small-scale dynamo is operative, our results which
are derived under the assumption of its influence being negligi-
ble may contain a systematic error.”. However, Courvoisier et al.
(2010) overinterpret their finding in postulating that already the
determination of quenched coefficients such as α(B) for b0 = 0
by means of the quasi-kinematic method leads to wrong results.
The paper of Tilgner & Brandenburg (2008), quoted by them in
this context, is just proving evidence for the correctness of the
method, as does Brandenburg et al. (2008c).

Our tensor ψ is related to their newly introduced mean-field
coefficient Γ by ψi j = εk j3Γi3k. Unfortunately, an attempt to re-
produce their results for Γ (and likewise for α) is not currently
possible owing to our modified hydrodynamics. We postpone
this task to a future paper.

6. Conclusions

Having been applied to situations with a magnetohydrodynamic
background where both u0 and b0 have Roberts geometry, the
proposed method has proven its potential for determining turbu-
lent transport coefficients. In particular, effects connected with
cross-correlations between u0 and b0 have been identified and
were found to be in full agreement with analytical predictions
as far as they are available. No basic restrictions with respect to
the magnetic Reynolds number or the strength of the mean field,
which causes the nonlinearity of the problem, are observed so
far. As a next step, of course, the simplifications in the hydrody-
namics used here have to be dropped, thus allowing to produce
more relevant results and facilitating comparison with work al-
ready done.

Due to the fact that we have no strict mathematical proof
for its correctness, there can be no full certainty about the gen-
eral reliability of the method. An encouraging hint is given
by the fact that all four flavors of the method produce often
nearly identical results. Occasionally, however, some of them
show unstable behavior in the test solutions. Clearly, further
exploration of the method’s degree of reliance is necessary by
including three-dimensional and time-dependent backgrounds.
Homogeneity should be abandoned and backgrounds which
come closer to real turbulence such as forced turbulence or tur-
bulent convection in a layer are to be taken into account.
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Thus, the utilized approach of establishing a test-field pro-
cedure in a situation where the governing equations are inher-
ently nonlinear (although by virtue of the Lorentz force only) has
proven to be promising. This fact encourages us to develop test-
field methods for determining turbulent transport coefficients
connected with similar nonlinearities in the momentum equa-
tion. An interesting target is the turbulent kinematic viscosity
tensor and especially its off-diagonal components that can give
rise to a mean-field vorticity dynamo (Elperin et al. 2007; Käpylä
et al. 2009), as well as the so-called anisotropic kinematic α
effect (Frisch et al. 1987; Sulem et al. 1989; Brandenburg &
von Rekowski 2001; Courvoisier et al. 2010) and the Λ effect
(Rüdiger 1980, 1982). Yet another example is given by the tur-
bulent transport coefficients describing effective magnetic pres-
sure and tension forces due to the quadratic dependence of the
total Reynolds stress tensor on the mean magnetic field (e.g.,
Rogachevskii & Kleeorin 2007; Brandenburg et al. 2010).
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Appendix A: Incompressibility

The equations used in this paper have the advantage of simpli-
fying the derivation of the generalized test-field method, but the
resulting flows are not realistic because the pressure and advec-
tive terms are absent. Here we drop these restrictions and derive
the test equations in the incompressible case with constant den-
sity. The full momentum and induction equations take then the
form

∂U
∂t
= U ×W + J × B + FK + ν∇2U − ∇P, (A.1)

∂A
∂t
= U × B + FM + η∇2 A, (A.2)

where W = curl U is the vorticity. P is the sum of gas and dy-
namical pressure and absorbs the constant density. The corre-
sponding mean-field equations are

∂U
∂t
= U ×W + J × B + F + ν∇2U − ∇P, (A.3)

∂A
∂t
= U × B + E + η∇2 A, (A.4)

where F = u × w + j × b and E = u × b, and the forcings were
assumed to vanish on averaging. The equations for the fluctua-
tions are consequently

∂u
∂t
= U × w + u ×W + J × b + j × B

+ F ′ + FK + ν∇2u − ∇p, (A.5)
∂a
∂t
= U × b + u × B + E′ + FM + η∇2a, (A.6)

where F ′ = (u × w + j × b)′ and E′ = (u × b)′. As above we
split the fields and likewise Eqs. (A.5) and (A.6) into two parts,
i.e. we write u = u0 + uB and a = a0 + aB and arrive at

