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We present the results of simulations of forced turbulence in a slab where the mean kinetic
helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both
large and small-scale fields. We also study systems that have poorly conducting buffer zones
away from the midplane in order to assess the effects of boundaries. The dynamical �
quenching phenomenology requires that the magnetic helicity in the small-scale fields
approaches a nearly static, gauge independent state. To stress-test this steady state condition
we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can
reach a steady state value only through fluxes through the boundary, which are themselves
suppressed by the velocity boundary conditions. Even with such a set up, the small-scale
magnetic helicity is found to reach a steady state. In agreement with the earlier work, the
magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing
results with and without halos, we show that artificial constraints on magnetic helicity at the
boundary do not have a significant impact on the evolution of the magnetic helicity, except that
‘‘softer’’ (halo) boundary conditions give a lower energy of the saturated mean magnetic field.

Keywords: Solar dynamo; Turbulence simulations; Alpha effect; Alpha quenching;
Magnetic helicity

1. Introduction

Stars with outer convection zones tend to possess magnetic fields that display spatio-
temporal order with variations that are often cyclic and, in the case of the Sun,
antisymmetric with respect to the equatorial plane. Simulations are now beginning to
reproduce much of this behavior (see, e.g. Brown et al. 2010, Ghizaru et al. 2010,
Käpylä et al. 2010). A useful tool for understanding the outcomes of such models is
mean-field dynamo theory. A central ingredient of this theory is the � effect. This effect
quantifies a component of the mean electromotive force that is proportional to the
mean magnetic field (Moffatt 1978; Krause and Rädler 1980).

Mean-field theory makes meaningful predictions about when to expect cyclic or
steady solutions, and what the symmetry properties with respect to the equator are
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(Brandenburg 1998). Even in the nonlinear regime, the simple concept of � quenching,
which reduces � locally via an algebraic function of the mean magnetic field, tends to
give plausible results. However, under some circumstances, it becomes quite clear that
this simple-minded approach must be wrong. Such a special case is that of a triply-
periodic domain. Astrophysically speaking, such a model is quite unrealistic, but it is
often employed in numerical simulations. It was also employed as the primary tool to
compute � quenching from simulations (Cattaneo and Hughes 1996). These simulations
suggest that � quenching would set in once the mean field becomes comparable to a
small fraction (R�1=2m , where Rm is the magnetic Reynolds number) times the
equipartition value. If this were true also for astrophysical bodies such as the Sun,
the � effect could not be invoked for understanding the dynamics of the Sun’s magnetic
field (for a review, see Brandenburg and Subramanian 2005a).

Later it became clear that there are counter examples to the simple idea that �
quenching depends merely on the local field strength. Surprisingly, simulations
suggested that even in a triply-periodic domain a large-scale magnetic field can be
generated that can even exceed the equipartition value (Brandenburg 2001). However, it
would take a resistive time-scale to reach those field strengths, so there was still a
problem. Around the same time, the idea emerged that open boundaries might help
(Blackman and Field 2000a,b, Kleeorin et al. 2000, 2002). This is connected with the
fact that an � effect dynamo produces magnetic helicity of opposite sign at large and
small scales (Seehafer 1996, Ji 1999). The magnetic helicity at small scales is an
unwanted by-product that can feed back adversely on the dynamo. The resistively slow
saturation phase in periodic-box simulations can then be understood in terms of the
time it takes to dissipate this small-scale magnetic helicity. It is indeed a particular
property of triply-periodic domains that magnetic helicity is strictly conserved at large
magnetic Reynolds numbers. A possible remedy might then be to consider open
domains that allow magnetic helicity fluxes.

