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The small-scale magnetic helicity produced as a by-product of the large-scale dynamo is
believed to play a major role in dynamo saturation. In a mean-field model the generation of
small-scale magnetic helicity can be modelled by using the dynamical quenching formalism.
Catastrophic quenching refers to a decrease of the saturation field strength with increasing
Reynolds number. It has been suggested that catastrophic quenching only affects the region of
non-zero helical turbulence (i.e. where the kinematic � operates) and that it is possible to
alleviate catastrophic quenching by separating the region of strong shear from the � layer. We
perform a systematic study of a simple axisymmetric two-layer �� dynamo in a spherical shell
for Reynolds numbers in the range 1�Rm� 105. In the framework of dynamical quenching we
show that this may not be the case, suggesting that magnetic helicity fluxes would be necessary.

Keywords: Dynamo; Magnetic helicity; Catastrophic quenching

1. Introduction

It is widely believed that the solar magnetic cycle is driven by an �� dynamo.
The region of strong radial shear called the tachocline (Spiegel and Zahn 1992) at the
bottom of the solar convection zone (SCZ) is believed to be the place where strong
toroidal field is formed due to stretching of the weaker but diffuse poloidal field. It has
been inferred from helioseismology that the tachocline is confined within a thin layer in
the overshoot region which lies below the SCZ. This led Parker (1993) to propose the
idea of an interface dynamo, where the shear is confined to a region with a greatly
reduced turbulent diffusion, which is also the region of production of strong toroidal
field. The helical turbulence generated due to convection and rotation in the layer above
provides the turbulent � and a large turbulent diffusivity �t. The dynamo cycle being
thus completed, the interface dynamo operates as a surface wave propagating along the
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boundary between strong shear and convection, which is also a region with a strong
gradient in the turbulent diffusivity.

In order to mimic the process of dynamo saturation, traditionally authors have used
an algebraic quenching function like �0=ð1þ B

2
=B2

eqÞ or even �0=ð1þ RmB
2
=B2

eqÞ, where
�0 is the unquenched value of �, Rm is the magnetic Reynolds number, B is the mean
magnetic field and Beq is the equipartition magnetic field. However, it appears that
conservation of magnetic helicity plays an important role in the process of saturation.
At large Rm, the magnetic helicity (

R
A �B dV ) is fairly well conserved by the dynamo

producing equal amounts of helicity in small and large scales, respectively. If the small-
scale magnetic helicity is not able to escape out of the system, then the turbulent � effect
is markedly reduced (Pouquet et al. 1976). This leads to the magnetic energy of the
dynamo to be quenched such that the saturation value varies as R�1m . Since
astrophysical objects have large Rm (Rm� 109 for the Sun), this strong dependence of
the saturation field strength Bsat on Rm is referred to as catastrophic quenching.

Even though the helicity constraint in direct numerical simulations (DNS) of
dynamos with strong shear has been clearly identified, the results can be matched with
mean-field models having a weaker algebraic quenching of � and turbulent diffusivity
than �2 dynamos (Brandenburg et al. 2001). However, the empirically determined
coefficients would depend on circumstances and are therefore not universal. Such a
model would not obey magnetic helicity evolution and is therefore untenable on
theoretical grounds. The interface dynamo model has been invoked several times
as a way of getting around the persistent problem of catastrophic quenching
(see Charbonneau 2005 for a review). The belief is that the quenching function remains
close to unity in the region of finite � since the toroidal field is expected to be weak
there. However, to our knowledge, this has never been verified in a consistent manner
for a range of magnetic Reynolds numbers. In this article we perform a series of
calculations with mean-field �� models, in spherical geometry, considering both
algebraic and dynamical quenching formulations, for magnetic Reynolds numbers in
the range 1�Rm� 2� 105. An important feature of these models is that the region
of strong narrow shear is separated from the region of helical turbulence, as proposed
in the Parker’s interface model.

In section 2 we discuss the features of the �� model used, and the formulation of
dynamical � quenching. The results are highlighted in section 3 and conclusions are
drawn in section 4. A part of the calculations presented in this article will be discussed in
a more detailed article (Chatterjee et al. 2010). In this article we focus specifically on the
reality of the catastrophic quenching in dynamos with � and � effects operating in two
widely separated layers.