∂u0

∂t
= U × w0 + u0 ×W + F ′0 + FK + ν∇2u0 − ∇p0, (A.7)

∂a0

∂t
= U × b0 + E′0 + FM + η∇2 a0, (A.8)

and the equations for the B dependent parts

∂uB

∂t
= U × wB + uB ×W + J × b + j × B

+ F ′
B
+ ν∇2uB − ∇pB, (A.9)

∂aB

∂t
= U × bB + u × B + E′

B
+ η∇2 aB, (A.10)

where F ′ = F ′0 + F ′B and E′ = E′0 + E′B with F ′0 = (u0 × w0 +

j0 × b0)′, E′0 = (u0 × b0)′, and

F ′
B
= ( j0 × bB + jB × b0 + jB × bB

+ u0 × wB + uB × w0 + uB × wB)′, (A.11)

E′
B
= (u0 × bB + uB × b0 + uB × bB)′. (A.12)

We can rewrite these equations such that they become formally
linear in uB and bB. Following the pattern utilized in Sect. 3.3 we
find already for F ′

B
four different ways of doing that. Together

with the two variants in the case of E′
B

we finally obtain eight

flavors of the test-field method where again in either case FB

and EB are to be constructed analogously to F ′
B

and E′
B
. One of

these flavors is defined by

F ′
B
= (u × wB + uB × w0 + j × bB + jB × b0)′, (A.13)

E′
B
= (u × bB + uB × b0)′. (A.14)

It is the one which comes closest to the quasi-kinematic test-field
method, because there E′

B
= (u× bB)′. Next, we substitute B by a

test field, BT, and uB and bB by the test solutions, uT and bT, i.e.

∂uT

∂t
= U × wT + uT ×W + JT × b + j × BT

+FT′ + ν∇2uT − ∇pT, (A.15)

∂aT

∂t
= U × bT + u × BT + ET′ + η∇2 aT, (A.16)

where

F T′ = (u × wT + uT × w0 + j × bT + jT × b0)′, (A.17)

ET′ = (u × bT + uT × b0)′. (A.18)

For the mean electromotive and ponderomotive force the
ansatzes Eqs. (7) and (15) can be employed without change.
Note, however, that the tensors φ and ψ now contain contribu-
tions from the Reynolds stress caused by uB, that is, eventually
by B.

Appendix B: Completeness of ansatzes (7) and (15)

The ansatzes Eqs. (7) and (15) are not exhaustive because higher
spatial and all temporal derivatives of B are omitted. Within this
limitation, however, they provide full generality with respect to
the tensorial structure of the relationship between B and F or E.
Consequently, it is not necessary to include further terms propor-
tional to the mean flow and its derivatives, as the corresponding
coefficients can be covered by the already included ones. For ex-
ample, to get a contribution of the form ci jU j in the emf we could
assume that there is a part of, e.g., α of the form c1Uiv j + c2U jvi

with some vector u resulting in ci j = c1u · B δi j + c2 viB j. The
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mean velocity plays the role of a “problem parameter” and all
transport coefficients can of course be determined as functions
of it.

Due to the neglect of the advective term U · ∇U and the
simplification of the viscous term in the model introduced in
Sect. 3.1 there is no mean ponderomotive force F 0 in the ab-
sence of the mean field. However, in proper hydrodynamics, e.g.
in the form shown in Appendix A, this quantity shows terms pro-
portional to derivatives of U. Then, a corresponding test method
can be tailored likewise for the coefficients in Eq. (28) which
turn into tensors for a general anisotropic background.

Appendix C: Derivation of φ(kz), ψ(kz)

Start with the stationary induction equation in SOCA

η∇2 bB + curl (u0 × B) = 0. (C.1)

Assume u0 = u0rms f and b0 = b0rms f with f = f (x, y),
curl f = kf f , f 2 = 1, B = B̂eikzz, and B̂x,y = const, B̂z = 0. Hence
∇2 f = −k2

f f . Then we can make the ansatz bB = b̂(x, y)eikzz with
∇2 b̂ = −k2

f b̂ and get

bB =
1
η

1

k2
f + k2

z

[
(B · ∇)u0 − ikz u0zB

]
.