The first simulations with open domains were not encouraging. While it was possible
to reach saturation more quickly, the field was found to level off at a value that becomes
progressively smaller at larger magnetic Reynolds numbers (Brandenburg and Dobler
2001, Brandenburg and Subramanian 2005b). A possible problem with these
simulations might be the absence of magnetic helicity fluxes within the domain.
Indeed, Brandenburg and Dobler (2001) considered a kinetic helicity distribution that
was approximately uniform across the domain, so there were no gradients except in the
immediate proximity of boundaries, where boundary conditions on the velocity
prevented turbulent diffusion. The situation improved dramatically when simulations
with shear were considered (Brandenburg 2005, Käpylä et al. 2008, Hughes and Proctor
2009). Shear provides not only an additional induction effect for the dynamo, but it
might also lead to an additional source of magnetic helicity flux within the domain
(Vishniac and Cho 2001, Subramanian and Brandenburg 2004, 2006). More recently it
turned out that, even without shear, turbulent diffusion down the gradient of small-
scale magnetic helicity could, at least in principle, help avoid vanishingly small
saturation levels of the mean magnetic field when the magnetic Reynolds number
becomes large (Brandenburg et al. 2009, Mitra et al. 2010).

An important goal of this article is to revisit this issue using direct simulations of
turbulent dynamos without shear, and even with the same sign of magnetic helicity
everywhere, but with a spatial modulation of the helicity within the domain. In other
words, the level of turbulence is maintained at a high level throughout the domain,
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but the amount of swirl diminishes toward the boundaries. In most of the simulations
we include a turbulent halo outside the dynamo domain where the Ohmic resistivity is
enhanced. This might be important as several simple boundary conditions such as
pseudo-vacuum (or vertical field) conditions fix the value of the magnetic helicity
artificially, and if fluid motions through the boundary are prohibited, turbulent
transport there is impossible.

Our simulations also allow us to make contact with nonlinear mean-field
phenomenology where the evolution of the small-scale magnetic helicity is taken into
account. This then leads to an evolution equation for an additional contribution to the
� effect, �M. This approach is referred to as dynamical � quenching. In this article we
will also attempt to assess the validity of some of the corner stones of dynamical �
quenching. First, there is the magnetic � of Pouquet et al. (1976), where the fluctuating
magnetic field generates an �M that is proportional to the current helicity of the
fluctuating field. This �M counteracts the kinetic �, and so saturates the dynamo.
Second, there is magnetic helicity conservation which notes that the total magnetic
helicity is nearly conserved under common conditions, and so the magnetic helicity in
the fluctuating field can be related to the magnetic helicity in the large-scale field.
Finally, there is the assumption that the mean current helicity of the fluctuating field is
proportional to the mean magnetic helicity in the fluctuating field.

As noted above, a problematic prediction of dynamical � quenching is that rapid
(exponential) growth of mean magnetic fields will be halted below equipartition with
the turbulent energy. The export of small-scale helicity could provide a release from this
constraint but will likely occur side-by-side with export of the mean field. The interplay
between these effects can smother the dynamo even in the presence of small-scale
helicity transport. Treatment of large-scale helicity transport proves significantly more
complicated than that of the small-scale helicity, but we will draw some preliminary
conclusions.

In section 2 we discuss the dynamical � quenching phenomenology. In section 3 we
describe the numerical setup of the simulations whose results are analyzed in section 4.
Mean-field models of the systems are discussed in section 5 and we conclude in section 6.

2. Dynamical a quenching

We wish to use a mean-field approach to the saturation behavior of dynamos. In what
follows, our averages will be denoted by overbars and the fluctuating terms will be
denoted by lower case symbols. In the simulations we will be using planar xy averaging
unless noted otherwise, so the mean magnetic vector potential is given by

Aðz, tÞ ¼

ZZ
Aðx, y, z, tÞdxdy=LxLy, ð1Þ

A ¼ Aþ a, ð2Þ

so the mean magnetic field is B ¼ r � A and the mean current density is J ¼ r � B=�0,
where �0 is the vacuum permeability. In the following we adopt units in which �0¼ 1.
Throughout this article we use the expressions ‘‘mean field’’ and ‘‘large-scale field’’
synonymously. Likewise, we refer to the ‘‘small-scale field’’ as the ‘‘fluctuating field’’.
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We will work in the Weyl gauge (zero electrostatic potential, i.e. @A/@t¼ u�B� �J),
and assume that there is no mean velocity. We adopt the magnetic � prescription of
Kleeorin and Ruzmaikin (1982). As such our mean-field theoretic equations are

@B

@t
¼ r � ðE � �JÞ, E ¼ �B� �tJ, ð3Þ

� ¼ �K þ �M, �M ¼
�

3

j � b

�0�
’ k2f

�

3

a � b

�0�
’ k2f

�t
B2
eq

a � b, ð4Þ

where E ¼ u� b is the mean electromotive force, �K is the kinetic � effect, B2
eq � �u

2
rms

is a measure of the turbulent kinetic energy and �t � �u
2
rms=3 is the turbulent diffusivity.