2. Nonlinear a: dynamo

2.1. The underlying mean-field model

Our dynamo model consists of the induction equations for the toroidal component of
the mean poloidal field potential, A�(r, �), and the mean toroidal magnetic field,
B�(r, �), written in spherical geometry under the assumption of axisymmetry (@/@�¼ 0).
In some of the cases an additional evolution equation will be solved for the � effect
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(described in the next section). We have used a modified version of the publicly

available solar dynamo code Surya (the code Surya and its manual can be obtained

by writing an email to arnab@physics.iisc.ernet.in) described in Chatterjee et al. (2004)

to perform these calculations.
In this article we have used a smoothed step profile for � given by

�ðrÞ ¼ �r þ
1

2
�t 1þ erf

r� re
de

� �� �
; ð1Þ

where re¼ 0.73R� and de¼ 0.025R�. We define the magnetic Reynolds number as

Rm¼ �t/�r. In order to facilitate comparison with earlier work in Cartesian geometry

(see, e.g. Brandenburg et al. 2009), it is convenient to define an effective minimal

wavenumber, k1. Somewhat arbitrarily, we use k1¼ 2/R�, which corresponds to a

harmonic wave with 2 nodes spanning the full latitudinal extent between both poles.

We also define the wavenumber of the energy-carrying eddies, kf, corresponding to the

inverse pressure scale height near the base of the convection zone. For all our

calculations we have taken kf¼ 7k1. Using the estimate �t¼ urms/3kf we can express the

equipartition field strength with respect to the turbulent kinetic energy as

Beq ¼ ð4��Þ
1=2urms ¼ ð4��Þ

1=2 3�tkf:

For algebraic quenching there is no magnetic � effect and we just have the kinetic �
effect, �K, which we assume to be of the form

�KðrÞ ¼
1

2
�0 cos � 1þ erf

r� ra
da

� �� ��
1þ g�B

2
=B2

eq

� �
; ð2Þ

where the value of �0 may be computed using the first-order smoothing approximation

(FOSA) as being equal to "f�tkf (Blackman and Brandenburg 2002). Here, the prefactor

�f is usually of order 0.1 or less since (u �u)rms< urms!rms. The case �f¼ 1 means the

flow is maximally helical. The term g� is a non-dimensional coefficient equal to 1 or Rm

depending on the assumed form of algebraic quenching in the models. Even though the

helical turbulence pervades almost the entire convection zone, we take ra¼ 0.77R� and

da¼ 0.015R� so that we can have a large separation between the shear layer and the

layer where turbulence is important. Consequently we consider a differential rotation

profile like that in the high latitude tachocline of the Sun given by,

�ðrÞ ¼ �
1

2
�0 1þ erf

r� rw
dw

� �� �
; ð3Þ

where �0¼ 14nHz, rw¼ 0.68R� and dw¼ 0.015R�. The radial profiles of �t, � and @�/@r
are plotted as a function of fractional radius r/R� in figure 1. The region of strong

radial shear is thus separated from the region of helical turbulence and the diffusivity

has a strong gradient at a radius lying between the two layers. It may be noted that, in

order to have supercritical dynamo action in a model with � having the same radial

profile as �, we must set �f� 1. If the strong gradient of � lies between the two source

regions, then we can work with �f� 1. Also the time period Tcyl of the oscillatory

dynamo remains a reasonably small fraction of the turbulent diffusion time tdiff. We can

justify the profiles of � and � on the grounds of having dynamo action for a

reasonable range of parameters even while avoiding any significant overlap between
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the two source regions. The formulation of the equation for the evolution of the � effect
for dynamical quenching is described in section 2.2.

2.2. Dynamical a quenching

It was first shown by Pouquet et al. (1976) that the turbulent � effect is modified due to
the generation of small-scale magnetic helicity such that the total � effect is given by,

� ¼ �K þ �M ¼ �
	

3
x � u� ��1j � b
	 


; ð4Þ

where u, u, j, and b denote the fluctuating components of vorticity, velocity, current
density, and magnetic field in the plasma, respectively.