For the calculation of the mean force

FB = j0 × bB + jB × b0

we need further

jB = curl bB = eikzz(curl b̂ + ikz ẑ × b̂) (C.2)

=
kf

η(k2
f + k2

z )

[
(B · ∇)u0 + ikz(B · u0) ẑ

]
+ ikz ẑ × bB. (C.3)

Consequently,

FB = kf b0 × bB + jB × b0 =
1
η

1

k2
f + k2

z[
ikz

(
kf(B · u0) ẑ + kfu0zB + ẑ × (B · ∇)u0

)
× b0

+ k2
z u0z( ẑ × B) × b0

]
=

1
η

1

k2
f + k2

z

[
ikzkf

(
(B · u0) ẑ + u0zB

)
× b0

+ ikzb0z(B · ∇)u0 − ẑb0 · (B · ∇)u0

+ k2
z (u0zb0z B − ẑu0zb0 · B)

]

and with J = ikz ẑ × B, that is, ikzBk = εki3Ji, k = 1, 2,

F Bi =
1
η

1

k2
f + k2

z

[
kf

(
εi3kεml3u0mb0k − εi jkεkl3u0zb0 j

)
Jl

+εl j3

⎛⎜⎜⎜⎜⎝−b0z
∂u0i

∂x j
+ δi3b0 · ∂u0

∂x j

⎞⎟⎟⎟⎟⎠ Jl

+ k2
z

(
u0zb0z Bi − δi3u0zb0l Bl

)]
.

The tensors are hence

φil =
1
η

k2
z

k2
f + k2

z

(
u0zb0zδil − u0zb0lδi3

)
,

ψil =
1
η

1

k2
f + k2

z

[
kf (u0zb0zδil − u0zb0lδi3)

+ kf(1 − δi3)
(
u0ib0l − δil(u01b01 + u02b02)

)
+ εl j3

⎛⎜⎜⎜⎜⎝ b0z
∂u0i

∂x j
− b0 · ∂u0

∂x j
δi3

⎞⎟⎟⎟⎟⎠
]
, l � 3

φi3 = ψi3 = 0.

For kz 
 kf the tensor φ is proportional to k2
z . Thus the corre-

sponding mean force expressed in physical space by a convolu-
tion φ̆ ◦ B, with φ̆ being the Fourier-backtransformed φ, can be
approximated by a term ∝ ∂2B/∂z2. For kz � kf , however, the
mean force is represented by a term ∝ B. With Roberts geometry
(Eq. (42)) we have for σ = 1

φ11 = φ22 =
1

2η

k2
z

k2
z + k2

f

u0rmsb0rms , ψ = 0. (C.4)

All other φ components vanish, too.
If, however, for the Roberts geometry 0 ≤ σ < 1, the field

f has indeed yet the property ∇2 f = −k2
f f , but is no longer of

Beltrami type. Instead, we have

curl f = σkf

[
f +

(
1
σ2
− 1

)
fz ẑ

]
.

The tensor ψ does not vanish any longer, but is now

ψ11 = − 1

η(k2
z + k2

f )

k2
y(1 − σ2)

kf(1 + σ2)
u0rmsb0rms,

ψ22 = − 1

η(k2
z + k2

f )

k2
x(1 − σ2)

kf(1 + σ2)
u0rmsb0rms,

ψ12 = ψ21 = 0.

Appendix D: Illustration of extracting a linear
evolution equation from a nonlinear one

To illustrate the procedure of extracting a linear evolution equa-
tion from a nonlinear problem, let us consider a simple quadratic
ordinary differential equation, y′ = y2, where a prime denotes
here differentiation. We split y into two parts, y = yN + yL, so we
have

y2 = y2
N + 2yNyL + y

2
L. (D.1)

In the last two terms we can replace yN + yL by y, so we have
2yNyL+y

2
L = (yN+y)yL, which is now formally linear in yL. Here,

y corresponds to the solution of the “main run”. Consequently,
we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
y′ = y2,
y′N = y

2
N,

y′L = (yN + y)yL,
(D.2)

where the last equation is linear in yL. Thus, at the expense of
having to solve an additional nonlinear auxiliary equation, y′N =
y2

N, we have extracted a linear evolution equation for yL.
Note, that the system (D.2) is exactly equivalent to (D.1), i.e.

no approximation has been made.
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Appendix E: Derivation of Eq. (45)

Consider the stationary version of (21) with F ′
B

dropped (i.e.
SOCA)

ν∇2uB + j × B + J × b = 0. (E.1)

Assume a uniform B, i.e., J = 0, b = curl a, div a = 0, hence
j = −∇2a. We get

uB = a × B/ν (E.2)

and further

(uB × b)i =
1
ν
εilmεlk jakbm Bj = αi jB j

that is,

αi j = (a · b δi j − aib j)/ν.