The parameter kf is the wavenumber of the energy carrying scale of the turbulence. This
�M is taken to be the back-reaction component of � when it is split into kinetic and
magnetic components (Pouquet et al. 1976).

Magnetic helicity conservation can be seen from the time evolution equation of the
(total) magnetic helicity density hT�A �B, namely

@hT
@t
¼ �2�J � B� r �FT, ð5Þ

where FT is the magnetic helicity flux. The subscript T refers to total field, which is
composed of mean (m) and fluctuating (f ) fields. In systems where the flux of magnetic
helicity can be neglected (such as spatially homogeneous systems), and when the
magnetic Reynolds number Rm is large enough (and therefore � small) the magnetic
helicity will be nearly conserved. We define the large-scale and small-scale helicities as

hm � A � B, hf � a � b ¼ hT � hm: ð6Þ

Averaging (5) we arrive at

@hT
@t
¼
@hm
@t
þ
@hf
@t
¼ �2�J � B� 2�j � b� r �FT, ð7Þ

@hm
@t
¼ 2E � B� 2�J � B� r �Fm, ð8Þ

@hf
@t
¼ �2E � B� 2�j � b� r �F f: ð9Þ

In the spirit of mean-field theory, we will scale the fluxes to gradients of mean
quantities. We consider here only a diffusive helicity flux of the small-scale fields,
such that

F f � ��frhf, ð10Þ

while the flux of large-scale helicity will be discussed in greater detail in section 4.
In view of (4), the evolution of hf is basically equivalent to the evolution of �M.

3. Numerical setup

In this article we present both direct numerical simulations and mean-field calculations.
In both cases we use the PENCIL CODE (http://pencil-code.googlecode.com), which is a
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modular high-order code (sixth order in space and third-order in time) for solving a
large range of different partial differential equations.

We consider models with and without a halo. In both cases the horizontal extent of
the domain is Lx�Ly with equal side lengths Lx¼Ly�L, with periodic boundaries.
In cases without a halo the vertical extent of the domain is Lz¼L while in cases with
a halo we choose Lz¼ 2L. In the following we measure length in units of k�11 , where
k1¼ 2�/L is the minimal horizontal wavenumber. We will define our magnetic
Reynolds number as

Rm � urms=�kf; ð11Þ

where we assume that the wavenumber of the forcing is also the wavenumber of the
turbulence, and use a scale separation ratio kf /k1¼ 3.

At the top and bottom, we impose stress-free velocity conditions with uz¼ 0¼
@ux/@z¼ @uy/@z. At the top and bottom we impose a ‘‘vertical field’’ condition, Az¼

@Ax/@z¼ @Ay/@z. This condition imposes Bx¼By¼ 0 and hence A �B¼ 0. As this
condition on magnetic helicity may be artificial, and the velocity boundary condition
constrains turbulent transport into the boundary, we include buffer ‘‘halos’’, such that
the microscopic magnetic diffusivity is given by

� ¼
�0 �� � k1z � �,
�H jk1zj4�,

�
ð12Þ

where �H� �0. We include forced turbulence, with uniform amplitude and wavenumber
kf, but a relative helicity 	¼ (r� f ) � f/kf f

2 of

	 ¼
cos k1z=2 �� � z � �,
0 jk1zj4�:

�
ð13Þ

For detailed information about the implementation of a forcing function with variable
helicity we refer to the paper by Haugen et al. (2004).

The above system is interesting from a dynamical � perspective as it contains several
contrasting elements. Unlike Mitra et al. (2010), the forcing helicity is all of one sign,
and so we expect the magnetic and current helicities to also be of one sign. This implies
that the production term in (5) be finite even after volume averaging, and there may
never be a final steady state for the magnetic helicity. Further, fluxes through the actual
boundaries are reduced through the velocity boundary conditions as well as the resistive
destruction of the field in the halos. It is not clear whether the magnetic vector potential
will even have a final steady solution. An example of an unsteady magnetic
helicity in an otherwise fully steady dynamo was presented in figure 2 of
Brandenburg et al. (2002).