For this type of quenching we use the same radial and latitudinal profiles of �K as
given in equation (2), but without the algebraic quenching factor in the denominator,
i.e. we put g�¼ 0. The second term in equation (4) is sometimes referred to as the

magnetic � effect or �M. It is possible to write an equation for the evolution of �M from
the equation for the evolution of the small-scale magnetic helicity density hf ¼ a � b

using the relation (Brandenburg et al. 2009),

�M ¼
�tk

2
f

B2
eq

hf: ð5Þ

The equation for a � b is in principle gauge-dependent. However, under the assumption
of scale separation, i.e. when the correlation length of the turbulence is small compared
to the system size, one can define a magnetic helicity density of small-scale fields in a
gauge-independent manner as the density of linkages (Subramanian and Brandenburg

2006). Using equation (5), this leads to an evolution equation for �M,

@�M
@t
¼ �2�tk

2
f

E � B
B2
eq

þ
�M
Rm

 !
� r � F�; ð6Þ

Figure 1. Profiles of negative radial shear @�/@r (dashed), � (solid) and � (dashed-dotted) as a function
of fractional solar radius.
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where E and B are the mean electromotive force and the mean magnetic field. The flux
F� consists of individual contributions, e.g. advection due to the mean flow, the
Vishniac–Cho flux (Vishniac and Cho 2001, Subramanian and Brandenburg 2004),
diffusive fluxes, triple correlation terms, etc. The effect of some of these individual
fluxes in a spherical geometry and with both radial and latitudinal shear have been
investigated by Guerrero et al. (2010), but for all the simulations presented in this article
we have put F�¼ 0.

We solve the equations for A�(r, �), B�(r, �) and �M in a domain confined by 0� ���
and 0.55R�� r�R�. The boundary conditions for A� are given by a potential field
condition at the surface (Dikpati and Choudhuri 1994) and A�¼ 0 at the poles. At the
bottom we use the perfect conductor boundary condition @(rB�)/@r¼ @(rB�)/@r¼ 0. Also
B�¼ 0 on all other boundaries. We have checked that the results are not very sensitive
to different boundary conditions at the bottom boundary mainly because the boundary
is far removed from the dynamo region. Since F�¼ 0, no derivatives of �M need to be
evaluated, so no boundary conditions need to be specified for �M and its evolution
equation is just an initial value problem. We start with an initial dipolar solution where
B� is antisymmetric about the equator.

3. Results

To study the Rm dependence of Bsat in our model we keep all the dynamo parameters
the same for all the runs except �r which we change from 2� 105 cm2 s�1 to 2� 1010 cm2

s�1 while keeping �t fixed at 4� 1010 cm2 s�1. It may also be noted that the time period
of the dynamo models (Tcyl) is fairly independent of the magnetic Reynolds number.

To be able to correctly compare the dynamo models for different Rm, we have
calculated the critical value of �0, denoted by �c for each model. In the following we
present results for �0¼ 2�c. We show in figure 2 the butterfly diagrams for B� and �M at
a depth of 0.72R�. It may be concluded from the butterfly diagram for �M in figure 2(b)
that the small-scale current helicity, and hence �M, is predominantly negative (positive)
in the Northern (Southern) hemisphere. Let us denote the exponential decay time for
�M by t�. So, t� ¼ Rm=�tk

2
f ¼ 4:55� 10�3Rmtdiff. For Rm¼ 2� 103, the decay time

t��Tcyl and so the system of equations is underdamped, as can be seen from the
butterfly diagrams in figure 2(a) as well as from saturation curve (dashed dotted line) in
figure 3. Note that there are amplitude modulations of the magnetic field before it
settles to a final saturation value. The nature of the saturation curves of the magnetic
energy is thus strongly governed by the ratio of t� and Tcyl.

The results of our calculations for different Reynolds numbers are plotted in figure 3.
The slopes in the kinematic phase are similar for all Rm within the error in the numerical
determination of the critical �c. The strong Rm dependence, which is reminiscent of
catastrophic quenching in large Rm dynamos, can be easily discerned from the same
figure, but is more clear in figure 4 where we see that the saturation energy decreases
monotonically as a function of magnetic Reynolds number. For Rm¼ 2� 105, the code
has to be run for 500 tdiff before the dynamo fields may start becoming ‘‘strong’’ again
for the case with �0¼ 2�c. Due to long computational times involved in this exercise we
have not continued the calculation beyond 60 tdiff. Hence the determination of
saturation magnetic energy may be inaccurate for Rm¼ 2� 105. In figure 4 we compare
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the case with dynamical quenching against the cases with a simple algebraic quenching
of the form given in equation (2) with g�¼ 1 and g�¼Rm. We notice that for g�¼Rm,
the algebraically and dynamically quenched � effects seem to give similar dependences
on Rm.