Isotropy results in

α = αii/3 = 2 a · b/3ν.
For b with Roberts geometry (Eq. (42)), however, we have α =
α11 = α22 � α33, hence

α = (a · b + a3b3)/2ν = kf (a2 + a2
3)/2ν = 3b2

rms/4kfν

and with Lu = brms/ηkf

α =
3
4

brmsLu/PrM. (E.3)

Adopt now B depending on z only with B ∝ eikzz, but a still
independent of z. Roberts geometry implies ∇2a = −k2

f a and
∇2uB = −(k2

f + k2
z )uB. Inserting in (E.1) (with the term ∝ J omit-

ted) yields(
k2

f + k2
z

)
uB = k2

f a × B/ν + . . .

and comparison with (E.2) reveals that (E.3) has only to be mod-
ified by the factor 1/

[
1 + (kz/kf)2

]
.

Appendix F: Derivation of αmk in fourth order
approximation

We employ the iterative procedure described, e.g., in Rädler &
Rheinhardt (2007) to obtain those contributions to EB which are
quadratic in u0rms and b0rms and expand for that purpose bB and
uB into the series

bB = b(1)

B
+ b(2)

B
+ b(3)

B
+ . . . ,

uB = u(1)

B
+ u(2)

B
+ u(3)

B
+ . . .

where in the stationary case

η∇2 b(1)

B
= −curl (u0 × B)

ν∇2u(1)

B
= −( j0 × B + J × b0)

η∇2 b(i)

B
= −curl (u0 × b(i−1)

B
+ u(i−1)

B
× b0)

ν∇2u(i)

B
= −

(
j0 × b(i−1)

B
+ j(i−1)

B
× b0

)
, i = 2, . . .

and

EB =

∞∑
i=1

(
u0 × b(i)

B
+ u(i)

B
× b0

)
=

∞∑
i=1

E(i)

B
.

In the following we assume B to be uniform and u0, b0 to have
Roberts geometry, see Eq. (42). The SOCA solutions b(1)

B
and

u(1)

B
read

b(1)

B
=

1

ηk2
f

(B · ∇)u0, u(1)

B
=

1
νkf

b0 × B.

From here on we switch to dimensionless quantities and set η =
ν = 1, kx = ky = 1, kf =

√
2, |B| = 1. So we have

b(1)

B
=

u0rms

2
[sin x sin y, cos x cos y,−√2 sin x cos y]

u(1)

B
=

b0rms

2
[0, 2 cos x cos y,−√2 sin x cos y]

u(2)

B
= 0

b(2)

B
=

1
8

(
− u2

0rms[cos 2y, 0,
√

2 sin 2y] +
b2

0rms

2

×
[
cos 2y(cos 2x + 2), sin 2y sin 2x,

√
2 sin 2y(cos 2x + 3)

] )
.

For b(3)

B
and u(3)

B
we present here only those parts which eventu-

ally contribute to αmk:

b(3)

B
=

u0rmsb2
0rms

32
[sin x sin y, cos x cos y,−4

√
2 sin x cos y]

+ . . .

u(3)

B
=

u2
0rmsb0rms

16
[0, cos x cos y,−

√
2

2
sin x cos y] + . . . .

Finally,

E(3)

B
= u0 × b(3)

B
+ u(3)

B
× b0 = −u2

0rmsb
2
0rms

√
2

64
+ . . . ,

i.e.

αmk ≈ −u2
0rmsb

2
0rms

√
2

64
·

Note, that the contributions omitted in E(3)

B
provide fourth order

corrections to αk and αm. They result in dependences on ReM and
Lu that are weaker than the parabolic SOCA ones; see Fig. 3.
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