The main difference compared with earlier work is that in Mitra et al. (2010) there
was an equator at z¼ 0 with kinetic helicity of opposite sign for z50. Consequently, hf
also changes sign, allowing an efficient exchange of magnetic helicity by the turbulence.
Another important difference compared with the work of Mitra et al. (2010) are the
approximately 10 times larger values of the magnetic Reynolds number. The present
model is more similar to that of Brandenburg and Dobler (2001), except that there the
kinetic helicity profile was flat in the bulk of the dynamo interior and it dropped to zero
only immediately at the boundary of the domain, or gradually so in those cases where a
conducting non-turbulent halo was included.

Magnetic helicity fluxes in an �2 dynamo 581
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The helicity in the halos, as noted above, will be suppressed by the low conductivity,

as we expect small-scale helicity transport away from the active central region. A strong,

rapidly achieved final mean-field would indicate that flux of small-scale helicity

provides a clear escape from dynamical � quenching. Finally, a clear difference between

halo simulations and simulations without a halo will be evidence that the boundary

conditions are generating artificial constraints. If these differences are visible in the field

itself (as opposed to the vector potential), they are likely due to the reduced turbulent

diffusion into the boundary.
Mean quantities are calculated from time series over a long stretch of time where the

relevant quantities are approximately stationary in the statistical sense. We use the time

series further to calculate lower bounds on the error bars as the maximum departure

between these averages and the averages obtained from any of the three equally long

subsections of the full time series.

4. Results of simulations

In the statistically steady state, the magnetic field shows a large-scale magnetic field that

varies in the z direction (figure 1). It is therefore meaningful to describe the dynamics of

this large-scale field by using horizontal averages as noted in section 2. We will use

angular brackets, capitals and subscripts to refer to further averaging, with the

subscript T implying time averaging (which will be justified where used). The subscript

V implies averaging over the volume V ¼ LxLyL
0
z, where L0z ¼ z2 � z1 and

�z1 ¼ z2 ¼ 2k�11 . This will mark the boundaries of a smaller domain well within the

Figure 1. Visualizations of each of the three components of B on the periphery of the computational
domain, for a run with Rm¼ 1300 using 256� 256� 512 mesh points. The lower planes show the field at the
lower boundary, where it is quite weak. Note the presence of mild overshoot into the upper and lower halos,
where �H¼ 250�0. In the bulk of the domain the x and y components show a large-scale field with variation in
the z direction, while Bz does not show a systematic mean field.
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dynamo region. Thus, we write

HðtÞ ¼ hhiVV ¼
1

LxLyL0z
hðx, y, z, tÞdxdy dz ¼

1

L0z

Z
hTðz; tÞdz; ð14Þ

where h and H could stand for Hm and hm, or for Hf and hf, for example. We note,
however, that these quantities may be gauge-dependent. We also define the magnetic
energy of the mean field as Mm ¼ hB

2
=2iV.

4.1. Small-scale helicity flux

We define the magnetic helicity densities for the mean and fluctuating fields as

h
W

m ¼ A � B, h
W

f ¼ a � b: ð15Þ

The superscript W indicates that we are working in the Weyl gauge modulo possible
influences of the boundary conditions that have been mitigated through the use of halos.

It turns out that h
W

m has a systematic variation in time while h
W

f does not (figure 2).

It therefore makes sense to average the evolution equation for h
W

f in time, so we have
(Mitra et al. 2010)

@h
W

f

@t

* +
T

¼ 0 ¼ �2hE � BiT � 2�hj � biT � hr �FW
f iT, ð16Þ

where subscripts indicate time averaging over the interval T. In the Weyl gauge the
magnetic helicity flux of the small-scale field is given by FW

f ¼ e� a, where e ¼ E� E

is the electric field for the fluctuating quantities. Given that the first two terms on the
rhs of (16) are gauge-invariant, hr �F fi must also be gauge-invariant, so we can drop
the superscript W and note that, in the particular case at hand, we have
hr �FW

f iT ¼ hr �F fiT. We emphasize that hr �F fiT is still a function of z.