When the code is run longer, we start seeing changes in the parity after t>40 tdiff for
the dynamically quenched system in contrast to the ‘‘strong’’ algebraic quenching case,
where the parity remains dipolar. However, the magnetic energy and the dynamo period
Tcyl remain fairly constant even while the system fluctuates between symmetric and
anti-symmetric parity at an irregular time interval.

Figure 2. (a) B�(0.72R�, �) and (b) �m(0.72R�, �) as a function of diffusion time �tk
2
1t for Rm¼ 2� 103.

Figure 3. Volume averaged magnetic energy in the domain scaled with the equipartition energy for Rm¼ 1
(dotted line), Rm¼ 20 (solid), Rm¼ 200 (dashed), Rm¼ 2� 103 and Rm¼ 2� 105 (triangles) with dynamical
quenching.
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In figure 5 we show the meridional snapshots in the Northern hemisphere of the
toroidal component of the magnetic field and �M. It may be noted that the regions
strongest in B� become progressively confined in the narrow shear layer with increasing
Rm while �M becomes stronger leading to decrease in Bsat. Even though �M is
predominantly negative in the Northern hemisphere there is a region of positive small-
scale helicity generated just below the region where �K is finite so that contribution
from the term �B2

� in the source E � B is small. This effect is similar to the one reported
in Brandenburg et al. (2009). Also we have not observed any evidence of chaotic
behaviour in the range of magnetic Reynolds number 20�Rm� 2� 105 for twice
supercritical � (�� 2�c), in agreement with Covas et al. (1997).

4. Conclusions

The calculations done in this article indicate that it is not possible to escape catastrophic
quenching due to accumulation of small-scale helicity in the domain by merely
separating the regions of shear and � effect. The saturation value of magnetic energy
decreases as �R�1m for both dynamical quenching and the ‘‘strong’’ (�Rm-dependent)
form of algebraic quenching for the simple two-layer model. However, additionally we
observe parity fluctuations for cases with dynamical quenching. It does not seem to us
that there exists any chaotic behaviour in the time series of magnetic energy since the
dynamo period and the saturation energy remains fairly constant. It may be possible
that solar wind, coronal mass ejections, and Vishniac and Cho fluxes help in throwing
out the small scale helicity from the Sun and thus alleviate catastrophic quenching. In
this study we have not found any difference between the nature of the saturation curves
for an �� dynamo and an �2 dynamo using the form of dynamical quenching given by
equation (6). However, it is clear that the algebraic quenching formula must fail if we
were to allow for magnetic helicity fluxes that would, under suitable circumstances,
alleviate catastrophic quenching.

Figure 4. Volume averaged magnetic energy scaled with the equipartition energy in the saturation phase as a
function of Rm for dynamical � quenching (trianglesþ solid) and algebraic quenching with g�¼ 1
(squaresþ dashed) and with g�¼Rm (crossþ dashed-dotted). Adapted from Chatterjee et al. (2010).
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We have been cautious about using dynamical quenching equation for dynamo
numbers not very large compared to the critical dynamo numbers. We would expect
that the magnetic field should affect all the turbulence coefficients including both �
and �. However for this analysis we have not included any quenching of �t. This may be
justified since such an effect could be mimicked by our simple two-layer model with a
lower �t in the region of production of strong toroidal fields and a higher �t in the
region of weaker poloidal fields. The effect of dynamical quenching on more realistic
solar dynamo models having meridional circulation, Babcock–Leighton � effect, and
diffusive helicity fluxes have also been studied (Chatterjee et al. 2010).

Unfortunately the direct numerical simulations have not yet reached the modest
Reynolds numbers used in this article (�104) which are still much lower than the
astrophysical dynamos. If B2

sat really has an inverse dependence on Rm, then the solar
dynamo should not be operating like it does! We may conclude that either we must have
helicity fluxes out of the system or cross-equatorial diffusive fluxes inside the domain or

Figure 5. Meridional snapshots of (a) B�/Beq and (b) �m (color/grey-scale coded) for cases with different Rm

starting from 20 (upper panel), 200 (middle panel) and 2�103 (lower panel). Two concentric circles have been
drawn at 0.68R� and 0.77R� to denote the radial positions of the shear layer and the � effect. Solid and
dashed lines denote poloidal field lines, corresponding to contours of positive (negative) r sin �A�.
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that the �M equation to be used beside the mean-field induction equations must be

suitably modified for �� dynamos. To verify if the equation for dynamical quenching

works in the same way as in �2 dynamos, we need to perform systematic comparisons

between DNS with shear and convection and mean-field modelling for �� dynamos.
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