Figure 2. Magnetic helicity density of the small-scale magnetic field in the Weyl gauge, h
W

f , as a function of z
and t (left-hand panel), and the gauge-independent magnetic helicity of the large-scale field, Hm in units of
2Mm/k1 (right-hand panel), for Run H3 with �H¼ 100�0. For comparison, the Weyl-gauged magnetic helicity
of the large-scale field is shown in the inset. The data are averaged over regular time intervals of about 0.3
diffusive times, which also explains the absence of data at t¼ 0.
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4.2. Large-scale helicity flux

In order to assess the full magnetic helicity budget, we also need to take the magnetic

helicity of the mean field into account. Since h
W

m is time-dependent, it is not possible to

invoke a similar argument as for h
W

f . We are therefore forced to abandon a detailed
analysis of the z dependence of the magnetic helicity budget and restrict ourselves to the
analysis of the volume-integrated magnetic helicity, Hm, and its corresponding flux
divergence, Qm, using the gauge-invariant prescription of Brandenburg and Dobler
(2001) for the volume in z1� z� z2:

HmðtÞ ¼

Z z2

z1

h
W

m ðz; tÞ dzþ ẑ � Aðz1; tÞ � Aðz2; tÞ
� �

; ð17Þ

and

QmðtÞ ¼ � Eðz1; tÞ þ Eðz2; tÞ
� �

�

Z z2

z1

Bðz; tÞ dz; ð18Þ

where E ¼ �J� E is the mean electric field expressed in terms of horizontally averaged
Ohm’s law. Note that Hm and Qm obey the evolution equation

dHm

dt
¼ 2

Z z2

z1

E � B dz� 2�

Z z2

z1

J � Bdz�Qm: ð19Þ

It turns out that, unlike h
W

m and its volume-integral, Hm is statistically steady (figure 2),
so we may now also average (19) over time.

4.3. Magnetic helicity budgets

In table 1, we summarize the helicity budgets, namely the six terms on the rhs of (16)
and (19), of which the 2hE � Bi term occurs twice. We have used here the more
descriptive symbol hr �FmiVT � Qm=ðz2 � z1Þ for the flux divergence of the helicity of
the mean field. In order to simplify the notation, we drop from now on the subscripts

Table 1. Summary of the volume and time averaged terms on the rhs of (16) and (19), normalized by �t0B
2
eq,

while hB
2
i is normalized by B2

eq.

Run Rm hB
2
i 2hE � Bi 2�hJ � Bi 2�h j � bi hr �Fmi hr �F fi

H1 20 0.56 �0.423	 0.003 �0.068	 0.000 0.408	 0.002 �0.360	 0.006 0.018	 0.013
H2 50 0.33 �0.208	 0.003 �0.018	 0.000 0.190	 0.001 �0.192	 0.005 0.012	 0.004
H3 140 0.15 �0.086	 0.003 �0.003	 0.000 0.078	 0.001 �0.079	 0.005 0.005	 0.001
H4 270 0.12 �0.047	 0.002 �0.001	 0.000 0.041	 0.000 �0.046	 0.001 0.003	 0.000
H5 520 0.08 �0.024	 0.000 �0.000	 0.000 0.020	 0.000 �0.024	 0.001 0.002	 0.000
H6 1280 0.08 �0.029	 0.023 �0.000	 0.000 0.009	 0.000 �0.007	 0.007 �0.007	 0.004

VF1 10 0.62 �0.823	 0.011 �0.163	 0.002 0.822	 0.005 �0.669	 0.005 �0.000	 0.012
VF2 20 0.43 �0.434	 0.004 �0.051	 0.002 0.436	 0.003 �0.400	 0.005 0.002	 0.026
VF3 50 0.32 �0.250	 0.013 �0.019	 0.001 0.247	 0.002 �0.224	 0.009 0.006	 0.012
VF4 120 0.28 �0.138	 0.009 �0.007	 0.000 0.134	 0.001 �0.143	 0.004 0.001	 0.008
VF5 220 0.25 �0.091	 0.002 �0.003	 0.000 0.082	 0.001 �0.086	 0.002 0.004	 0.003
VF6 400 0.15 �0.053	 0.002 �0.001	 0.000 0.046	 0.000 �0.052	 0.001 0.005	 0.002

Notes: Runs H1–6 refer to systems with a poorly conducting halo with �H/�0
Rm, while Runs VF1–6 refer to systems
without a halo and a vertical field boundary condition at |k1z|¼�. The data for Run H6 are given for completeness, but it has
not run long enough to have satisfactory statistics.
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VT and define angular brackets without subscripts as combined averages over a long
enough time span and over the volume V in z1� z� z2, where again, �z1 ¼ z2 ¼ 2k�11 .

The results given in table 1 show that 2hE � Bi is balanced essentially by hr �Fmi,
because �hJ � Bi is small. On the other hand, for the magnetic Reynolds numbers
considered here (Rm9 500), the 2�h j � bi term is still quite large, and contributes mainly
to balancing �2hE � Bi in the magnetic helicity balance for the fluctuating field. The
other (smaller) contribution comes from hr �F fi. This result is quite similar to that of
Mitra et al. (2010) for the case of a linearly varying kinetic helicity profile, where it was
found that, even though most of hE � Bi is still balanced by �h j � bi, both hE � Bi and
hr �F fi vary little with Rm and must eventually dominate over �h j � bi as � decreases
with increasing Rm. This was estimated to happen at Rm¼ 103 . . . 104. In the model
presented here, this is not so obvious, because hE � Bi still shows a rapid decline with
increasing Rm. This may be a consequence of the fact that B

2
still declines quite rapidly

with increasing Rm, which indicates that the quenching is Rm-dependent, at least for the
values of Rm considered here.

Note that the final field strength for systems without halos tends to be higher than for
systems with halos: turbulent transport of the mean field out of the active region plays
an important role. This implies that the turbulent flux of magnetic helicity from small-
scale fields have a weaker effect on the final strength of the mean field than the
turbulent flux of the mean field itself. Note also that the total helicities Hm and Hf

show little difference in the two setups, suggesting that the artificially imposed h¼ 0
constraint on the boundary is not generating spurious results.

4.4. Magnetic helicity fluxes

In table 2 we collect results for the magnetic helicity flux divergence. The profile of the
flux of magnetic helicity from the small-scale magnetic field, F f, is reasonably well
described by a Fickian diffusion ansatz. In figure 3 we show the profiles of hE � Bi and
�hJ � Bi, compare the residual 2hE � Bi � 2�hJ � Bi with the divergence of the magnetic
helicity flux, and finally compare the flux F f ¼ e� a with that obtained from the
diffusion approximation, ��frhf.

There are several additional points to be noted about the simulation results. First,
based on earlier results for triply-periodic domains one expects thatHm andHf have the

Table 2. Normalized values of magnetic helicity, current helicity, and magnetic helicity flux divergence both
for small-scale and large-scale magnetic fields.

Run Rm k1Hm/2Mm Cm=k
2
1Hm Qm=�t0k

2
1Hm k1Hf/2Mm Cf=k

2
fHf Qf=�t0k

2
1Hf

H1 20 �0.94	 0.02 0.54	 0.02 0.69	 0.01 0.15	 0.00 2.05	 0.04 0.21	 0.15
H2 50 �0.89	 0.01 0.56	 0.01 0.68	 0.02 0.21	 0.01 2.50	 0.12 0.18	 0.07
H3 140 �0.93	 0.06 0.51	 0.01 0.55	 0.03 0.34	 0.00 3.02	 0.06 0.08	 0.02
H4 270 �0.97	 0.02 0.50	 0.01 0.41	 0.01 0.38	 0.00 4.29	 0.07 0.08	 0.01
H5 520 �0.90	 0.02 0.53	 0.01 0.34	 0.01 0.46	 0.00 4.96	 0.09 0.07	 0.01
H6 1280 �1.30	 0.01 0.36	 0.02 0.08	 0.07 0.36	 0.04 6.68	 1.40 �0.15	 0.18

VF1 10 �2.47	 0.45 0.20	 0.03 0.45	 0.08 0.11	 0.02 2.67	 0.52 �0.21	 0.36
VF2 20 �2.40	 0.43 0.21	 0.03 0.40	 0.08 0.16	 0.02 2.69	 0.31 0.02	 0.40
VF3 50 �2.26	 0.37 0.22	 0.03 0.31	 0.07 0.24	 0.03 2.68	 0.26 0.06	 0.14
VF4 120 �1.82	 0.28 0.27	 0.04 0.29	 0.04 0.28	 0.01 3.49	 0.07 0.02	 0.10
VF5 220 �1.84	 0.32 0.26	 0.05 0.19	 0.04 0.32	 0.00 3.83	 0.07 0.06	 0.04
VF6 400 �1.49	 0.23 0.32	 0.04 0.23	 0.04 0.43	 0.01 4.76	 0.06 0.07	 0.04
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opposite sign, which is indeed the case for all our simulations. Furthermore, we expect
that the current helicity of the mean fields, Cm � hJ � Bi, andHm have the same sign and
that Cm=Hm 
 k21. This is indeed the case, except that the simulations give about half or
less than the naively expected value for Cm/Hm. This indicates that the large-scale
magnetic field is not fully helical, a potential reason for the modest mean-field
saturation strength even in the presence of a magnetic helicity flux of small-scale fields.
Likewise, one expects that Cf and Hf again have the same sign. Again, this is borne out
by the simulations, but the ratio Cf=k

2
fHf is typically 3–5 times larger than the expected

value of unity. This may well be a consequence of the presence of a finite flux divergence
of magnetic helicity of small-scale fields.

Finally, we find that the sign of the flux divergence of magnetic helicity density of
fluctuating and mean magnetic fields has the same sign as the respective magnetic
helicities themselves. This is generally the case and is well motivated by the Fickian
diffusion ansatz. Given that we find �f
 0.3�t0, we should expect that Qf=�t0k

2
1Hf is also

about 0.3, but the real value is only 0.1. On the other hand, Qm=�t0k
2
1Hm varies between

0.2 and 0.7, but tends to decrease with increasing values of Rm, although it remains
above Qf=�t0k

2
1Hf and may be approaching it from above. As long as the transport of

large-scale helicity has a larger transport coefficient than that of the small-scale helicity,
we expect that the small-scale helicity transport will not result in larger helical mean
field strengths even though it allows for a stronger post-kinematic � effect
(Brandenburg and Subramanian 2005b).

The complication that �hJ �Bi is not small even for the largest Rm should not be
forgotten. The total helicity being forced, and eventually even the halo ‘‘buffer’’ zones
will transmit information to the boundary. It is therefore not clear how well a Fickian
diffusion ansatz is justified for the helicity of the mean magnetic field.

5. Connection with mean-field models

In order to perform mean-field simulations, we need to include all the relevant turbulent
transport coefficients. A robust tool for extracting these coefficients from simulation is

Figure 3. Time-averaged terms on the right-hand side of (16) for Run H4, hE � BiT and �h j � biT (left panel),
the difference between these terms compared with the magnetic helicity flux divergence of small-scale fields
hr �FW

f iT (middle panel), and the flux itself compared with the Fickian diffusion ansatz (right-hand panel).
The fluxes are given in units of �t0B

2
eq and the flux divergence is given in units of k1�t0B

2
eq.
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the test-field method of Schrinner et al. (2005, 2007); for applications to time-dependent

turbulence, see Brandenburg et al. (2008a,b). We apply this technique both to the

kinematic and to the nonlinear stage using the so-called quasi-kinematic test-field

method (Brandenburg et al. 2008c); for a justification of it, see Rheinhardt and

Brandenburg (2010). In figures 4 and 5 we show for both a halo and vertical-field run

not only the values of � and �t as determined by the test-field method, but also the 
 and
� effects in the more general expression

E ¼ �Bþ 
ẑ� B� �tJþ �ẑ� J: ð20Þ

As expected, the latter are negligible. Interestingly, we see evidence of quenching of �t
in the active region, even though the mean-field is well below equipartition

(hB
2
i ¼ 0:1B2

eq). Further, we see an approximately 2-fold reduction both in � and in

�t. In cases both with and without a halo the � and �t effects are very similar in the

central region. Indeed, the only clear difference between the two is the designed drop of
�t to 0 at the boundaries in the run without a halo. The similarity between runs with and

without halo is expected as the flux of small-scale magnetic helicity is small.

Figure 5. Profiles of �, �t, 
, and � for Run VF5, which is similar to Run H4 of figure 4 except without halo.
Note that in the middle of the domain the values of � and �t are nearly the same for Runs H4 and VF5.

Figure 4. Profiles of � and �t for Run H4 for the saturated case (solid lines) and the kinematic case (dashed
lines), obtained using the test-field method. In the left and right panels, we also show 
 and �, respectively.
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In figure 6 we compare the evolution of hB
2
i=B2

eqfor the direct simulation with the
solution of the corresponding mean-field model. There is excellent agreement in the
final saturation level, and in both cases the amplitude overshoots slightly before settling
at a somewhat lower value, but the kinematic growth rate is much faster in the mean-
field model than in the simulation. This discrepancy is not yet well understood and
should be reconsidered in future work. Perhaps significantly, the rise time of the mean
field is rapid even in terms of the turbulent turnover time. This means that memory
effects become important (Hubbard and Brandenburg 2009), and that the actual growth
rate would be reduced compared with that obtained from simple estimates. The
overshoot may simply be an artifact of the finite time it takes for the system to convert
mean fields into correlated small-scale fields, which is not included in the mean-field
model.

6. Conclusions

Confirming earlier work of Mitra et al. (2010), we have demonstrated the existence of a
diffusive flux F f of mean magnetic helicity of the small-scale field. In the present case,
however, the Weyl-gauged magnetic helicity of the large-scale field never reaches a
steady state. Nevertheless, the magnetic helicity density of the small-scale magnetic field
is found to be statistically steady, so the corresponding magnetic helicity flux must be
gauge-independent (Mitra et al. 2010). This supports the validity of using the small-
scale magnetic helicity as a meaningful proxy for the small-scale current helicity, and
hence the magnetic correction to the � effect.

Understanding the transport of magnetic helicity of the large-scale field, Fm, would
be useful for creating analytic post-kinematic models. Although we have not converged
on a formula for this flux, it is certainly non-vanishing and apparently Rm dependent. It
is not yet clear whether this flux will converge to a diffusive one for large Rm. Our mean-
field simulations reproduce the final field strength well, reinforcing the conclusion that
post-kinematic dynamical � quenching can be used as part of a mean-field simulation.

Figure 6. Comparison between the saturation behavior in the simulation (left) and the mean-field model
(right) for the same parameters: Rm/3¼ 100, C�¼ 3. Magnetic helicity flux is modelled in terms of a Fickian
diffusion law, using the fit for Run H4. The insets show the same data as the in the main plot, but in a semi-
logarithmic representation.
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The preliminary evidence on the use of small-scale helicity fluxes to escape the small
predicted post-kinematic mean fields is negative: the observed flux of large-scale
helicity, while poorly modeled, is larger than the flux of the small-scale helicity. If this
holds for larger Rm, it would not only have the unfortunate result of closing escape
holes from � quenching opened by F f, but would also imply that dynamo systems with
more realistic profiles than simple homogeneity will reach Rm-independent behavior for
high but currently nearly numerically achievable Rm. Another worrying result is that the
effective diffusion coefficient in our present simulations is about three times smaller
than in earlier work by Mitra et al. (2010), which used a rather different setup, but it
was also for smaller values of Rm. While the diffusion coefficient of the magnetic
helicity is unexpectedly small, on the order of a tenth the turbulent diffusion, small-scale
magnetic helicity is not expected to be a passive quantity, and so it is not surprising that
it might resist diffusion. Further investigations may be able to use the difference
between the small-scale magnetic helicity’s turbulent diffusivity and the turbulent
resistivity of the magnetic field itself to more finely probe the dynamical consequences
of the helicity and improve the dynamical �-quenching theory. Unfortunately, it is
likely that conclusive evidence for or against Rm-dependent quenching requires values
of Rm in the range between 103 and 104 (Brandenburg et al. 2009, Mitra et al. 2010).
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Krause, F. and Rädler, K.-H., Mean-field Magnetohydrodynamics and Dynamo Theory, 1980 (Oxford:
Pergamon Press).

Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R. and Brandenburg, A., Equatorial magnetic helicity flux
in simulations with different gauges. Astron. Nachr. 2010, 331, 130–135.

Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, 1978 (Cambridge: Cambridge
University Press).
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